
CCNY 203 Fall 2017 Final Solutions

1a: The direction vectors are scalar multiples, so the lines are parallel.

1b: We use cross product of a direction vector and a displacement vector from a point on one line to the 
other to get a normal to the plane:

Cross[{1, -3, 4}, {2, 0, -1} - {5, 1, 1}]

{10, -10, -10}

So an equation of the plane is 10(x-2)-10(y-0)-10(z+1)=0 or more simply, after dividing by 10,  (x-2)-(y)-
(z+1)=0

2a:  We take the gradient

f = 10 +
25

z2 + 1
+ Sin2 x2 + y3 + z

10 +
25

1 + z2
+ Sin2 x2 + y3 + z

gradf = {D[f, x], D[f, y], D[f, z]}

4 x Cos2 x2 + y3 + z, 3 y2 Cos2 x2 + y3 + z, -
50 z

1 + z22
+ Cos2 x2 + y3 + z

evaluated at (1,0,-2) gives:

gradf = {D[f, x], D[f, y], D[f, z]} /. {x → 1, y → 0, z → -2}

{4, 0, 5}

The directional derivative is obtained by dotting the gradient with a unit vector in the desired direction:

u =
{1, 2, 5}. gradf

12 + 22 + 52

29
30

2b: We solve to find that the point of interest is when t= 1 we use the chain rule to get 
dP
dt

= ∂P
∂x

dx
dt

+ ∂z
∂y

dy
dt

+ ∂P
∂z

dz
dt

, which gives 

r = 2 t - 1, Exp[2 t - 2] - 1, t3 - t - 2

-1 + 2 t, -1 + ⅇ-2+2 t, -2 - t + t3

Solve[r ⩵ {1, 0, -2}]

{{t → 1}}

D[r, t]

2, 2 ⅇ-2+2 t, -1 + 3 t2



D[r, t] /. t → 1

{2, 2, 2}

gradf = {D[f, x], D[f, y], D[f, z]} /. {x → 1, y → 0, z → -2}

{4, 0, 5}

dPdt = 2 × 4 + 2 × 0 + 2 × 5

18

3: Taking the first partials and setting them to zero and solving gives:

f = -3 y3 - 4 x2 + 8 x + 9 y

8 x - 4 x2 + 9 y - 3 y3

Solve[{D[f, x] ⩵ 0, D[f, y] ⩵ 0}]

{{x → 1, y → -1}, {x → 1, y → 1}}

At the first point, we evaluate the discriminant to get:

D[f, x, x] D[f, y, y] - D[f, x, y]2 /. {x → 1, y → -1}

-144

So there is a saddle there.

At the second point, we evaluate the discriminant to get:

D[f, x, x] D[f, y, y] - D[f, x, y]2 /. {x → 1, y → 1}

144

Since it is positive, we look at fxx :

D[f, x, x] /. {{x → 1, y → 1}}

{-8}

So there is a relative max at (1,1).
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Plot3D[f, {x, -2, 2}, {y, -2, 2}]

4a: This region is described by the region:

ShowPlot x , {x, 0, 1}, PlotRange → {0, 2} ,

Plot[2 - x, {x, 1, 2}], PlotRange → {0, 4} 

0.0 0.5 1.0 1.5 2.0

1

2

3

4

This region could be broken up into two parts to get:


0

1

0

x
x ⅆy ⅆx + 

1

2

0

2-x
x ⅆy ⅆx

16
15

Or could be done x-integral first to get parts to get:
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
0

1

y2

2-y
x ⅆx ⅆy

16
15

4b. Use nearby point (3,4) and adjust:

f =
25

x2 + y2

25
x2 + y2

dfdx = D[f, x] /. {x → 3, y → 4}

-
6
25

dfdx = D[f, y] /. {x → 3, y → 4}

-
8
25

approx = 5 + ( D[f, x] /. {x → 3, y → 4}) .1 + (D[f, y] /. {x → 3, y → 4}) - .2

4.456

5a: In polar we get for the volume after finding the intersection to be a circle of radius 2, with the first 
surface being the lower one and the second one the top one, we integrate the top - bottom to get:


0

2 π


0

2
8 - r2 - r2 r ⅆr ⅆθ

16 π

5b: We rewrite to get an implicit description, use the gradient and evaluate to get:

f = x y2 - Log[2 z - 1]

x y2 - Log[-1 + 2 z]

D[f, x] /. {x → 2, y → -1, z → 1}

1

D[f, y] /. {x → 2, y → -1, z → 1}

-4

D[f, z] /. {x → 2, y → -1, z → 1}

-2

which gives an equation of the tangent plane as

1 (x - 2) + -4 (y + 1) + -2 (z - 1) ⩵ 0

6a: Diverges by the test for divergence.
6b: Converges absolutely by the ratio test
6c: Conditionally convergent by: 1) alternating series test 2) integral test

7: We use the ratio test to get convergence on the interval -3<x< -1.  For x=-1, divergent by comparison 
with the harmonic series.    For x=-3, convergent by the alternating series test.  So the power series 
converges on the interval (-6,2].
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7: We use the ratio test to get convergence on the interval -3<x< -1.  For x=-1, divergent by comparison 
with the harmonic series.    For x=-3, convergent by the alternating series test.  So the power series 
converges on the interval (-6,2].

a[n_] :=
(n + 1) (x + 2)n

(n + 2)2

LimitAbs
a[n + 1]

a[n]
, n → Infinity

Abs[2 + x]

7b:  Approaching along the x-axis gives a limit of 1, and approaching along the y-axis gives a limit of 0, 
so the limit does not exist.

Alternatively, we can use polar and cancel out r2  from numerator and denominator to get the numerator 
is cos2 (θ) whose value depends upon which direction is approached, so the limit does not exist.

8a: differentiate to find the tangent vector at the relevant time (t=0)

r =  t + Exp[t] , 2 t + 5, t3 + 2

 ⅇt + t , 5 + 2 t, 2 + t3

D[r, t] /. t → 0

{1, 2, 0}

giving the unit vector after dividing by the length 5

8b: rearrange to put into standard form of (x - 3)2

22 - y2

12 -
z2

12 = 1 gives a hyperboloid of two sheets opening 

up in the +-x directions, with vertices at (5,0,0) and (1,0,0).

9a:  We use cylindrical coordinates to find the mass:

mass = 
0

2 π


0

1

0

r2

2 z r2 r ⅆz ⅆr ⅆθ

π
4

9b:  We use spherical coordinates to find the mass:

mass = 
0

2 π


0

π/4

0

2
ρ Cos[ϕ] ρ2 Sin[ϕ] ⅆρ ⅆϕ ⅆθ

2 π

10a: The series is obtained from known series by substitution and multiplying:

SeriesExp-x4, {x, 0, 14}

1 - x4 + x8

2
-
x12

6
+ O[x]15

10b: We evaluate the definite integral to get:
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
0

1
2
1 - x4 ⅆx

11381
23040

Since the series is alternating, the error is less than the next term, which is smaller than x
9

9
  1

2
9  and 

since 29  is 512 which when multiplied by 9 is more than 1000, the error is less than 1
1000

. 

10b: integrate over the shadow to get possibly:

area = 
0

1

0

x
1 + 02 + (2 y)2 ⅆy ⅆx

1
12

1 + 5 + 3 ArcSinh[2]

Easier with respect to x first to get the integral manageable via substitution:

area = 
0

1

0

y
1 + 02 + (2 y)2 ⅆx ⅆy

1
12

-1 + 5 5 
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