CCNY 203 Fall 2017 Final Solutions

1a: The direction vectors are scalar multiples, so the lines are parallel.
1b: We use cross product of a direction vector and a displacement vector from a point on one line to the other to get a normal to the plane:
$\operatorname{Cross}[\{1,-3,4\},\{2,0,-1\}-\{5,1,1\}]$
$\{10,-10,-10\}$
So an equation of the plane is $10(x-2)-10(y-0)-10(z+1)=0$ or more simply, after dividing by $10,(x-2)-(y)-$ $(z+1)=0$
2a: We take the gradient

$$
\begin{aligned}
& f=10+\frac{25}{z^{2}+1}+\operatorname{Sin}\left[2 x^{2}+y^{3}+z\right] \\
& 10+\frac{25}{1+z^{2}}+\operatorname{Sin}\left[2 x^{2}+y^{3}+z\right] \\
& \operatorname{gradf}=\{D[f, x], D[f, y], D[f, z]\} \\
& \left\{4 x \cos \left[2 x^{2}+y^{3}+z\right], 3 y^{2} \cos \left[2 x^{2}+y^{3}+z\right],-\frac{50 z}{\left(1+z^{2}\right)^{2}}+\operatorname{Cos}\left[2 x^{2}+y^{3}+z\right]\right\}
\end{aligned}
$$

evaluated at ($1,0,-2$) gives:
$\operatorname{gradf}=\{\mathrm{D}[\mathrm{f}, \mathrm{x}], \mathrm{D}[\mathrm{f}, \mathrm{y}], \mathrm{D}[\mathrm{f}, \mathrm{z}]\} / .\{\mathrm{x} \rightarrow 1, \mathrm{y} \rightarrow 0, \mathrm{z} \rightarrow-2\}$
$\{4,0,5\}$
The directional derivative is obtained by dotting the gradient with a unit vector in the desired direction:
$u=\frac{\{1,2,5\} \cdot \text { gradf }}{\sqrt{1^{2}+2^{2}+5^{2}}}$
$\frac{29}{\sqrt{30}}$
2b: We solve to find that the point of interest is when $t=1$ we use the chain rule to get $\frac{d P}{d t}=\frac{\partial P}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}+\frac{\partial P}{\partial z} \frac{d z}{d t}$, which gives
$r=\left\{2 t-1, \operatorname{Exp}[2 t-2]-1, t^{3}-t-2\right\}$
$\left\{-1+2 t,-1+e^{-2+2 t},-2-t+t^{3}\right\}$
Solve $[r=\{1,0,-2\}]$
$\{\{t \rightarrow 1\}\}$
$\mathrm{D}[\mathrm{r}, \mathrm{t}]$
$\left\{2,2 e^{-2+2 t},-1+3 t^{2}\right\}$

```
\(\mathrm{D}[\mathrm{r}, \mathrm{t}] / . \mathrm{t} \rightarrow 1\)
\(\{2,2,2\}\)
\(\operatorname{gradf}=\{\mathrm{D}[\mathrm{f}, \mathrm{x}], \mathrm{D}[\mathrm{f}, \mathrm{y}], \mathrm{D}[\mathrm{f}, \mathrm{z}]\} / \mathrm{f}\{\mathrm{x} \rightarrow 1, \mathrm{y} \rightarrow 0, \mathrm{z} \rightarrow-2\}\)
\(\{4,0,5\}\)
dPdt \(=2 \times 4+2 \times 0+2 \times 5\)
18
3: Taking the first partials and setting them to zero and solving gives:
\(f=-3 y^{3}-4 x^{2}+8 x+9 y\)
\(8 x-4 x^{2}+9 y-3 y^{3}\)
Solve[\{D[f,x]=0, D[f,y]==0\}]
\(\{\{x \rightarrow 1, y \rightarrow-1\},\{x \rightarrow 1, y \rightarrow 1\}\}\)
```

At the first point, we evaluate the discriminant to get:
$\mathrm{D}[\mathrm{f}, \mathrm{x}, \mathrm{x}] \mathrm{D}[\mathrm{f}, \mathrm{y}, \mathrm{y}]-\mathrm{D}[\mathrm{f}, \mathrm{x}, \mathrm{y}]^{2} / \mathrm{f}\{\mathrm{x} \rightarrow 1, \mathrm{y} \rightarrow-1\}$ - 144

So there is a saddle there.
At the second point, we evaluate the discriminant to get:
$\left.\mathrm{D}[\mathrm{f}, \mathrm{x}, \mathrm{x}] \mathrm{D}[\mathrm{f}, \mathrm{y}, \mathrm{y}]-\mathrm{D}[\mathrm{f}, \mathrm{x}, \mathrm{y}]^{2} / \mathrm{f} \mathrm{x} \rightarrow 1, \mathrm{y} \rightarrow 1\right\}$
144
Since it is positive, we look at f_{xx} :
$D[f, x, x] / \cdot\{\{x \rightarrow 1, y \rightarrow 1\}\}$
\{-8\}
So there is a relative max at $(1,1)$.

```
Plot3D[f,{x,-2, 2},{y,-2, 2}]
```


4a: This region is described by the region:

$$
\begin{aligned}
& \text { Show }[P \operatorname{lot}[\sqrt{x},\{x, 0,1\}, P l o t R a n g e \rightarrow\{0,2\}], \\
& \operatorname{Plot}[2-x,\{x, 1,2\}], P l o t R a n g e \rightarrow\{0,4\}]
\end{aligned}
$$

