Testbank for Quiz #7 on McKeague 3.1 to 3.5

1 Solve the following system
 \[3x + 5y = 21 \]
 \[12x + 20y = 84 \]
 a. There is one solution pair \((x,y) = (4,3)\)
 b. There is one solution pair \((x,y) = (4,6)\)
 c. There is one solution pair \((x,y) = (2,3)\)
 d. The system is inconsistent
 e. The system is dependent

2 Solve the following system by the addition method.
 \[3x - 2y = -13 \]
 \[5x + 4y = -18 \]
 a. \((-4, \frac{1}{2})\)
 b. \((-8, \frac{1}{4})\)
 c. \((4, 2)\)
 d. The system is inconsistent
 e. The system is dependent

3 Solve the following system by the addition method.
 \[\frac{1}{4}x - \frac{1}{7}y = 1 \]
 \[-\frac{1}{5}x + \frac{1}{6}y = 3 \]
 a. The system has one solution pair \((x,y)\) satisfying \(x + y = 73\)
 b. The system has one solution pair \((x,y)\) satisfying \(x + y = 70\)
 c. The system has one solution pair \((x,y)\) satisfying \(x + y = 76\)
 d. The system is inconsistent
 e. The system is dependent

4 Solve the following system by the substitution method.
 \[5x - y = 7 \]
 \[20x - 4y = 28 \]
 a. \((7, 7)\)
 b. \((20, 4)\)
 c. \((4, 20)\)
 d. The system is inconsistent
 e. The system is dependent
5 Solve the system.
\[4x - 9y = 3\]
\[7x + 2y = -3\]
a. There is one solution pair \((x, y) = \left(\frac{33}{71}, \frac{21}{71} \right)\)
b. There is one solution pair \((x, y) = \left(-\frac{21}{71}, -\frac{33}{71} \right)\)
c. There is one solution pair \((x, y) = \left(\frac{21}{71}, \frac{33}{71} \right)\)
d. The system is inconsistent

e. The system is dependent

6 Solve the system.
\[x + y + z = 4\]
\[x - y + 3z = 2\]
\[x - y - 5z = -6\]
a. \((3, -2, 3)\) b. \((-1, 4, 5)\)
c. \((5, 4, 1)\) d. \((1, 2, 1)\)
e. The system is inconsistent f. The system is dependent

7 Solve the system.
\[6x + y - 7z = -44\]
\[x - 2y + 3z = 22\]
\[9x + 3y + z = 0\]
a. \((1, -3, 4)\) b. \((0, -2, 6)\)
c. \((1, -3, 9)\) d. \((-1, -4, 7)\)
e. The system is inconsistent f. The system is dependent

8 Solve the system.
\[\frac{1}{3}x - y + z = 0\]
\[2x + \frac{1}{4}y + z = 5\]
\[x + y + z = -4\]
a. \((6, 5, -6)\) b. \((8, -4, -6)\)
c. \((6, -4, -6)\) d. The system is dependent
e. The system is inconsistent

9 Find the value of the determinant.
\[
\begin{vmatrix}
3 & 1 & 2 \\
1 & 3 & 2 \\
2 & 2 & 2 \\
\end{vmatrix}
\]
a. 0 b. -3 c. 2
d. 1 e. None of the above.
10 Find the value of the 2×2 determinant.
\[
\begin{vmatrix}
-1 & 2 \\
3 & -6
\end{vmatrix}
\]
- a. 0
- b. 2
- c. 1
- d. -3
- e. None of the above.

11 The difference of two numbers is 1. Twice the smaller is 7 more than the larger. Find the SUM of the two numbers.
- a. 18
- b. 19
- c. 20
- d. 17
- e. None of the above

12 Bob has 20 coins totaling $1.45. If he has only dimes and nickels, how many of each coin does he have?
- a. 10 nickels, 10 dimes
- b. 12 nickels, 8 dimes
- c. 11 nickels, 9 dimes
- d. 6 of each

13 A collection of nickels, dimes, and quarters consists of 10 coins with a total value of $1.45. The number of dimes is equal to the number of nickels. Figure out how many of each coin there are.
Choose the answer that gives the number of quarters.
- a. 2 quarters
- b. 3 quarters
- c. 4 quarters
- d. 5 quarters
- e. None of the above

14 Solve the system
\[
\begin{align*}
x + y + z &= 9 \\
2x + 3y + z &= 16 \\
3x + y &= 11
\end{align*}
\]
Then choose the answer that gives the value of $x - y$.
- a. 4
- b. 6
- c. 8
- d. 1
- e. -2

PAGE 3
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e</td>
<td>2</td>
<td>a</td>
<td>3</td>
<td>b</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>9</td>
<td>a</td>
<td>10</td>
<td>a</td>
<td>11</td>
</tr>
</tbody>
</table>