Example 1: Sketch the graph of $y = \sin(x)$ for $0 \leq x \leq 2\pi$.

- Plot the five blue points: $\sin(x) = 0$ at $x = 0, \pi, 2\pi$; $\sin\left(\frac{\pi}{2}\right) = 1$; $\sin\left(\frac{3\pi}{2}\right) = -1$
- Start at (0,0)
Basic sine graphs

Example 1: Sketch the graph of \(y = \sin(x) \) for \(0 \leq x \leq 2\pi \).

- Plot the five blue points: \(\sin(x) = 0 \) at \(x = 0, \pi, 2\pi \); \(\sin(\frac{\pi}{2}) = 1 \); \(\sin(\frac{3\pi}{2}) = -1 \)
- Start at (0,0)
- Go up to point \((\pi/2, 1)\), a local maximum because it is at the top of a hill.
Basic sine graphs

Example 1: Sketch the graph of \(y = \sin(x) \) for \(0 \leq x \leq 2\pi \).

- Plot the five blue points: \(\sin(x) = 0 \) at \(x = 0, \pi, 2\pi; \quad \sin(\frac{\pi}{2}) = 1; \quad \sin(\frac{3\pi}{2}) = -1 \)
- Start at (0,0)
- Go up to point \((\pi/2, 1)\), a local maximum because it is at the top of a hill.
- Down to \((\pi, 0)\)
Basic sine graphs

Example 1: Sketch the graph of \(y = \sin(x) \) for \(0 \leq x \leq 2\pi \).

- Plot the five blue points: \(\sin(x) = 0 \) at \(x = 0, \pi, 2\pi \); \(\sin(\frac{\pi}{2}) = 1 \); \(\sin(\frac{3\pi}{2}) = -1 \)
- Start at (0,0)
- Go up to point \((\pi/2, 1)\), a local maximum because it is at the top of a hill.
- Down to \((\pi, 0)\)
- Down to point \((3\pi/2, -1)\), a local minimum because it is at the bottom of a valley.
Example 1: Sketch the graph of \(y = \sin(x) \) for \(0 \leq x \leq 2\pi \).

- Plot the five blue points: \(\sin(x) = 0 \) at \(x = 0, \pi, 2\pi \); \(\sin\left(\frac{\pi}{2}\right) = 1 \); \(\sin\left(\frac{3\pi}{2}\right) = -1 \).
- Start at (0,0).
- Go up to point \(\left(\frac{\pi}{2}, 1\right) \), a local maximum because it is at the top of a hill.
- Down to \((\pi, 0) \).
- Down to point \(\left(\frac{3\pi}{2}, -1\right) \), a local minimum because it is at the bottom of a valley.
- Back up to \((2\pi, 0) \).
Basic sine graphs

Example 1: Sketch the graph of \(y = \sin(x) \) for \(0 \leq x \leq 2\pi \).

- Plot the five blue points: \(\sin(x) = 0 \) at \(x = 0, \pi, 2\pi \); \(\sin\left(\frac{\pi}{2}\right) = 1 \); \(\sin\left(\frac{3\pi}{2}\right) = -1 \).
- Start at (0,0).
- Go up to point \(\left(\frac{\pi}{2}, 1\right) \), a local maximum because it is at the top of a hill.
- Down to \((\pi, 0) \).
- Down to point \(\left(\frac{3\pi}{2}, -1\right) \), a local minimum because it is at the bottom of a valley.
- Back up to \((2\pi, 0) \).
- Make sure your graph has no sharp corners!

The graph at the left gets half credit.
Example 2: Draw the graph of \(y = 3\sin(x) \) for \(0 \leq x \leq 2\pi \).

The only change from the graph of \(y = \sin(x) \) is that every y-coordinate gets multiplied by 3.

- Plot the five blue points: \(3\sin(x) = 0 \) at \(x = 0, \pi, 2\pi; \) \(\sin\left(\frac{\pi}{2}\right) = 3; \) \(\sin\left(\frac{3\pi}{2}\right) = -3 \)
- Start at (0,0)
Example 2: Draw the graph of $y = 3 \sin(x)$ for $0 \leq x \leq 2\pi$.

The only change from the graph of $y = \sin(x)$ is that every y-coordinate gets multiplied by 3.

- Plot the five blue points: $3 \sin(x) = 0$ at $x = 0, \pi, 2\pi$; $\sin(\pi / 2) = 3$; $\sin(3\pi / 2) = -3$
- Start at (0,0)
- Go up to point $(\pi/2,3)$, a local maximum because it is at the top of a hill.
Example 2: Draw the graph of $y = 3\sin(x)$ for $0 \leq x \leq 2\pi$.