This region could be broken up into two parts to get:
$\int_{0}^{1} \int_{0}^{\sqrt{x}} x d y d x+\int_{1}^{2} \int_{0}^{2-x} x d y d x$
$\frac{16}{15}$
Or could be done x-integral first to get parts to get:

$$
\begin{aligned}
& \int_{0}^{1} \int_{y^{2}}^{2-y} x d x d y \\
& \frac{16}{15}
\end{aligned}
$$

4b. Use nearby point $(3,4)$ and adjust:
$f=\frac{25}{x^{2}+y^{2}}$
$\frac{25}{x^{2}+y^{2}}$
$d f d x=D[f, x] / \cdot\{x \rightarrow 3, y \rightarrow 4\}$
$-\frac{6}{25}$
$d f d x=D[f, y] / \cdot\{x \rightarrow 3, y \rightarrow 4\}$
$-\frac{8}{25}$
approx $=5+(D[f, x] / .\{x \rightarrow 3, y \rightarrow 4\}) .1+(D[f, y] / .\{x \rightarrow 3, y \rightarrow 4\})-.2$
4.456

5a: In polar we get for the volume after finding the intersection to be a circle of radius 2 , with the first surface being the lower one and the second one the top one, we integrate the top - bottom to get:
$\int_{0}^{2 \pi} \int_{0}^{2}\left(8-r^{2}-r^{2}\right) r d r d \theta$ 16π
$5 b$: We rewrite to get an implicit description, use the gradient and evaluate to get:
$f=x y^{2}-\log [2 z-1]$
$x y^{2}-\log [-1+2 z]$
$D[f, x] / .\{x \rightarrow 2, y \rightarrow-1, z \rightarrow 1\}$
1
$D[f, y] / .\{x \rightarrow 2, y \rightarrow-1, z \rightarrow 1\}$
-4
$D[f, z] / .\{x \rightarrow 2, y \rightarrow-1, z \rightarrow 1\}$

- 2
which gives an equation of the tangent plane as
$1(x-2)+-4(y+1)+-2(z-1)=0$
6a: Diverges by the test for divergence.
6 b : Converges absolutely by the ratio test
6 c : Conditionally convergent by: 1) alternating series test 2) integral test

7: We use the ratio test to get convergence on the interval $-3<x<-1$. For $x=-1$, divergent by comparison with the harmonic series. For $x=-3$, convergent by the alternating series test. So the power series converges on the interval ($-6,2$.
$a\left[n_{-}\right]:=\frac{(n+1)(x+2)^{n}}{(n+2)^{2}}$
$\operatorname{Limit}\left[\operatorname{Abs}\left[\frac{a[n+1]}{a[n]}\right], n \rightarrow\right.$ Infinity $]$
Abs [2+x]
7b: Approaching along the x-axis gives a limit of 1 , and approaching along the y-axis gives a limit of 0 , so the limit does not exist.

Alternatively, we can use polar and cancel out r^{2} from numerator and denominator to get the numerator is $\cos ^{2}(\theta)$ whose value depends upon which direction is approached, so the limit does not exist.
8 a : differentiate to find the tangent vector at the relevant time $(\mathrm{t}=0)$

$$
\begin{aligned}
& r=\left\{\sqrt{t+\operatorname{Exp}[t]}, 2 t+5, t^{3}+2\right\} \\
& \left\{\sqrt{e^{t}+t}, 5+2 t, 2+t^{3}\right\} \\
& D[r, t] / \cdot t \rightarrow 0 \\
& \{1,2,0\}
\end{aligned}
$$

giving the unit vector after dividing by the length $\sqrt{5}$
8b: rearrange to put into standard form of $\frac{(x-3)^{2}}{2^{2}}-\frac{y^{2}}{1^{2}}-\frac{z^{2}}{1^{2}}=1$ gives a hyperboloid of two sheets opening up in the +-x directions, with vertices at $(5,0,0)$ and $(1,0,0)$.
9a: We use cylindrical coordinates to find the mass:

```
mass = }\mp@subsup{\int}{0}{2\pi}\mp@subsup{\int}{0}{1}\mp@subsup{\int}{0}{\mp@subsup{r}{}{2}}2z z r'rdlzdr rd
```

$\frac{\pi}{4}$
9b: We use spherical coordinates to find the mass:
mass $\left.=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2} \rho \operatorname{Cos}[\phi] \rho^{2} \operatorname{Sin}[\phi] d\right] \rho d \phi d \theta$
2π
10a: The series is obtained from known series by substitution and multiplying:
Series $\left[\operatorname{Exp}\left[-\mathrm{x}^{4}\right],\{\mathrm{x}, 0,14\}\right]$
$1-x^{4}+\frac{x^{8}}{2}-\frac{x^{12}}{6}+0[x]^{15}$
10b: We evaluate the definite integral to get:
$\int_{0}^{\frac{1}{2}}\left(1-x^{4}\right) d x$
$\frac{11381}{23040}$
Since the series is alternating, the error is less than the next term, which is smaller than $\frac{x^{9}}{9}\left(\frac{1}{2}\right)^{9}$ and since 2^{9} is 512 which when multiplied by 9 is more than 1000 , the error is less than $\frac{1}{1000}$. 10b: integrate over the shadow to get possibly:
area $=\int_{0}^{1} \int_{0}^{x} \sqrt{1+0^{2}+(2 y)^{2}} d y d x$
$\frac{1}{12}(1+\sqrt{5}+3 \operatorname{ArcSinh}[2])$
Easier with respect to x first to get the integral manageable via substitution:

$$
\begin{aligned}
& \text { area }=\int_{0}^{1} \int_{0}^{y} \sqrt{1+0^{2}+(2 y)^{2}} d x d y \\
& \frac{1}{12}(-1+5 \sqrt{5})
\end{aligned}
$$

