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The Chain Rule

In this discussion we will derive versions of the chain rule for functions of two or three real variables. These
new versions will allow us to generate useful relationships among the drivatives and partial derivatives of
various functions.

The chain rule for derivatives (you learned this in Calculus).

If y = f(x) is a differentiable function of a single variable x and x = g(t), is also a differentiable function
of a single variable t, then the chain rule for functions of a single variable states that, under composition,
y = (f ◦ g)(t), y becomes a differentiable function of t with

dy

dt
=

dy

dx

dx

dt
or f ′(t) = f ′(g(t)) g′(t).

We will now derive a version of the chain rule for functions of two variables.

Suppose the situation is that z = f(x, y) is a function of x and y, and suppose that x and y are in turn
functions of a single variable t, say

x = x(t), y = y(t).

The composition z = f(x(t), y(t)) then expresses z as a function of the single variable t. Thus, it makes
sense to ask for the derivative dz/dt and we can inquire about its relationship to the derivatives ∂z/∂x,
∂z/∂y, dx/dt, and dy/dt. Letting ∆x, ∆y, and ∆z denote the changes in x, y, and z, respectively, that
correspond to a change of ∆t in t, we have

dz

dt
= lim

∆t→0

∆z

∆t
,

dx

dt
= lim

∆t→0

∆x

∆t
, and

dy

dt
= lim

∆t→0

∆y

∆t
.

It follows from our discussions about approximations that

∆z ≈ ∂f

∂x
∆x +

∂f

∂y
∆y (1)

where the partial derivatives ∂f/∂x and ∂f/∂y are evaluate at (x(t), y(t)). Dividing both sides of (1) by ∆t
yields

∆z

∆t
≈ ∂f

∂x

∆x

∆t
+

∂f

∂y

∆y

∆t
. (2)

Taking the limit as ∆t → 0 of both sides of (2) suggests the following result.
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Brief Discussion of Calculus Concepts The Chain Rule

Theorem 0.1 [Two-Variable Chain Rule]. If x = x(t) and y = y(t) are differentiable at t, and
if z = f(x, y) is differentiable at the point (x, y) = (x(t), y(t)), then z = f(x(t), y(t)) is differentiable at t
and

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
(3)

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y).

Example 0.1 Suppose that
z = x2 y, x = t2, y = t2.

Use the chain rule to find dz/dt, and check the result by expressing z as a function of t and differentiating
directly.

Solution By the chain rule

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
= (2xy)(2t) + (x2)(3t2)

= (2t5)(2t) + (t4)(3t2) = 7t6.

Alternatively, we can express z directly as a function of t,

z = x2y = (t2)2(t3) = t7

and then differentiate to obtain dz/dt = 7t6. However, this procedure may not allways be convenient.

Example 0.2 Suppose that

z =
√
xy + y, x = cos θ, y = sin θ

Use the chain rule to find dz/dθ when θ = π/2.

Solution From the chain rule with θ in place of t,

dz

dθ
=

∂z

∂x

dx

dθ
+

∂z

∂y

dy

dθ

we obtain
dz

dθ
=

1

2
(xy + y)−1/2(y)(− sin θ) +

1

2
(xy + y)−1/2(x + 1)(cos θ).

When θ = π/2, we have

x = cos
π

2
= 0, y = sin

π

2
= 1.
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Brief Discussion of Calculus Concepts The Chain Rule

Substituting x = 0 y = 1, θ = π/2 in the formula for dz/dθ yields

dz

dθ

∣∣
θ=π/2 =

1

2
(1)(1)(−1) +

1

2
(1)(1)(0) = −1

2
.

Theorem 0.1 has a natural extension to functions w = f(x, y, z) of three variables which we state without
proof

Theorem 0.2 [Three-Variable Chain Rule] If each of the functions x = x(t), y = y(t), and
z = z(t) is differentiable at t, and if w = f(x, y, z) is differentiable at the point (x, y, z) = (x(t), y(t), z(t)),
then w = f(x(t), y(t), z(t)) is differentiable at t and

dw

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
(4)

where the ordinary derivatives are evalated at t and the partial derivatives are evaluated at (x, y, z).

One of the principal uses of the chain rule for functions of a single variable was to compute formulas for the
derivatives of compositions of functions. Theorem 0.1 and Theorem 0.2 are important not so much for the
computation of formulas but because they allow us to express relationships among various derivatives. As
illustrations, we revisit the topics of implicit differentiation and related rates problems.