The only change from the graph of $y = \sin(x)$ is that every y-coordinate gets multiplied by 3.

- Plot the five blue points: $3\sin(x) = 0$ at $x = 0, \pi, 2\pi$; \(\sin\left(\frac{\pi}{2}\right) = 3; \quad \sin\left(\frac{3\pi}{2}\right) = -3 \)
- Start at $(0,0)$
- Go up to point $(\pi/2,3)$, a local maximum because it is at the top of a hill.
- Down to $(\pi, 0)$
Example 2: Draw the graph of \(y = 3 \sin(x) \) for \(0 \leq x \leq 2\pi \).

The only change from the graph of \(y = \sin(x) \) is that every y-coordinate gets multiplied by 3.

- Plot the five blue points: \(3 \sin(x) = 0 \) at \(x = 0, \pi, 2\pi; \ \sin(\frac{\pi}{2}) = 3; \ \sin(\frac{3\pi}{2}) = -3 \)
- Start at (0,0)
- Go up to point \((\pi/2,3) \), a local maximum because it is at the top of a hill.
- Down to \((\pi,0) \)
- Down to point \((3\pi/2,-3) \), a local minimum because it is at the bottom of a valley.
Example 2: Draw the graph of $y = 3\sin(x)$ for $0 \leq x \leq 2\pi$.
The only change from the graph of $y = \sin(x)$ is that every y-coordinate gets multiplied by 3.
- Plot the five blue points: $3\sin(x) = 0$ at $x = 0, \pi, 2\pi$; $\sin(\frac{\pi}{2}) = 3$; $\sin(\frac{3\pi}{2}) = -3$
- Start at (0,0)
- Go up to point (π/2,3), a local maximum because it is at the top of a hill.
- Down to (π,0)
- Down to point (3π/2 , -3), a local minimum because it is at the bottom of a valley.
- Back up to (2\pi, 0).
Example 2: Draw the graph of \(y = 3 \sin(x) \) for \(0 \leq x \leq 2\pi \).

The only change from the graph of \(y = \sin(x) \) is that every y-coordinate gets multiplied by 3.

- Plot the five blue points: \(3 \sin(x) = 0 \) at \(x = 0, \pi, 2\pi; \sin(\pi/2) = 3; \sin(3\pi/2) = -3 \)
- Start at (0,0)
- Go up to point \((\pi/2, 3)\), a local maximum because it is at the top of a hill.
- Down to \((\pi, 0)\)
- Down to point \((3\pi/2, -3)\), a local minimum because it is at the bottom of a valley.
- Back up to \((2\pi, 0)\).
- Make sure your graph has no sharp corners!
Example 3: Draw the graph of $y = -\sin(x)$ for $0 \leq x \leq 2\pi$.

This graph is the reflection through the x-axis of the red graph of $y = \sin(x)$.

- Plot the five blue points: $-\sin(x) = 0$ at $x = 0, \pi, 2\pi$; $-\sin(\frac{\pi}{2}) = -1$; $-\sin(\frac{3\pi}{2}) = 1$
- Start at (0,0)
Example 3: Draw the graph of $y = -\sin(x)$ for $0 \leq x \leq 2\pi$.
This graph is the reflection through the x-axis of the red graph of $y = \sin(x)$.

- Plot the five blue points: $-\sin(x) = 0$ at $x = 0, \pi, 2\pi$; $-\sin(\frac{\pi}{2}) = -1$; $-\sin(\frac{3\pi}{2}) = 1$
- Start at (0,0)
- Go down to point $(\pi/2, -1)$, a local minimum because it is at the bottom of a valley.
Example 3: Draw the graph of \(y = -\sin(x) \) for \(0 \leq x \leq 2\pi \).
This graph is the reflection through the x-axis of the red graph of \(y = \sin(x) \).

- Plot the five blue points: \(-\sin(x) = 0 \) at \(x = 0, \pi, 2\pi \); \(-\sin(\frac{\pi}{2}) = -1 \); \(-\sin(\frac{3\pi}{2}) = 1 \)
- Start at (0,0)
- Go down to point \((\pi/2, -1)\), a local minimum because it is at the bottom of a valley.
- Up to \((\pi, 0)\)
Basic sine graphs 3

Example 3: Draw the graph of $y = -\sin(x)$ for $0 \leq x \leq 2\pi$.
This graph is the reflection through the x-axis of the red graph of $y = \sin(x)$.

