PART I: Answer any 5 out of 7 questions. Each is worth 16 points.

1. Solve the system of equations.
\[\begin{align*}
 x_1 - 2x_2 + x_3 - 4x_4 &= 1 \\
 x_1 + 3x_2 + 7x_3 + 2x_4 &= 2 \\
 x_1 - 12x_2 - 11x_3 - 16x_4 &= 5
\end{align*} \]

2. a) Find the inverse of
\[
\begin{pmatrix}
3 & 4 & -1 \\
1 & 0 & 3 \\
2 & 5 & -4
\end{pmatrix}
\]
b) Use the answer to part a) to solve the system
\[\begin{align*}
 3x_1 + 4x_2 - x_3 &= 1 \\
 x_1 + 3x_3 &= 0 \\
 2x_1 + 5x_2 - 4x_3 &= 1
\end{align*} \]

3. a) Determine whether \(W = \left\{ \begin{pmatrix} a & a + 2b \\ a - 3b & b \end{pmatrix} : a, b \text{ real} \right\} \) is a subspace of \(\mathbb{M}_{2,2} \).
b) Find a basis for the subspace of \(\mathbb{R}^4 \) spanned by the vectors \(\mathbf{v}_1 = (1, 1, 0, 0) \), \(\mathbf{v}_2 = (0, 0, 1, 1) \), \(\mathbf{v}_3 = (-2, 0, 2, 2) \), \(\mathbf{v}_4 = (0, -3, 0, 3) \).

4. Let \(A = \begin{pmatrix}
3 & -1 & 2 & 1 \\
2 & 1 & 1 & 1 \\
1 & -3 & 0 & 1
\end{pmatrix} \)
a) Find a basis for the nullspace of \(A \).
b) Find a basis for the column space of \(A \).
c) Compute Nullity \((A^T) \).

5. Determine whether the following linear operator is one-to-one and if possible compute \(T^{-1}(w_1, w_2, w_3) \).
\[\begin{align*}
 w_1 &= 2x_1 + 2x_2 + x_3 \\
 w_2 &= 2x_1 + x_2 - x_3 \\
 w_3 &= 3x_1 + 2x_2 + x_3
\end{align*} \]

-OVER-
6. a) Find a basis for the subspace \(W = \{(x, y, z) : 3z = 7y\} \) of \(\mathbb{R}^3 \).

b) Determine the dimension of the following subspace of \(\mathbb{R}^4 \)
\[W = \{(a, b, c, d) : a = b + c, \ b + 2d - c = 0\} \]
c) Find the coordinate vector of \(w = (a, b) \) relative to the basis \(S = \{u_1, u_2\} \) of \(\mathbb{R}^2 \) where \(u_1 = (1,2) \) and \(u_2 = (-1,3) \).

7. a) A square matrix is called symmetric if \(A^T = A \) and skew-symmetric if \(A^T = -A \).

Show that if \(B \) is a square matrix, then
(i) \(BB^T \) and \(B + B^T \) are symmetric.
(ii) \(B - B^T \) is skew-symmetric.

b) Show that if \(\{v_1, v_2, v_3\} \) is a linearly dependent set of vectors in a vector space \(V \), and \(v_4 \) is any vector in \(V \), then \(\{v_1, v_2, v_3, v_4\} \) is also linearly dependent.

PART II: Answer 1 of the 2 questions (20 points).

8. Let \(A = \begin{pmatrix} -1 & 7 & -1 \\ 0 & 1 & 0 \\ 0 & 15 & -2 \end{pmatrix} \).

a) Diagonalize \(A \).

b) Use the result from part a) to compute \(A^{10} \).

9. Let \(W \) be the subspace of \(\mathbb{P}_2 \) spanned by \(S = \{p_1, p_2, p_3, p_4\} \) where
\[p_1 = 1 + 3x + 3x^2 \]
\[p_2 = x + 4x^2, \quad p_3 = 5 + 6x + 3x^2, \quad p_4 = 7 + 2x - x^2. \]

a) Find a subset of \(S \) which is a basis for \(W \).

b) Express the element(s) of \(S \) not in the basis you found in part a) as linear combinations of the basis elements.

c) (Independent from parts a) and b)) Determine whether \(T(x, y) = (x, 2y - 3) \) is a linear operator.