Implicit Differentiation (A revisit)

Consider the special case where z = f(x, y) is a function of x and y and y is a differentiable function of x.
Equation (3) then becomes

dz

dx
=

∂f

∂x

dx

dx
+

∂f

∂y

dy

dx
=

∂f

∂x
+

∂f

∂y

dy

dx
(5)

This result can be used to find derivaties of functions that are defined implicitly. For example, suppose that
the equation

f(x, y) = 0 (6)

defines y implicitly as a differentiable function of x and we are interested in finding dy/dx. Differentiating
both sides of (6) with respect to x and applying (5) yields

∂f

∂x
+

∂f

∂y

dy

dx
= 0.

Thus, if ∂f/∂y ̸= 0, we obtain

dy

dx
= −

∂f
∂x
∂f
∂y

.
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Brief Discussion of Calculus Concepts The Chain Rule

In summary, we have the following result.

Theorem 0.3 If the equation f(x, y) = 0 defines y implicitly as a differentiable function of x, and if
∂f/∂y ̸= 0, then

dy

dx
= −

∂f
∂x
∂f
∂y

. (7)

Example 0.3 Given that
x3 + xy2 − 3 = 0

find dy/dx using (7), and check the result using implicit differentiation (you learned in Calculus).

Solution By (7) with f(x, y) = x3 + xy2 − 3,

dy

dx
= −

fx

fy
= − 3x2 + y2

2xy
.

Alternatively, differentiating the given equation implicitly yields

3x2 + y2 + x

(
2y

dy

dx

)
− 0 = 0 or

dy

dx
= − 3x2 + y2

2xy

which agress with the result obtained by (7).

Related Rates Problems (A revisit)

Theorems 0.1 and 0.2 provide us with additional perspective on related rates problems.

Example 0.4 At what rate is the volume of a box changing if its length is 8 ft and increasing at 3 ft/s,
its width is 6 ft and increasing at 2 ft/s, and its height is 4 ft and increasing at 1 ft/s?

Solution Let x, y, and z denote the length, width, and height of the box, respectively, and let t denote
time in seconds. We can interpret the given rates to mean that

dx

dt
= 3,

dy

dt
= 2, and

dz

dt
= 1 (8)

at the instant when
x = 8, y = 6, and z = 4 (9)
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Brief Discussion of Calculus Concepts The Chain Rule

We want to find dV/dt at that instant. For this purpose we use the volume formula V = xyz to obtain

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
+

∂V

∂z

dz

dt
= yz

dx

dt
+ xz

dy

dt
+ xy

dz

dt

Substituting (8) and (9) into this equation yields

dV

dt
= (6)(4)(3) + (8)(4)(2) + (8)(6)(1) = 184.

Thus, the volume is increasing at a rate of 184 ft3/s at the given instant.

The Chain Rule For Partial Derivatives

In Theorem 0.1 the variables x and y are each functions of a single variable t. We now consider the case
where x and y are each functions of two variables. Let

z = f(x, y) (10)

and suppose that x and y are functions of u and v, say

x = x(u, y), y = y(u, v)

On substituting these functions of u and v in (10), we obtain the relationship

z = f(x(u, v), y(u, v))

which expresses z as a function of the two variables u and v. Thus, we can ask for the partial derivatives
∂z/∂x, ∂z/∂y, ∂x/∂u, ∂x/∂v, ∂y/∂u, and ∂y/∂v.
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Brief Discussion of Calculus Concepts The Chain Rule

Theorem 0.4 [Two-Variable Chain Rule]. If x = x(u, v) and y = y(u, v) have first-order partial
derivatives at the point (u, v), and if z = f(x, y) is differentiable at the point (x, y) = (x(u, v), y(u, v)),
then z = f(x(u, v), y(u, v)) has first-order partial derivatives at (u, v) given by

∂z

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
and

∂z

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v

Example 0.5 suppose that

w = exyz, x = 3u + v, y = 3u − v, z = u2v.

Use appropriate forms of the chain rule to find ∂w/∂u and ∂w/∂v.

Solution

∂w

∂u
=

∂w

∂x

∂x

∂u
+

∂w

∂y

∂y

∂u
+

∂w

∂z

∂z

∂u
= yz exyz(3) + xz exyz(3) + xy exyz(2uv)

= exyz (3yz + 3xz + 2xyuv)

and
∂w

∂v
=

∂w

∂x

∂x

∂v
+

∂w

∂y

∂y

∂v
+

∂w

∂z

∂z

∂v
= yz exyz(1) + xz exyz(−1) + xy exyz(u2)

= exyz (yz − xz + xyu2)

If desired, we can express ∂w/∂u and ∂w/∂v in terms of u and v alone by replacing x, y and z by their
expression in terms of u and v.