- Plot the five blue points: $-\sin(x) = 0$ at $x = 0, \pi, 2\pi$; $-\sin\left(\frac{\pi}{2}\right) = -1$; $-\sin\left(\frac{3\pi}{2}\right) = 1$
- Start at (0,0)
- Go down to point $(\pi/2,-1)$, a local minimum because it is at the bottom of a valley.
- Up to $(\pi,0)$
- Up to point $(3\pi/2 , 1)$, a local maximum because it is at the top of a hill.
Example 3: Draw the graph of $y = -\sin(x)$ for $0 \leq x \leq 2\pi$.

This graph is the reflection through the x-axis of the red graph of $y = \sin(x)$.

- Plot the five blue points: $-\sin(x) = 0$ at $x = 0, \pi, 2\pi$; $-\sin\left(\frac{\pi}{2}\right) = -1$; $-\sin\left(\frac{3\pi}{2}\right) = 1$
- Start at $(0,0)$
- Go down to point $(\pi/2, -1)$, a local minimum because it is at the bottom of a valley.
- Up to $(\pi, 0)$
- Up to point $(3\pi/2, 1)$, a local maximum because it is at the top of a hill.
- Back down to $(2\pi, 0)$
Memorize these four basic sine and cosine graphs.

The graph above is one wave of $y = \sin(x)$.

Reflect the above graph through the x-axis to get the following graph of $y = -\sin(x)$.

The graph above is one wave of $y = \cos(x)$.

Reflect the above graph through the x-axis to get the following graph of $y = -\cos(x)$.
Example 4: For $0 \leq x \leq 2\pi$, draw the graphs of $y = \sin(x)$ and $y = 3\sin(x)$ on the same grid. Each graph consists of a hill and a valley, which together form one wave of the sine graph.
Transforming equations and graphs

Example 4: For $0 \leq x \leq 2\pi$, draw the graphs of $y = \sin(x)$ and $y = 3\sin(x)$ on the same grid. Each graph consists of a hill and a valley, which together form one wave of the sine graph.

Solution: The equation $y = 3\sin(x)$ is obtained by multiplying the RHS of $y = \sin(x)$ by 3. We multiply each y-coordinate on the red graph by 3 to obtain the blue graph.
Example 4: For $0 \leq x \leq 2\pi$, draw the graphs of $y = \sin(x)$ and $y = 3\sin(x)$ on the same grid. Each graph consists of a hill and a valley, which together form one wave of the sine graph.

Solution: The equation $y = 3\sin(x)$ is obtained by multiplying the RHS of $y = \sin(x)$ by 3. We multiply each y-coordinate on the red graph by 3 to obtain the blue graph.

Example 5: Draw the graph of $y = \sin(x)$ with $0 \leq x \leq 2\pi$. On the same grid, draw one wave of the graph of $y = \sin(2x)$.
Transforming equations and graphs

Example 4: For $0 \leq x \leq 2\pi$, draw the graphs of $y = \sin(x)$ and $y = 3\sin(x)$ on the same grid. Each graph consists of a hill and a valley, which together form one wave of the sine graph.

Solution: The equation $y = 3\sin(x)$ is obtained by multiplying the RHS of $y = \sin(x)$ by 3. We multiply each y-coordinate on the red graph by 3 to obtain the blue graph.

Example 5: Draw the graph of $y = \sin(x)$ with $0 \leq x \leq 2\pi$. On the same grid, draw one wave of the graph of $y = \sin(2x)$.

Solution: If we replace x in the equation $y = \sin(x)$ by $2x$, we get new equation $y = \sin(2x)$. The effect on the graph is to shrink it by a factor of 2 in the x-direction, toward the y-axis. The resulting blue graph still shows a complete wave (hill + valley) of the sine curve $y = \sin(2x)$. However, the domain has shrunk to $0 \leq x \leq \pi$.
Example 6: Starting with one wave $y = \sin(x)$, draw one wave of the graph of $y = 3\sin(2x)$.
Example 6: Starting with one wave \(y = \sin(x) \), draw one wave of the graph of \(y = 3 \sin(2x) \).

