We want to draw the graphs of polynomial functions $y = f(x)$.

- The *degree* of a polynomial in one variable x is the highest power of x that remains after terms have been collected.
- The degree of $y = x^2 + x$ is 2.
- The degree of $y = 2x^2 + 3x - x^2 - 3 - x^2$ is 1 because the terms collect to give $y = 3x - 3$.

The graph of a degree 1 polynomial (which can always be written as $y = mx + b$ with $m \neq 0$) is a slanted straight line with slope m. This was discussed in Chapter 1.

In this section we focus on *parabolas*, which are the graphs of quadratic (degree 2) polynomials $y = ax^2 + bx + c$, where $a \neq 0$.

- If $a > 0$, the parabola $y = ax^2 + bx + c$ opens upward (like a *cup*: \bigcup) and has a minimum point at $x = -\frac{b}{2a}$.
- If $a < 0$, the parabola $y = ax^2 + bx + c$ opens downward (like a *cap*: \cap) and has a maximum point at $x = -\frac{b}{2a}$.
You should already be familiar with the graph of \(y = x^2 \), which has a minimum point at the origin \((0, 0)\).
Similarly, the graph of $y = -x^2$ has a maximum point at the origin $(0, 0)$.

\[
y = -x^2
\]
To analyze the graph of $y = x^2 + 2x$, write $y = x^2 + 2x = ax^2 + bx + c$. Thus $a = 1$ and $b = 2$. Since $a > 0$, the graph has a minimum point at $x = -\frac{b}{2a} = -\frac{2}{2} = -1$. At that point $y = x^2 + 2x = (-1)^2 + 2(-1) = 0$ and so the minimum point is $(x, y) = (-1, -1)$.

Stanley Ocken

M19500 Precalculus Chapter 3.1: Quadratic polynomials
To analyze the graph of $y = 2x - x^2$, write $y = -x^2 + 2x = ax^2 + bx + c$. Thus $a = -1$ and $b = 2$. Since $a < 0$, the graph has a maximum point at $x = \frac{-b}{2a} = \frac{-2}{-2} = 1$. At that point $y = -x^2 + 2x = -(1)^2 + 2(1) = 1$ and so the maximum point is $(x, y) = (1, 1)$.
Graphs of degree 3 polynomials (preview)

The graph of a degree 3 polynomial can have no maximum/minimum point, or one of each. Click to see the possibilities. We will study these examples in detail in Chapter 3.2.
Some degree 3 polynomials.

The graph of a degree 3 polynomial can have no maximum/minimum point, or one of each. Click to see the possibilities. We will study these examples in detail in Chapter 3.2.
Some degree 3 polynomials.

The graph of a degree 3 polynomial can have no maximum/minimum point, or one of each. Click to see the possibilities. We will study these examples in detail in Chapter 3.2.
The graph of a degree 3 polynomial can have no maximum/minimum point, or one of each. Click to see the possibilities. We will study these examples in detail in Chapter 3.2.
Standard form equations for parabolas

In Chapter 1.8, we discussed how to convert an equation of a circle to a standard form that shows its center and radius.

Here we do the same thing for parabolas, which are the graphs of degree 2 polynomial equations $y = ax^2 + bx + c$ where $a \neq 0$. Every parabola has a single minimum or maximum point, called the vertex of the parabola.

Every parabola equation can be written in standard form $y = a(x - M)^2 + K$. Here M is the x-coordinate of the maximum or minimum. If $a > 0$ the vertex of the parabola is the minimum point (M, K). If $a < 0$ the vertex of the parabola is the maximum point (M, K).

To understand why, just multiply out the standard form given above to get

$y = a(x^2 - 2Mx + M^2) + K$
$y = ax^2 - 2aMx + aM^2 + K$. Match this with
$y = ax^2 + bx + c$ to see that $b = -2aM$: the vertex is at $x = \frac{-b}{2a} = \frac{2aM}{2a} = M$.
Example 1. Find the vertex of the standard form parabola \(y = -2(x + 3)^2 + 7 \). Is it a maximum point or a minimum point?

Solution: For any \(x \)-value, \(y \) is obtained by subtracting the positive number \(2(x + 3)^2 \) from 7. Therefore \(y \) will be a maximum \((y = 7)\) when the subtracted quantity \(2(x + 3)^2 \) equals 0, and that happens when \(x = -3 \).

Answer: The vertex is at \((-3, 7)\) and is a maximum point.

Example 2. Find the vertex of the standard form parabola \(y = 2(x + 3)^2 + 7 \). Is it a maximum point or a minimum point?

Solution: For any \(x \)-value, \(y \) is obtained by adding the positive number \(2(x + 3)^2 \) to 7. Therefore \(y \) will be a minimum \((y = 7)\) when the added quantity \(2(x + 3)^2 \) equals 0, and that happens when \(x = -3 \).

Answer: The vertex is at \((-3, 7)\) and is a minimum point.

Next we use completing the square to rewrite the general parabola equation \(y = ax^2 + bx + c \) in standard form. To do this, write \(ax^2 + bx = a(x^2 + \frac{b}{a}x) \) and then follow the procedure in Section 1.8, as follows.
Example 3: Rewrite $x^2 + 6x$ by completing the square

Plan: Add and subtract $(\frac{6}{2})^2 = 3^2 = 9$

$x^2 + 6x = x^2 + 6x + 9 - 9 = (x + 3)^2 - 9$

Solution: $x^2 + 6x = (x + 3)^2 - 9$

Example 4: Rewrite $x^2 - 7x$ by completing the square

Plan: Add and subtract $(\frac{-7}{2})^2 = \frac{49}{4}$

$x^2 - 7x = x^2 - 7x + \frac{49}{4} - \frac{49}{4}$

$= (x + \frac{-7}{2})^2 - \frac{49}{4}$

Solution: $x^2 - 7x = (x - \frac{7}{2})^2 - \frac{49}{4}$
Example 5: Rewrite the parabola equation \(x^2 + 6x + 7 \) in standard form. Find the vertex of the parabola. Is it a minimum or maximum point?