Other versions of the Chain Rule

Although we will not prove it, the chain rule extends to functions w = f(u1, u2, . . . , un) of n variables. For
example, if each ui is a function of t, i = 1, 2, . . . , n, the relevant formula is

dw

dt
=

∂w

∂u1

du1

dt
+

∂w

∂u2

du2

dt
+ · · · + ∂w

∂un

dun

dt
=

n∑
i=1

∂w

∂ui

dui

dt
(11)

Note that (11) is a natural extension of Formula (3) in Theorem 0.1 and Formula (4) in Theorem 1.2.

There are infinitely many variation of the chain rule depending on the number of variables and the choice of
independent and dependent variables. A good working procedure is to use tree diagrams (shown in class) to
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Brief Discussion of Calculus Concepts The Chain Rule

derive new versions of the chain rule as needed. This approach will give correct results for the function that
we will usually encounter.

The General Chain Rule

If w = f(u1, u2, . . . , un) is a function of n variables, and each ui is a function ofm variables, say t1, t2, . . . , tm,
the relevant formulas is: For each variable tj where j = 1, 2, . . . ,m we have the m equations below

∂w

∂t1
=

∂w

∂u1

∂u1

∂t1
+

∂w

∂u2

∂u2

∂t1
+ · · · + ∂w

∂un

∂un

∂t1
=

n∑
i=1

∂w

∂ui

∂ui

∂t1

∂w

∂t2
=

∂w

∂u1

∂u1

∂t2
+

∂w

∂u2

∂u2

∂t2
+ · · · + ∂w

∂un

∂un

∂t2
=

n∑
i=1

∂w

∂ui

∂ui

∂t2

...

∂w

∂tj
=

∂w

∂u1

∂u1

∂tj
+

∂w

∂u2

∂u2

∂tj
+ · · · + ∂w

∂un

∂un

∂tj
=

n∑
i=1

∂w

∂ui

∂ui

∂tj

...

∂w

∂tm
=

∂w

∂u1

∂u1

∂tm
+

∂w

∂u2

∂u2

∂tm
+ · · · + ∂w

∂un

∂un

∂tm
=

n∑
i=1

∂w

∂ui

∂ui

∂tm
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Brief Discussion of Calculus Concepts The Chain Rule

Example 0.6 Suppose that w = x2 + y2 − z2 and

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ (Spherical coordinates)

Use appropriate forms of the chain rule to find ∂w/∂ρ, ∂w/∂θ only.

Solution
∂w

∂ρ
= 2x sinϕ cos θ + 2y sinϕ sin θ − 2z cosϕ

= 2 ρ sin2 ϕ cos2 θ + 2ρ sin2 ϕ sin2 θ − 2ρ cos2 ϕ

= 2 ρ sin2 ϕ (cos2 θ + sin2 θ) − 2 ρ cos2 ϕ

= 2 ρ (sin2 ϕ − cos2 ϕ)

= −2 ρ cos 2ϕ

∂w

∂θ
= −2x ρ sinϕ sin θ + 2y ρ sinϕ cos θ − 2z ρ(0)

= −2 ρ2 sin2 ϕ sin θ cos θ + 2ρ2 sin2 ϕ sin θ cos θ

= 0

This result is explained by the fact that w does not vary with θ. You can see this directly by expressing the
variables x, y, and z in term of ρ, ϕ, and θ in the formula for w. (Verify that w = −2ρ2 cos 2ϕ.)

Example 0.7 Suppose that

w = xy + yz, y = sinx, z = ex

Use an appropriate form of the chain rule to find dw/dx.

Solution
dw

dx
= y + (x + z) cosx + y ex

= sinx + (x + ex) cosx + ex sinx

= x cosx + sinx + ex (cosx + sinx)

This result can also be obtained by first expressing w explicitly in terms of x as

w = x sinx + ex sinx

and then differentiating with respect to x; however, such direct substitutions is not always possible.

ix



Brief Discussion of Calculus Concepts The Chain Rule

In each of the expressions

z = sinxy, z =
xy

1 + xy
, z = exy

the independent variables occur only in the combination xy, so the substitution t = xy reduces the expression
to a function of a single variable:

z = sin t, z =
t

1 + t
, z = et

Conversely, if we begin with a function of one variable z = f(t) and substitute t = xy, we obtain a function
z = f(xy) in which the variables appear only in the combination xy. Functions whose variables occur in
fixed combinations arise frequently in applications.