Solution: We need to combine the two equation changes studied on the last slide.
- Multiply the RHS of the equation \(y = \sin(x) \) by 3 to get the new equation \(y = 3 \sin(x) \). To sketch the graph, multiply each y-coordinate on the red graph by 3 to obtain the blue graph.
- To go from the equation \(y = 3 \sin(x) \) to the desired equation \(y = 3 \sin(2x) \), replace \(x \) in the equation by \(2x \). Thus we shrink the graph of \(y = 3 \sin(x) \) by a factor of 2 in the x-direction to obtain the black graph at the left.
- The original graph of \(y = \sin(x) \) has been stretched by a factor of 3 in the y-direction AND has been shrunk by a factor of 2 in the x-direction. The resulting black graph shows a complete wave (hill + valley) of the sine curve \(y = 3 \sin(2x) \). However, the domain has shrunk to \(0 \leq x \leq \pi \).
Example 6: Starting with one wave $y = \sin(x)$, draw one wave of the graph of $y = 3 \sin(2x)$.

Solution: We need to combine the two equation changes studied on the last slide.

- Multiply the RHS of the equation $y = \sin(x)$ by 3 to get the new equation $y = 3 \sin(x)$. To sketch the graph, multiply each y-coordinate on the red graph by 3 to obtain the blue graph.

- To go from the equation $y = 3 \sin(x)$ to the desired equation $y = 3 \sin(2x)$, replace x in the equation by $2x$. Thus we shrink the graph of $y = 3 \sin(x)$ by a factor of 2 in the x-direction to obtain the black graph at the left.

- The original graph of $y = \sin(x)$ has been stretched by a factor of 3 in the y-direction AND has been shrunk by a factor of 2 in the x-direction. The resulting black graph shows a complete wave (hill + valley) of the sine curve $y = 3 \sin(2x)$. However, the domain has shrunk to $0 \leq x \leq \pi$.
The last slide shows a "history" of how to obtain the graph of $y = 3 \sin(2x)$ from the basic graph of $y = \sin(x)$. If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph off $y = 3 \sin(2x)$.
The last slide shows a "history" of how to obtain the graph of $y = 3 \sin(2x)$ from the basic graph of $y = \sin(x)$. If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph off $y = 3 \sin(2x)$.

- Start by drawing the above 4 by 2 box grid, which will accommodate every cosine or sine wave.
The last slide shows a "history" of how to obtain the graph of \(y = 3 \sin(2x) \) from the basic graph of \(y = \sin(x) \). If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph of \(y = 3 \sin(2x) \).

- Start by drawing the above 4 by 2 box grid, which will accommodate every cosine or sine wave.
- To draw one wave of \(y = 3 \sin(2x) \), the angle \(2x \) should go from 0 to \(2\pi \).
- Thus \(x \) goes from 0 to \(\pi \).
- The width of the wave is \(\pi \), and so each section of the graph has width \(\pi/4 \).
- Start by labeling the x-axis with labels \(0, \pi/4, \pi/2, 3\pi/4, \pi \).
The last slide shows a "history" of how to obtain the graph of $y = 3 \sin(2x)$ from the basic graph of $y = \sin(x)$.

If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph off $y = 3 \sin(2x)$.

- Start by drawing the above 4 by 2 box grid, which will accommodate every cosine or sine wave.
- To draw one wave of $y = 3 \sin(2x)$, the angle $2x$ should go from 0 to 2π.
 Thus x goes from 0 to π.

The width of the wave is π, and so each section of the graph has width $\pi/4$.

Start by labeling the x-axis with labels $0, \pi/4, \pi/2, 3\pi/4$.

- Next, note that the sine of any angle is between -1 and 1. If we are changing from $y = \sin(2x)$ to $3 \sin(2x)$, every y-coordinate gets multiplied by 3 and the graph wave of $y = 3 \sin(2x)$ will run from $y = -3$ to $y = 3$.

Label the y-axis with scale numbers -3, 0, 3.
The last slide shows a "history" of how to obtain the graph of \(y = 3 \sin(2x) \) from the basic graph of \(y = \sin(x) \). If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph off \(y = 3 \sin(2x) \).

- Start by drawing the above 4 by 2 box grid, which will accommodate every cosine or sine wave.
- To draw one wave of \(y = 3 \sin(2x) \), the angle \(2x \) should go from 0 to \(2\pi \). Thus \(x \) goes from 0 to \(\pi \).
- The width of the wave is \(\pi \), and so each section of the graph has width \(\pi/4 \).
- Start by labeling the x-axis with labels \(0, \pi/4, \pi/2, 3\pi/4 \).
- Next, note that the sine of any angle is between -1 and 1. If we are changing from \(y = \sin(2x) \) to \(3 \sin(2x) \), every y-coordinate gets multiplied by 3 and the graph wave of \(y = 3 \sin(2x) \) will run from \(y = -3 \) to \(y = 3 \).
- Label the y-axis with scale numbers -3, 0, 3.
- Now sketch the sine wave section by section, starting with the hill, so that it fills the box.
The last slide shows a "history" of how to obtain the graph of \(y = 3 \sin(2x) \) from the basic graph of \(y = \sin(x) \). If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph off \(y = 3 \sin(2x) \).

