MATH 203 ~ FINAL EXAM SPRING 2017 SOLUTIONS

1. (a) For points A = (1,0,-1), B = (2,—1,0) and C = (1,2,3), AB—( —1,1) and
AC = (0,2,4). A normal to the plane through A B and C is AB x AC = (—6,—4,2), and
an equation for this plane is ~6(x — 1) — 4y + 2(z + 1) = 0. Any point on the plane and any
normal to the plane could have been used to find an equation for the plane.

(b) The direction of the line through D = (4,1,~3) and E = (2,0,2) is DE = (-2, -1, 5).
A set of parametric equations for the line through (5,8,0) and parallel to the line through D
and Eisz=5—2t,y =8 —t, z = 5t.

(c) n = (1,2,—1) is a normal to the plane z = z + 2y. For v = (2,0,2), n-v=0,s0vis
perpendicular to n, and thus v is parallel to the plane.

y2_—iy_1>’ and Vh(3,1) = (6,—1). A unit

vector in the direction from (3,1) to (4,0) is u = (1,—1)/4/2. The directional derlvatlve of h
at (3,1) in the direction u is VA(3,1) -u = 7//2. '

2. (a) For h(z,y) =4 +z? — In(y® + 1), Vh = (2z,

d
(b) The path r(t) = (2¢,sint) has derivative Elt—. = (2,cost), so r(r/2) = (m,1) and
dr dh  dhdx dh dy Vi dr

—(m/2) = (2,0). Now Vh(r,1) = (27, —1) and —

= - —., At t = 2
dt  dzdt dydt dt m/

and (z,y) = (7,1), Ccll_}tl = (2m,—1) - (2,0) = 4.

3. For f(:z:, y) = 2z*— 2%+ 3y2, the stationary points are the points satisfying these equations:
fr =8z% — 2z = 22(422 — 1) = 0 and f, = 6y = 0. Thus the critical points are (0,0), (1/2,0)
and (—1/2,0). The discriminant is D = f;, fy, — f2, = (242® — 2)(6) — 0 = 12(12z% — 1). Thus
D(0,0) = —12 < 0, so (0,0) is a saddle point; D(+1/2,0) = 24 and f,,(+1/2,0) = 6 > 0 (or
fzz =4 > 0),s0 (+1/2,0) are local minima.

4. The mass of the lamina R between z2? + y2 = 1 and z2 + y? = 16 and above the z-axis
which has density 6(z,y) = 1/(z? + y?) is, using polar coordinates, : -

ffR 6(z,y) dzdy = f;rzo f14(1/72)rdrd0 = fo7r1d0f14 1/rdr = 7r1n4.:%'ib
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5. (a) The region bounded by z =2,y =0,y = 2%, 2 = 1 and z = =+ 2 is the region between
heights z = 1 and 2z = 7 + 2 which is above the region in the zy-plane shown for Problem 5(a).
yI:O(x +2) — 1dydz = f02 3+ z%dr = 20/3.

(b) Write the equation z° + y*? — z = 2 as z = f(z,y) = 2% + y? — 2; now f.(1,2) =
(3z2)(1’2) = 3 and fy(1,2) = (2y)|(1,2) = 4 so an equation of the tangent plane is z — 3 =
3(z—1)+4(y—2). OR: Let F(z,y,2) = 2 + y - 2; VF(l 2,3) = (3,4,—1), and an equation
of the plane is 3(z — 1) + 4(y —2) — (2 —3) = S : :

Its volume is ff:o
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6. (a) Let a, = (3n3L;L Then lim |a,| = 1/3 # 0. Therefore lima, # 0 and }_ a, is
divergent by the test for divergence.

_1)n5n

_1\n+lgn+1 : 2n
(b) Let a, = ( (=05 5

Ani1 _ o
T Then . szni? (Ch)rezn —5/9 for all n, so0 ) a,

is a geometric series with common ratio —5/9. A convergent geometric series is absolutely
convergent by the ratio test.
=D" o : : : . :
(c) Let a, = a1 Since lim |a,| = 0, lima,, = 0. Since, also, |a,| is steadily decreasing
n
Y_a, is convergent by the alternating series test. By comparing Y |a,| with Y 1/n, the limit

comparison test shows Y |a,| is divergent. Hence, _ a,, is conditionally convergent.

—-2)" 1
7. (a) The power series > (i—)n has coeflicients ¢, = -——— and center 2. Since
ran (n+2)3 (n+2)3
limicpt1/cn| = lim —EEL = 1/3, the radius of convergence of the series is 1/(1/3) = 3
(n +3)37+1

and the series converges at least in the interval (2 — 3,273) = (—1,5). At z = —1 the series

—1)" Dy N 1 C 11

is ) ( +) , which is convergent. At z = 5 the series is ) —— which is divergent. The
n n

interval of convergence is [—1,5).
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(b) The limit lim; ) (0,0) 4—+y—2— does not exist since, along the paths y = 0,
T
72 v y*
lim,_,q Pl oo and, along the paths z = 0, lim,_,o y_2 = 0.

8. (a) The curve r(t) = (2t +7,e2*+2,¢3 +12) is at (5,1,0) when 2t +7 = 5, i.e., when t = —1.
d dr
Now d_: = (2,2¢*12 3% + 2t), so =

unit tangent vector.

(—1) = (2,2,1) is a tangent vector and (2,2,1)/3 is a

(b) The second degree equation z2 +2z+9y? +92% = 8 can be written in standard form by

completing the square z2+2z = (z+1)%—1, transposing the constants to the right and dividing
z+1)2 2 22 . )

both resulting sides by the constant: —(—;—) + yT + 7= 1, which is the equation of an

ellipse centered at (—1,0,0) with semiaxes 3; 1 and 1 in the z, y and 2 directions, respectively.
Taking any two of the six vertices, say (—3 — 1,0,0) and (3 — 1,0,0), the graph is as below.
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9. (a) An iterated integral for fffE fdV, where E is the hemisphere {(z,y,2) : 22+ y% + 2% <
4,z > 0}, in spherical coordinates is f::’ro 1r/2 fp of p? sin ¢pdpdpdf and cylindrical coordinates

fr o fz fr dzdrd.

(b) Let f(z,y) = z/\/y. For (z,y) = (10.1,3.8) and (z0,y0) = (10,4), z — zo = 1/10 and

y— Yo =—1/5; f, = 1/,/y and f,(10,4) = 1/2; f, = z_m and f,(10,4) = —5/8. The linear
approximation is f(10.1,3.8) = v - ~
£(10,4) + £,10,4)(z ~ 20) + (10, )y ~ 30) =5+ (1) () — (>

() — ()~ 5) = 207/40.

10. (a) (i) The Maclaurin series for f(z) = 1/(1 + 2z) = 1/(1 — (—2z)) is
1+ (—2z)+ (—2z)* + (-22)3+...=1— 2z + 422 — 823 + ...
(i) f(1/100) = 1 —2'/10% + 2%/10* — 23/10° & .... Since the term 22/10* = 1/2500 <
1/1000, we use the error estimate for alternating series to obtain f(1/100) ~ 1 —2/100 = .98
(b) The surface area S of the portion of the surface z = z2 + y? inside the cylinder
22 +y? =1is [[p4/1+22 + 22 dA, where R is the unit circle in the zy—plane. Using polar
coordinates and the substitution theorem with v = 1 + 4r2, we have

LS 1 12
f fr o V1 +drirdrdf = 02 ldﬂflsul/r“’gdu—(27r)83 3/2|5

6(53/2~1).