Example 0.8 Show that when f is differentiable, a function of the form z = f(xy) satisfies the equation

x
∂z

∂x
− y

∂z

∂y
= 0

Solution Let t = xy, so that z = f(t). From the chain rule we obtain

∂z

∂x
=

dz

dt

∂t

∂x
= y

dz

dt
and

∂z

∂y
=

dz

dt

∂t

∂y
= x

dz

dt

from which it follows that

x
∂z

∂x
− y

∂z

∂y
= xy

dz

dt
− yx

dz

dt
= 0

x



Section 1

Directional Derivatives and Gradients

The partial derivatives fx(x, y) and fy(x, y) represent the rates of change of f(x, y) in directions parallel to
the x- and y-axes. In this discussion we will investigate rates of change of f(x, y) in other directions.

What do we mean by a Directional Derivative of a function z = f(x, y)?

In this discussion we extend the concept of a partial derivative to the more general notion of a directional
derivative. We have seen (in the classroom) that partial derivatives of a function give the instantaneous
rates of change of that function in directions parallel to the coordinate axes. Directional derivatives allow
us to compute the rates of change of a function with respect to distance in any direction.

The directional derivative problem: Suppose that we wish to compute the instantaneous rate of
change of a function z = f(x, y) with respect to the distance from a point (x0, y0) in some direction. Since
there are infinitely many different directions from the point (x0, y0) in which we could move, we need a
convenient method for describing a specific direction starting at (x0, y0). One way to do this is to use a unit
vector

û = u1 î + u2 ĵ

that has its “tail” or initial point at (x0, y0) and points in the desired direction.

This unit vector û = u1 î + u2 ĵ determines a line l (of action) passing through (x0, y0) in the xy-plane,
that can be expressed with a position vector function

r⃗ = (x, y)

with the component functions x and y are given parametrically as

x = x0 + s u1, y = y0 + s u2 (1)

where s is the arc-length parameter (recall that the arc-length is the distance measured along a curve) that
has its reference point at r⃗0 = (x0, y0) and has positive values in the direction of û. For s = 0, the point
r⃗ = (x, y) is at the reference point r⃗0 = (x0, y0), and as s increases, the point (x, y) moves along the line
l in the direction of û. On the line l the variable z = f (⃗r) = f(x0 + s u1, y0 + s u2) is a function of
the parameter s. The value of the derivative dz/ds at s = 0 then gives an instantaneous rate of change of
f(x, y) with respect to distance s along the line l from the point (x0, y0) in the direction of û.
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Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

Definition 1.1 [directional derivative] If z = f(x, y) is a function of x and y, and if û =

u1 î + u2 ĵ is a unit vector, then the directional derivative of f in the direction of û at (x0, y0) is
denoted by

Dûf(x0, y0) =
d

ds
[f(x0 + s u1, y0 + s u2)]s=0 (2)

provided this derivative exists.

Geometric interpretation of the directional derivative: Geometrically, Dûf(x0, y0) can be in-
terpreted as the slope of the surface z = f(x, y) in the direction of û at the point (x0, y0, f(x0, y0)).
Usually the value of Dûf(x0, y0) will depend on both the point (x0, y0) and the direction û. Thus, at a fixed
point the slope of the surface may vary with the direction. Analytically, the directional derivative represents
the instantaneous rate of change of z = f(x, y) with respect to distance in the direction of û at
the point (x0, y0)

Example 1.1 Let f(x, y) = xy and find Dûf(1, 2), where û =
√
3
2 î + 1

2 ĵ.

Solution It follows from Equation (2) above that

Dûf(1, 2) =
d

ds

[
f

(
1 +

√
3

2
s, 2 +

1

2
s

)]
s=0

Since

f

(
1 +

√
3

2
s, 2 +

1

2
s

)
=

(
1 +

√
3

2
s

) (
2 +

1

2
s

)
= 2 +

(√
3 +

1

2

)
s +

√
3

4
s2

we have
d

ds

[
f

(
1 +

√
3

2
s, 2 +

1

2
s

)]
=

√
3

2
s +

1

2
+

√
3

and thus
d

ds

[
f

(
1 +

√
3

2
s, 2 +

1

2
s

)]
s=0

=
1

2
+

√
3

Since 1
2 +

√
3 ≈ 2.23, we conclude that if we move a small distance from the point (1, 2) in the direction of

û, the function f(x, y) = xy will increase by about 2.23 times the distance moved.