- Start by drawing the above 4 by 2 box grid, which will accommodate every cosine or sine wave.
- To draw one wave of \(y = 3 \sin(2x) \), the angle \(2x \) should go from 0 to \(2\pi \). Thus \(x \) goes from 0 to \(\pi \).
- The width of the wave is \(\pi \), and so each section of the graph has width \(\pi/4 \).
- Start by labeling the x-axis with labels 0, \(\pi/4 \), \(\pi/2 \), \(3\pi/4 \).
- Next, note that the sine of *any* angle is between -1 and 1. If we are changing from \(y = \sin(2x) \) to \(3 \sin(2x) \), every y-coordinate gets multiplied by 3 and the graph wave of \(y = 3 \sin(2x) \) will run from \(y = -3 \) to \(y = 3 \).
- Label the y-axis with scale numbers -3, 0, 3.
- Now sketch the sine wave section by section, starting with the hill, so that it fills the box.
The last slide shows a "history" of how to obtain the graph of $y = 3 \sin(2x)$ from the basic graph of $y = \sin(x)$. If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph off $y = 3 \sin(2x)$.

- Start by drawing the above 4 by 2 box grid, which will accommodate every cosine or sine wave.
- To draw one wave of $y = 3 \sin(2x)$, the angle $2x$ should go from 0 to 2π. Thus x goes from 0 to π.

 The width of the wave is π, and so each section of the graph has width $\pi/4$.
 Start by labeling the x-axis with labels $0, \pi/4, \pi/2, 3\pi/4$.
- Next, note that the sine of *any* angle is between -1 and 1. If we are changing from $y = \sin(2x)$ to $3 \sin(2x)$, every y-coordinate gets multiplied by 3 and the graph wave of $y = 3 \sin(2x)$ will run from $y = -3$ to $y = 3$.
 Label the y-axis with scale numbers -3, 0, 3.
- Now sketch the sine wave section by section, starting with the hill, so that it fills the box.
Basic sine and cosine graphs

The last slide shows a "history" of how to obtain the graph of \(y = 3 \sin(2x) \) from the basic graph of \(y = \sin(x) \). If we just want the final result, there's an easier way.

Example 7: Sketch one wave of the graph of \(y = 3 \sin(2x) \).

- Start by drawing the above 4 by 2 box grid, which will accommodate every cosine or sine wave.
- To draw one wave of \(y = 3 \sin(2x) \), the angle \(2x \) should go from 0 to \(2\pi \). Thus \(x \) goes from 0 to \(\pi \).
- The width of the wave is \(\pi \), and so each section of the graph has width \(\pi/4 \).
- Start by labeling the x-axis with labels 0, \(\pi/4 \), \(\pi/2 \), 3\(\pi/4 \).
- Next, note that the sine of any angle is between -1 and 1. If we are changing from \(y = \sin(2x) \) to \(3 \sin(2x) \), every y-coordinate gets multiplied by 3 and the graph wave of \(y = 3 \sin(2x) \) will run from \(y = -3 \) to \(y = 3 \).
- Label the y-axis with scale numbers -3, 0, 3.
- Now sketch the sine wave section by section, starting with the hill, so that it fills the box.
Example 8: Graph \(y = 3 \sin(2x + \pi/3) \) by transforming the graph of \(y = \sin(x) \).

Solution: First rewrite the equation as \(y = 3 \sin(2(x + \pi/6)) \).

- Start with the graph \(y = \sin(x); 0 \leq x \leq 2\pi \).
Graphing $y = 3 \sin(2x + \pi/3)$

Example 8: Graph $y = 3 \sin(2x + \pi/3)$ by transforming the graph of $y = \sin(x)$.

Solution: First rewrite the equation as $y = 3 \sin(2(x + \pi/6))$.

- Start with the graph $y = \sin(x); 0 \leq x \leq 2\pi$.
- Replace x in $y = \sin(x)$ by $2x$. This shrinks its graph horizontally toward the y-axis by a factor of 2 to yield one wave $y = \sin(2x); 0 \leq x \leq \pi$.