Method Add and subtract \(\left(\frac{6}{2} \right)^2 = 3^2 \).

Solution
\[
y = x^2 + 6x + 9 - 9 + 7
\]
\[
y = (x + 3)^2 - 9 + 7 = (x + 3)^2 - 2
\]

Find the vertex: Set \(x + 3 = 0 \) to get \(x = -3 \) and then \(y = -2 \).

Answer: The standard form equation is \(y = (x + 3)^2 - 2 \). The vertex is \((-3, -2)\). It is a minimum point since \(y = +x^2 + 6x + 7 \) has an \(x^2 \) term with positive coefficient.
Example 6: Rewrite \(y = -2x^2 + 6x - 4 \) in standard form.
Then find the vertex. Is it a maximum point or a minimum point?

Solution:

Factor out -2

\[y = -2(x^2 - 3x) - 4. \quad \text{Equation (1)} \]

Complete the square to get \(x^2 - 3x = (x - \frac{3}{2})^2 - \frac{9}{4} \)

Rewrite Equation (1)

\[y = -2((x - \frac{3}{2})^2 - \frac{9}{4}) - 4 \]

Multiply out

\[y = -2(x - \frac{3}{2})^2 + 2\cdot\frac{9}{4} - 4 = -2(x - \frac{3}{2})^2 + \frac{9}{2} - 4 \]

Answer:

The standard form equation is \(y = -2(x - \frac{3}{2})^2 + \frac{1}{2} \)

The vertex is \((x, y) = (\frac{3}{2}, \frac{1}{2}) \). It is a maximum point since the \(x^2 \) term in \(y = -2x^2 + 6x - 4 \) has a negative coefficient.
Example 7: Use the result of Example 6 to sketch the graph of the parabola.

\[y = -2x^2 + 6x - 4 \]. Plot all intercepts and the vertex, and label the vertex as a maximum or a minimum.

Solution: From Example 6, we know that the vertex is at \((\frac{3}{2}, \frac{1}{2})\).

To find the y-intercept, set \(x = 0\) in \(y = -2x^2 + 6x - 4\) to get \(y = -4\). The graph meets the y-axis at \((0, -4)\).

To find the x-intercept, set \(y = 0\) in \(y = -2x^2 + 6x - 4\) and solve for \(x\) as follows:

\[
0 = -2x^2 + 6x - 4 = -2(x^2 - 3x + 2) = -2(x - 1)(x - 2) \quad \text{and so } x = 1 \text{ or } x = 2.
\]

The graph meets the x-axis at \((1, 0)\) and \((2, 0)\).

You need to choose reasonable scales to show the vertex \((\frac{3}{2}, \frac{1}{2})\) and the intercepts \((1, 0), (2, 0),\) and \((0, -4)\). The x-values of these points (in order) are 0, 1, \(\frac{3}{2}\), and 2. Therefore show x-values \(-1 \leq x \leq 4\).

The y-values of these points in order are \(-4, 0, 0, \frac{1}{2}\). Therefore choose y-values \(-5 \leq y \leq 1\).

To get full credit on the Chapter 3.1 Quiz, you must show ALL the features on the next slide.
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).

4. Plot and label the maximum point (vertex) at \(\left(\frac{3}{2}, \frac{1}{2} \right) = (1.5, 0.5) \).
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).

4. Plot and label the maximum point (vertex) at \((\frac{3}{2}, \frac{1}{2}) = (1.5, 0.5)\).

5-8. Connect the four points with a smooth curve. Continue past \(x = 2\) by reflecting the curve already drawn across the vertical line through the vertex.
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).

4. Plot and label the maximum point (vertex) at \((\frac{3}{2}, \frac{1}{2}) = (1.5, 0.5)\).

5-8. Connect the four points with a smooth curve. Continue past \(x = 2\) by reflecting the curve already drawn across the vertical line through the vertex.
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).

4. Plot and label the maximum point (vertex) at \((\frac{3}{2}, \frac{1}{2}) = (1.5, 0.5)\).

5-8. Connect the four points with a smooth curve. Continue past \(x = 2\) by reflecting the curve already drawn across the vertical line through the vertex.
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).

4. Plot and label the maximum point (vertex) at \((\frac{3}{2}, \frac{1}{2}) = (1.5, 0.5)\).

5-8. Connect the four points with a smooth curve. Continue past \(x = 2\) by reflecting the curve already drawn across the vertical line through the vertex.
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).

4. Plot and label the maximum point (vertex) at \((\frac{3}{2}, \frac{1}{2}) = (1.5, 0.5)\).

5-8. Connect the four points with a smooth curve. Continue past \(x = 2\) by reflecting the curve already drawn across the vertical line through the vertex.

9. Extend the graph a bit to the left of \(x = 0\).
1. Draw the grid, the axes, and insert x- and y-scale numbers. Write the equation at the top of the graph.

2. Plot the x-intercept points (1,0) and (2,0).

3. Plot the y-intercept point (0,-4).

4. Plot and label the maximum point (vertex) at \((\frac{3}{2}, \frac{1}{2}) = (1.5, 0.5)\).

5-8. Connect the four points with a smooth curve. Continue past $x = 2$ by reflecting the curve already drawn across the vertical line through the vertex.

9. Extend the graph a bit to the left of $x = 0$.

10. The arrows at the ends of the curve are required: they show behavior at infinity.

11. *Check that your graph has no sharp points.*