The definition of a directional derivative for a function f(x, y, z) of three variables is similar to Definition
1.1

2



Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

Definition 1.2 If û = u1 î + u2 ĵ + u3 k̂ is a unit vector, and if w = f(x, y, z) is a function of x,y,
and z, then the directional derivative of f in the direction of û at (x0, y0, z0) is denoted by

Dûf(x0, y0, z0) =
d

ds
[f(x0 + s u1, y0 + s u2, z0 + s u3)]s=0 (3)

provided this derivative exists.

Although Equation (3) does not have a convenient geometric interpretation, we can still interpret directional
derivatives for functions of three variables in terms of instantaneous rates of change in a specified direction.

For a function that is differentiable at a point, directional derivatives exists in every direction from the point
and can be computed directly in terms of the first-order partial derivatives of the function.

Theorem 1.1

(a) If f(x, y) is differentiable at (x0, y0) and if û = u1 i+ u2 ĵ is a unit vector, then the directional derivative
Dûf(x0, y0) exists and is given by

Dûf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2 (4)

(b) If f(x, y, z) is differentiable at (x0, y0, z0) and if û = u1 i + u2 ĵ + u3 k̂ is a unit vector, then the
directional derivative Dûf(x0, y0, z0) exists and is given by

Dûf(x0, y0, z0) = fx(x0, y0, z0)u1 + fy(x0, y0, z0)u2 + fz(x0, y0, z0)u3 (5)

We can use this theorem to confirm the result of Example 1.1. For f(x, y) = xy we have fx(1, 2) = 2 and

fy(1, 2) = 1. With û =
√
3
2 î + 1

2 ĵ. Equation (4) becomes

Dûf(1, 2) = 2

(√
3

2

)
+

1

2
=

√
3 +

1

2

which agrees with our solution in Example 1.1.

Recall that a unit vector û = u1 î + u2 ĵ in the xy-plane can be expressed as

û = cosϕ î + sinϕ ĵ (6)

where ϕ is the angle from the positive x-axis to û. Thus, Formula (4) can also be expressed as

Dûf(x0, y0) = fx(x0, y0) cosϕ + fy(x0, y0) sinϕ (7)

3



Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

Example 1.2 Find the directional derivative of f(x, y) = exy at (−2, 0) in the direction of the unit
vector that makes an angle of π/3 with the positive x-axis.

Solution The partial derivatives of f are

fx(x, y) = y exy, fy(x, y) = x exy

fx(−2, 0) = 0, fy(−2, 0) = −2

The unit vector û that makes an angle of π/3 with the positive x-axis is

û = cos(π/3) î + sin(π/3) ĵ =
1

2
i +

√
3

2
ĵ

Thus, from (7)
Dûf(−2, 0) = fx(−2, 0) cos(π/3) + fy(−2, 0) sin(π/3)

= 0(1/2) + (−2)(
√
3/2) = −

√
3

It is important that the directional derivative be specified by a unit vector when applying either Equation
(4) or Equation (5).

Example 1.3 Find the directional derivative of f(x, y, z) = x2y − yz3 + z at the point (1,−2, 0) in

the direction of a⃗ = 2 î + ĵ − 2 k̂.

Solution The partial derivatives of f are

fx(x, y, z) = 2xy, fy(x, y) = x2 − z3, fz(x, y, z) = 3yz2 + 1

fx(1,−2, 0) = −4, fy(1,−2, 0) = 1, fz(1,−2, 0) = 1

Since a⃗ is not a unit vector, we normalize it, getting

û =
a⃗

∥ a⃗ ∥
=

1√
9
(2 î + ĵ − 2 k̂) =

2

3
î +

1

3
ĵ − 2

3
k̂

Formula (5) then yields

D ˆbfuf(1,−2, 0) = (−4)

(
2

3

)
+

1

3
− 2

3
= −3

4



Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

The Gradient

Formula (4) can be expressed in the form of a dot product as

Dûf(x0, y0) = (fx(x0, y0) î + fy(x0, y0) ĵ) · (u1 î + u2 ĵ)

= (fx(x0, y0) î + fy(x0, y0) ĵ) · û

Similarly, Formula (5) can be expressed as

Dûf(x0, y0, z0) = (fx(x0, y0, z0) î + fy(x0, y0, z0) ĵ + fz(x0, y0, z0) k̂) · û

In both cases the directional derivative is obtained by dotting the direction vector û with a new vector
constructed from the first-order partial derivatives of f .