![Graph of y = 3 sin(2x + pi/3)]
Example 8: Graph $y = 3\sin(2x + \pi/3)$ by transforming the graph of $y = \sin(x)$.

Solution: First rewrite the equation as $y = 3\sin(2(x + \pi/6))$.

- Start with the graph

 $y = \sin(x); 0 \leq x \leq 2\pi$.

- Replace x in $y = \sin(x)$ by $2x$. This shrinks its graph horizontally toward the y-axis by a factor of 2 to yield one wave

 $y = \sin(2x); 0 \leq x \leq \pi$.

- Replace x in $y = \sin(2x)$ by $x + \pi/6$. This shifts its graph left $\pi/6$ to yield one wave of

 $y = \sin(2(x + \pi/6)); -\pi/6 \leq x \leq 5\pi/6$.

Vertical lines are $\pi/6$ radians apart.
Graphing $y = 3\sin(2x + \pi/3)$

Example 8: Graph $y = 3\sin(2x + \pi/3)$ by transforming the graph of $y = \sin(x)$.

Solution: First rewrite the equation as $y = 3\sin(2(x + \pi/6)).$

1. Start with the graph $y = \sin(x); 0 \leq x \leq 2\pi$.
2. Replace x in $y = \sin(x)$ by $2x$. This shrinks its graph horizontally toward the y-axis by a factor of 2 to yield one wave $y = \sin(2x); 0 \leq x \leq \pi$.
3. Replace x in $y = \sin(2x)$ by $x + \pi/6$. This shifts its graph left $\pi/6$ to yield one wave of $y = \sin(2(x + \pi/6)); -\pi/6 \leq x \leq 5\pi/6$ Vertical lines are $\pi/6$ radians apart.
4. Multiply RHS of $y = \sin(2x + \pi/3)$ by 3. This stretches the graph vertically away from the x-axis by a factor of 2 to yield one wave of $y = 3\sin(2x + \pi/3); -\pi/6 \leq x \leq 5\pi/6$.
Graphing \(y = 3 \sin(2x + \pi/3) \) without intermediate transformations.

On the previous slide, we started with one wave of the graph of \(y = \sin(x) \) with domain \(0 \leq x \leq 2\pi \). We transformed the equation and its graph step by step to obtain one wave of the graph \(y = 3 \sin(2x + \pi/3) \), with domain \(-\pi/6 \leq x \leq 5\pi/6 \). This was very complicated!

Here we show how to draw the final graph directly.

Example 9: Graph one wave of \(y = 3 \sin(2x + \pi/3) \) directly. Label the maximum and minimum points with their coordinates.

Solution: The crucial idea is that one wave (hill and valley) of a sine curve is obtained by letting the angle go from 0 to \(2\pi \). For our function \(y = \sin(2x + \pi/3) \), the angle is \(2x + \pi/3 \).

- Angle from 0 to \(2\pi \): \(0 \leq 2x + \pi/3 \leq 2\pi \)
- Subtract \(\pi/3 \): \(-\pi/3 \leq 2x \leq 5\pi/3 \)
- Divide by 2: \(-\pi/6 \leq x \leq 5\pi/6 \) This is the domain of one wave of the graph.

Therefore the domain of \(y = 3 \sin(2x + \pi/3) \) will be the closed interval \([-\pi/6, 5\pi/6] \).

Figuring out the \(y \)-values for one wave is easier. Since \(y = \sin(2x + \pi/3) \) can take values between -1 and 1, multiplying the RHS of by 3 multiplies all \(y \)-values by 3. Therefore the range of \(y = 3 \sin(2x + \pi/3) \), is \(-3 \leq y \leq 3 \).

Conclusion: One wave of the graph of \(y = 3 \sin(2x + \pi/3) \) should be drawn on a grid with \(-\pi/6 \leq x \leq 5\pi/6 \) and \(-3 \leq y \leq 3 \). We will do this on the next slide.
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.

...
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
Graphing $y = 3\sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
- On the previous slide, we showed that the domain is $\frac{-\pi}{6} \leq x \leq \frac{5\pi}{6}$.
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

• Draw the grid.
• Draw the sine wave.
• On the previous slide, we showed that the domain is $-\pi/6 \leq x \leq 5\pi/6$. This interval’s length (the width of the grid) is right endpoint minus left endpoint = $5\pi/6 - (-\pi/6) = \pi$.

