PART I: ANSWER ALL THREE QUESTIONS (40%)

1. (15) Let \(A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix} \).

 a. Find the eigenvalues and bases for the eigenspaces of \(A \).
 b. Find a diagonal matrix \(D \) and an invertible matrix \(P \) such that \(P^{-1}AP = D \).
 c. Use the result of part b. to compute \(A^5 \).

2. (10) Let \(T: V \rightarrow W \) be a linear transformation.
 a. Define the kernel of \(T \) and prove that it is subspace of \(V \).
 b. Define the range of \(T \) and prove that it is subspace of \(W \).

3. (15) Suppose \(L: P_2 \rightarrow P_2 \) is given by \(L(p(t)) = 2p(t) - 3p'(t) \). Given the basis \(B = \{1, 3t + 1, 2t^2\} \) for \(P_2 \),
 a. Find the \(B \)-coordinates of \(p(t) = 5 - 6t + 4t^2 \).
 b. Find \([L]_B \), the \(B \)-matrix for \(L \).
 c. Using the results of parts a. and b., compute \([L(5 - 6t + 4t^2)]_B \).

PART II: ANSWER FIVE OUT OF SEVEN QUESTIONS (OMIT TWO) (60%)

4. (12) Suppose that \(S = \{v_1, v_2\} \) is a linear independent set and that \(v \not\in \text{Span}(S) \).
 Prove that \(\{v, v_1, v_2\} \) is a linearly independent set.

5. (12) Let \(A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix} \).
 a. Find a basis for the nullspace of \(A \).
 b. Find a basis for the column space of \(A \).
 c. What is the rank of \(A \)?

-OVER-
6. (12) a. Find A^{-1} if $A = \begin{bmatrix} 1 & 3 & 1 & 1 \\ 2 & 5 & 2 & 2 \\ 1 & 3 & 8 & 9 \\ 1 & 3 & 2 & 2 \end{bmatrix}$.

b. Solve $Ax = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ using your answer from part a.

7. (12) Let B be the reduced row echelon form of an $m \times n$ matrix A. For each of the following statements, if it is true, explain why. If it is false, give a counterexample.

a. Row space of $A = \text{Row space of } B$

b. Column space of $A = \text{Column space of } B$

8. (12) Use Cramer's Rule (no credit for any other method) to solve the system

\[
\begin{align*}
4x_1 + 5x_2 &= 2 \\
11x_1 + x_2 + 2x_3 &= 3 \\
x_1 + 5x_2 + 2x_3 &= 1
\end{align*}
\]

9. (12) Suppose $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a linear transformation. Explain your answers to the following questions:

a. Under what conditions on m and n can one be sure that T is not one-to-one?

b. Under what conditions on m and n can one be sure that T is not onto?

c. If T is one-to-one and onto, what can one conclude about m and n?

10. (12) Let $A = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$.

a. Find AB and BA.

b. Show that $\{A, B, AB, BA\}$ is a basis for $M_{2 \times 2}$, the vector space of all 2×2 real matrices.