Definition 1.3 [The gradient of a function]

(a) If f is a function of x and y, then the gradient of f is defined by

∇f(x, y) = fx(x, y) î + fy(x, y) ĵ (8)

(b) if f is a function of x, y, and z, then the gradient of f is defined by

∇f(x, y, z) = fx(x, y, z) î + fy(x, y, z) ĵ + fz(x, y, z) k̂ (9)

The symbol∇ (read “del”) is an inverted delta. (It is sometimes called a “nabla” because of its similarity
in form to an ancient Hebrew ten-stringed harp of that name.)

Formulas (4) and (5) can now be written as

Dûf(x0, y0) = ∇f(x0, y0) · û (10)

and
Dûf(x0, y0, z0) = ∇f(x0, y0, z0) · û (11)

respectively. For example, using Formula (11) our solution to Example 1.3 would take the form

Dûf(1,−2, 0) = ∇f(1,−2, 0) · û = (−4 î + ĵ + k̂) ·
(
2

3
î +

1

3
ĵ − 2

3
k̂

)
= −3

Formula (10) can be interpreted to mean that the slope of the surface z = f(x, y) at the point (x0, y0) in
the direction of û is the dot product of the gradient with û.
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Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

Properties of the Gradient

The gradient is not merely a notational device to simplify the formula for the directional derivative, we will
see that the length and direction of the gradient ∇f provide important information about the function f
and the surface z = f(x, y). For example, suppose that ∇f(x, y) ̸= 0, and let us use our known formulas
for the dot product to rewrite Equation (10) as

Dûf(x, y) = ∇f(x, y) · û = ∥∇f(x, y) ∥ ∥ û ∥ cos θ = ∥∇f(x, y) ∥ cos θ (12)

where θ is the angle between ∇f(x, y) and û. This equation tells us that the maximum value of Dûf(x, y)
is ∥∇f(x, y) ∥, and this maximum occurs when θ = 0, that is, when û is in the direction of ∇f(x, y).
Geometrically, this means that the surface z = f(x, y) has its maximum slope at a point (x, y) in the
direction of the gradient, and the maximum slope is ∥∇f(x, y) ∥. Similarly, (12) tells us that the minimum
value of Dûf(x, y) is −∥∇f(x, y) ∥, and this minimum occurs when θ = π, that is, when û is oppositely
directed to ∇f(x, y). Geometrically, this means that the surface z = f(x, y) has its minimum slope at a
point (x, y) in the opposite direction of the gradient, and the minimum slope is −∥∇f(x, y) ∥.

Finally, in the case where ∇f(x, y) = 0, it follows from (12) that Dûf(x, y) = 0 in all directions at the
point (x, y). This typically occurs where the surface z = f(x, y) has a “relative maximum,” a “relative
minimum,” or a saddle point.

A similar analysis applies to functions of three variables. As a consequence, we have the following result.

Theorem 1.2 . Let f be a function of either two variables or three variables. and let P denote the
point P (x0, y0) or P (x0, y0, z0), respectively. Assume that f is differentiable at P .

a) If ∇f = 0 at P, then all directional derivatives of f at P are zero.

b) If ∇f ̸= 0 at P , then among all possible directional derivatives of f at P , the derivative in the direction
of ∇f has the largest value. The value of this largest directional derivative is ∥∇f ∥ at P .

c) If ∇f ̸= 0 at P , then among all possible directional derivatives of f at P , the derivative in the direction
opposite that of ∇f has the smallest value. The value of this smallest directional derivative is −∥∇f ∥
at P .
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Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

Example 1.4 Let f(x, y) = x2 ey. Find the maximum value of a directional derivative at (−2, 0), and
find the unit vector in the direction in which the maximum value occurs.

Solution Since
∇f(x, y) = fx(x, y) î + fy(x, y) ĵ = 2xey î + x2ey ĵ

the gradient of f at (−2, 0) is

∇f(−2, 0) = −4 î + 4 ĵ.