Stanley Ocken
M19500 Precalculus Chapter 5.3: Trigonometric graphs
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
- On the previous slide, we showed that the domain is $-\pi/6 \leq x \leq 5\pi/6$. This interval’s length (the width of the grid) is right endpoint minus left endpoint $= \frac{5\pi}{6} - (-\frac{\pi}{6}) = \pi$.

 Each of the four equal parts has length $\pi/4$. The first x-axis label will be $-\frac{\pi}{6}$. To get the others, keep adding $\frac{\pi}{4}$.

 Therefore the other x-axis labels are:
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
- On the previous slide, we showed that the domain is $-\pi/6 \leq x \leq 5\pi/6$. This interval’s length (the width of the grid) is right endpoint minus left endpoint $= \frac{5\pi}{6} - (-\frac{\pi}{6}) = \pi$.
 Each of the four equal parts has length $\pi/4$. The first x-axis label will be $-\pi/6$. To get the others, keep adding $\frac{\pi}{4}$.
 Therefore the other x-axis labels are:
 - $-\frac{\pi}{6} + \frac{\pi}{4} = -\frac{2\pi}{12} + \frac{3\pi}{12} = \frac{\pi}{12}$
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
- On the previous slide, we showed that the domain is $-\pi/6 \leq x \leq 5\pi/6$. This interval’s length (the width of the grid) is right endpoint minus left endpoint $= \frac{5\pi}{6} - (-\frac{\pi}{6}) = \pi$.

Each of the four equal parts has length $\pi/4$. The first x-axis label will be $-\frac{\pi}{6}$. To get the others, keep adding $\frac{\pi}{4}$.

Therefore the other x-axis labels are:
- $-\frac{\pi}{6} + \frac{\pi}{4} = -2\frac{\pi}{12} + 3\frac{\pi}{12} = \frac{\pi}{4}$
- $\frac{\pi}{12} + \frac{\pi}{4} = \frac{\pi}{12} + 3\frac{\pi}{12} = 4\frac{\pi}{12} = \frac{\pi}{3}$
Graphing \(y = 3 \sin(2x + \pi/3) \) without intermediate transformations.

- Draw the grid.
- Draw the sine wave.

On the previous slide, we showed that the domain is \(-\pi/6 \leq x \leq 5\pi/6\). This interval’s length (the width of the grid) is right endpoint minus left endpoint = \(5\pi/6 - (-\pi/6) = \pi\).

Each of the four equal parts has length \(\pi/4\). The first x-axis label will be \(-\pi/6\). To get the others, keep adding \(\pi/4\).

Therefore the other x-axis labels are:

- \(-\pi/6 + \pi/4 = -2\pi/12 + 3\pi/12 = \pi/12\)
- \(\pi/12 + \pi/4 = \pi/12 + 3\pi/12 = 4\pi/12 = \pi/3\)
- \(\pi/3 + \pi/4 = 4\pi/12 + 3\pi/12 = 7\pi/12\) and finally
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
- On the previous slide, we showed that the domain is $-\pi/6 \leq x \leq 5\pi/6$. This interval’s length (the width of the grid) is right endpoint minus left endpoint $= \frac{5\pi}{6} - (-\frac{\pi}{6}) = \pi$.

Each of the four equal parts has length $\pi/4$. The first x-axis label will be $-\frac{\pi}{6}$. To get the others, keep adding $\frac{\pi}{4}$.

Therefore the other x-axis labels are:

- $-\frac{\pi}{6} + \frac{\pi}{4} = -\frac{2\pi}{12} + \frac{3\pi}{12} = \frac{\pi}{12}$
- $\frac{\pi}{12} + \frac{\pi}{4} = \frac{\pi}{12} + \frac{3\pi}{12} = \frac{4\pi}{12} = \frac{\pi}{3}$
- $\frac{\pi}{3} + \frac{\pi}{4} = \frac{4\pi}{12} + \frac{3\pi}{12} = \frac{7\pi}{12}$ and finally
- $\frac{7\pi}{12} + \frac{\pi}{4} = \frac{7\pi}{12} + \frac{3\pi}{12} = \frac{10\pi}{12} = \frac{5\pi}{6}$
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
- On the previous slide, we showed that the domain is $-\pi/6 \leq x \leq 5\pi/6$. This interval’s length (the width of the grid) is right endpoint minus left endpoint = $\frac{5\pi}{6} - (-\frac{\pi}{6}) = \pi$.

Each of the four equal parts has length $\pi/4$. The first x-axis label will be $-\frac{\pi}{6}$. To get the others, keep adding $\frac{\pi}{4}$.