By Theorem 1.2, the maximum value of the directional derivative is

∥∇f(−2, 0) ∥ =
√
(−4)2 + 42 = 4

√
2

This maximum value occurs in the direction of ∇f(−2, 0). The unit vector in this direction is

û =
∇f(−2, 0)

∥∇f(−2, 0) ∥
=

1

4
√
2
(−4 î + 4 ĵ) = − 1√

2
î +

1√
2
ĵ

Gradients are Normal to Level Curves

We have seen that the gradient vector of a function points in the direction in which a function increases most
rapidly.

For a function f(x, y) of two variables, we will now consider how this direction of maximum rate of increase
can be determined from a contour map of the function.

Suppose that (x0, y0) is a point on a level curve of f given by the equation f(x, y) = c. Assume that such
a level curve can be smoothly parametrized as

x = x(s), y = y(s) (13)

where s is an arc length parameter (the distance along the level curve). Recall from earlier discussions that
the unit tangent vector to (13) is

T⃗ = T⃗(s) =
dx

ds
î +

dy

ds
ĵ

Since T⃗ gives a direction along which f is nearly constant, we would expect the instantaneous rate of change
of f with respect to distance in the direction of T⃗ to be 0. That is, we would expect that

DT⃗f(x, y) = ∇f(x, y) · T⃗(s) = 0.
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Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

To show this to be the case, we differentiate both sides of the equation f(x, y) = c with respect to s.
Assuming that f is differentiable at (x, y), we can use the chain rule to obtain

∂f

∂x

dx

ds
+

∂f

∂y

dy

ds
= 0

which wee can rewrite as (
∂f

∂x
î +

∂f

∂y
ĵ

)
·
(
dx

ds
î +

dy

ds
ĵ

)
= 0

or, alternatively as
∇f(x, y) · T⃗ = 0.

Therefore, if ∇f(x, y) ̸= 0, then ∇f(x, y) should be normal to the level curve f(x, y) = c at any point
(x, y) on the curve.

It has been proved in advance calculus courses that if f(x, y) has continuous first-order partial derivatives at
(x0, y0), and if this first-order partial derivatives are not simultaneously 0 near (x0, y0), that is ∇f(x0, y0) ̸=
0 near (x0, y0) the graph of f(x, y) = c (a level curve of f) is indeed a smooth curve passing through (x0, y0).
Furthermore, we also know from our other discussions that f will be differentiable at (x0, y0) (Recall that
differentiability means that the first-order partial derivatives exists and are continuous at (x0, y0)). We
therefore have the following result:

Theorem 1.3 Let f(x, y) be a function with continuous first-order partial derivatives in an open disk
centered at (x0, y0) and that ∇f(x0, y0) ̸= 0. Then ∇f(x0, y0) is normal to the level curve of f which passes
through (x0, y0).

When we examine a contour map, we instinctively regard the distance between adjacent contours to be
measured in a normal direction. If the contours correspond to equally spaced values of f , then the closer
together the contours apear to be, the more rapidly the values of f will be changing in that normal direction.
It follows from Theorems 1.2 and 1.3 that this rate of change of f is given by ∥∇f(x, y) ∥. Thus the closer
together the contours appear to be, the greater the length of the gradient vector ∇f .

If (x0, y0) is a point on the level curve f(x, y) = c, then the slope of the surface z = f(x, y) at that point in
the direction of a unit vector û is

Dûf(x0, y0) = ∇f(x0, y0) · û.

If û is tangent to the level curve at (x0, y0), then f(x, y) is neither increasing nor decreasing in that direction,
so Dûf(x0, y0) = 0. Thus, ∇f(x0, y0), −∇f(x0, y0), and the tangent vector û mark the directions of
maximum slope, minimum slope, and zero slope at a point (x0, y0) on a level curve. Good skiers use these
facts intuitively to control their speed by zigzagging down ski slopes–the ski across the slope with their skis
tangential to a level curve to stop their downhill motion, and they point their skis down the slope and normal
to the level to obtain the most rapid descent.

8



Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

An Application of Gradients

There are numerous applications in which the motion of an object must be controlled so that it moves
towards a heat source. For example, in medical applications the operation of certian diagnostic equipment is
designed to locate heat sources generated by tumors or infections, and in military applications the trajectories
of heat-seeking missiles are controlled to seek and destroy enemy aircraft. The following example illustrates
how gradients are used to solve such problems.

Example 1.5 A heat-seeking particle is located at the point (2, 3) on a flat metal plate whose temper-
ature at a point (x, y) on the plate is

T (x, y) = 10 − 8x2 − 2y2

Find an equation for the trajectory of the particle if it moves continuously in the direction of maximum
temperature increase.