Therefore the other x-axis labels are:
- $-\frac{\pi}{6} + \frac{\pi}{4} = -\frac{2\pi}{12} + \frac{3\pi}{12} = \frac{\pi}{12}$
- $\frac{\pi}{12} + \frac{\pi}{4} = \frac{\pi}{12} + \frac{3\pi}{12} = \frac{4\pi}{12} = \frac{\pi}{3}$
- $\frac{\pi}{3} + \frac{\pi}{4} = \frac{4\pi}{12} + \frac{3\pi}{12} = \frac{7\pi}{12}$ and finally
- $\frac{7\pi}{12} + \frac{\pi}{4} = \frac{7\pi}{12} + \frac{3\pi}{12} = \frac{10\pi}{12} = \frac{5\pi}{6}$
- Now insert y-axis labels, going from -3 to 3.
Graphing $y = 3 \sin(2x + \pi/3)$ without intermediate transformations.

- Draw the grid.
- Draw the sine wave.
- On the previous slide, we showed that the domain is $-\pi/6 \leq x \leq 5\pi/6$. This interval’s length (the width of the grid) is right endpoint minus left endpoint $= 5\pi/6 - (-\pi/6) = \pi$.
 Each of the four equal parts has length $\pi/4$. The first x-axis label will be $-\pi/6$. To get the others, keep adding $\pi/4$.
 Therefore the other x-axis labels are:
 - $-\pi/6 + \pi/4 = -2\pi/12 + 3\pi/12 = \pi/12$
 - $\pi/12 + \pi/4 = \pi/12 + 3\pi/12 = 4\pi/12 = \pi/3$
 - $\pi/3 + \pi/4 = 4\pi/12 + 3\pi/12 = 7\pi/12$ and finally
 - $7\pi/12 + \pi/4 = 7\pi/12 + 3\pi/12 = 10\pi/12 = 5\pi/6$
- Now insert y-axis labels, going from -3 to 3
- Label the maximum and minimum points.
The procedure on the previous page for graphing $y = 3 \sin(2x + \pi/3)$ is easier to understand if we consider the general case.

The general sine function is $y = A \sin(Bx + C)$. In our example $y = 3 \sin(2x + \pi/3)$. Therefore $A = 3$, $B = 2$, and $C = \pi/3$.

Features of the sine function graph $y = A \sin(Bx + C)$

- **The period** is the width of one wave $= 2\pi/|B|$.
- **The amplitude** is half the height of the wave $= |A|$.
- **The phase shift** is the wave’s leftmost x-value $= -C/B$.

Example 10: Find the period, amplitude, and phase shift of the sine graph $y = 3 \sin(2x + \pi/3)$.

Solution: Match the general function $y = A \sin(Bx + C)$ with $y = 3 \sin(2x + \pi/3)$ to get $A = 3$, $B = 2$, and $C = \pi/3$.

Answer:
- The period is the width of one wave $= 2\pi/|B| = 2\pi/2 = \pi$.
- The amplitude is half the height of the wave $= |A| = 3$.
- The phase shift is its left x-value $= -C/B = -\pi/3 = -\pi/6$.
Quiz Review

Example 1: Sketch the graph of \(y = \sin(x) \) for \(0 \leq x \leq 2\pi \).

Example 2: Draw the graph of \(y = 3 \sin(x) \) for \(0 \leq x \leq 2\pi \).

Example 3: Draw the graph of \(y = -\sin(x) \) for \(0 \leq x \leq 2\pi \).

Example 4: For \(0 \leq x \leq 2\pi \), draw the graphs of \(y = \sin(x) \) and \(y = 3 \sin(x) \) on the same grid.

Example 5: For \(0 \leq x \leq 2\pi \), draw the graphs of \(y = \sin(x) \) and \(y = \sin(2x) \) on the same grid.

Example 6: Starting with one wave of \(y = \sin(x) \), draw one wave of the graph of \(y = 3 \sin(2x) \).

Example 7: Sketch one wave of the graph of \(y = 3 \sin(2x) \) directly.

Example 8: Graph \(y = 3 \sin(2x + \pi/3) \) by transforming one wave of the graph of \(y = \sin(x) \).

Example 9: Sketch one wave of \(y = 3 \sin(2x + \pi/3) \) directly. Label the maximum and minimum points with their coordinates.

Example 10: Find the period, amplitude, and phase shift of the sine graph \(y = 3 \sin(2x + \pi/3) \).