Solution Let us assume that the trajectory is represented parametrically by the equations

x = x(t), y = y(t)

where the particle is at the point (x(0), y(0)) = (2, 3) at time t = 0. Because the particle moves in the
direction of maximum temperature increase, its direction of motion at time t is in the direction of the gradient
of T (x, y), and hence its velocity vector v(t) at time t points in the direction of the gradient. Thus, there is
a scalar k that depends on t such that

v(t) = k∇T (x, y) = k (−16x î − 4y ĵ)

from which we obtain
dx

dt
î +

dy

dt
ĵ = k (−16x î − 4y ĵ)

Equating components yields
dx

dt
= −16kx,

dy

dt
= −4ky

and dividing to eliminate k yields
dy

dx
=

−4ky

−16kx
=

y

4x
.

Thus, we can obtain the trajectory by solving the initial-value problem

dy

dx
− y

4x
= 0, y(2) = 3
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Brief Discussion of Calculus Concepts Section 1: Directional Derivatives and Gradients

The differential equation is a separable first-order linear equation and hence can be solve by separating the
variables (this you know alot about, this was what calculus II was about) or by the method of integrating
factors (this you know nothing about yet!)

dy

y
− dx

4x
= d(lnC), y(2) = 3

Now by integration we obtain that

ln y − ln 4
√
x = ln

(
y
4
√
x

)
= lnC

From which it follows that
y = C 4

√
x

. Thus if x = 2, then y = C 4
√
2 = 3 implying that C = 3

4√2
and so the equation of the trajectory is

y =
3
4
√
2

4
√
x
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Section 2

Problem #1

A homogeneous function of degree n is a function f(x, y) which satisfies the equation

f(tx, ty) = tnf(x, y); for all t > 0.

For example, the function f(x, y) = 3x2 + y2 is homogeneous of degree 2 because f(tx, ty) = 3(tx)2 +
(ty)2 = 3t2x2 + t2y2 = t2(3x2 + y2) = t2f(x, y).

a) Show that if f(x, y) is a homogeneous function of degree n, then

x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y) = n f(x, y)

[Hint: partially differentiate both sides of f(tx, ty) = tnf(x, y) with respect to t.]

b) Show that if f(x, y) is homogeneous of degree n, then

x2 ∂2f

∂x2
(x, y) + 2xy

∂2f

∂x ∂y
(x, y) + y2

∂2f

∂x2
(x, y) = n(n − 1) f(x, y)

c) Show that if f(x, y) is homogeneous of degreen n, then its first-order partial derivative with respect x,
fx(x, y) is homogeneous of degree n − 1 (i.e., fx(tx, ty) = tn−1 fx(x, y))
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Section 3

Problem #2

a) Let w = 3xy2z3, y = 3x2 + 2, z =
√
x − 1. Find dw/dx.

b) Suppose that the portion of a tree that is usable for lumber is a right circular cylinder. If the usable
height of a tree increases 2 ft per year and the usable diameter increases 3 in per year, how fast is the
volume of usable lumber increasing the instant the usable height of the tree is 20 ft and the usable
diameter is 30 in?
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Section 4

Problem #3

Use Theorem 1.3 to find dy/dx and check your result using implicit differentiation.
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Section 5

Problem #4

The temperature (in degrees Celsius) at a point (x, y) on a metal plate in the xy-plane is

T (x, y) =
xy

1 + x2 + y2

a) Find the rate of change of temperature at (1, 1) in the direction of a = 2 î − ĵ.

b) An ant at (1, 1) wants to walk in the direction in which the temperature drops most rapidly. Find a
unit vector in that direction.
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Section 6

Problem #5

If the electric potential at a point (x, y) in the xy-plane is V (x, y), then the electric intensity vector at
the point (x, y) is E = −∇V (x, y). Suppose that V (x, y) = e−2x cos 2y.

a) Find the electric intensity vector at (π/4, 0).

b) Show that at each point in the plane, the electric potential decreases most rapidly in the direction of
the vector E.
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Section 7

Problem #6

Prove and commit to your memory: If f and g are differentiable, then

a) ∇(f + g) = ∇f + ∇g.

b) ∇(αf) = α∇f. (α is a constant)

c) ∇(f g) = f ∇g + g∇f .

d ) ∇
(

f
g

)
=

g∇f − f ∇g

g2

16


