We are covering up to example 4.

One of the formulas needed for this section is Hooke's Law which states that the force required to maintain a spring stretched or compressed x units beyond its natural length is proportional to x: f(x) = kx where k is positive and called spring constant.

To be successful in this section we must know the measurement types of both US customary (imperial) and SI (MKS) measurement system.

Measurement type	US customary	SI	
Length	Foot (ft)	Meter (m)	
Mass	Slug {mostly, not used in our examples}	Kilogram (Kg)	
Force	Pounds (lbs)	Newton ($N = (Kg)(m/sec^2)$	
Work	Foot-pound (ft-lbs)	Joules $(J = (N)(m)$	

For the rest of the material, use the handout given with syllabus (or notes for Chapter 7).

Additional Examples:

2)
$$F(x) = \cos\left(\frac{\pi}{3}x\right) \qquad W = \int_{a}^{b} F(x) \, dx = \int_{a}^{b} \cos\left(\frac{\pi}{3}x\right) dx = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}x\right) + C\right]_{a}^{b}$$

$$W_{1-2} = \int_{1}^{2} \cos\left(\frac{\pi}{3}x\right) dx = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}x\right) + C\right]_{1}^{2} = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(2)\right) + C\right] - \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(1)\right) + C\right]$$

$$= \left[\frac{3}{\pi}\sin\left(\frac{2\pi}{3}\right)\right] - \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}\right)\right] = \left[\frac{3}{\pi}\left(\frac{\sqrt{3}}{2}\right)\right] - \left[\frac{3}{\pi}\left(\frac{\sqrt{3}}{2}\right)\right] = 0 \text{ J}$$

$$W_{1-1,5} = \int_{1}^{1.5}\cos\left(\frac{\pi}{3}x\right) dx = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}x\right) + C\right]_{1}^{1.5} = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(1.5)\right) + C\right] - \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(1)\right) + C\right]$$

$$= \left[\frac{3}{\pi}\sin\left(\frac{\pi}{2}\right)\right] - \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}x\right) + C\right]_{1,5}^{2} = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(1.5)\right) + C\right] - \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(1.5)\right) + C\right]$$

$$= \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}x\right) + C\right]_{1,5}^{2} = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}x\right) + C\right]_{1,5}^{2} = \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(2)\right) + C\right] - \left[\frac{3}{\pi}\sin\left(\frac{\pi}{3}(1.5)\right) + C\right]$$

$$= \left[\frac{3}{\pi}\sin\left(\frac{2\pi}{3}\right)\right] - \left[\frac{3}{\pi}\sin\left(\frac{\pi}{2}\right)\right] = \left[\frac{3}{\pi}\left(\frac{\sqrt{3}}{2}\right)\right] - \left[\frac{3}{\pi}\left(1\right)\right] = \frac{3}{\pi}\left(\frac{\sqrt{3}}{2} - 1\right) \text{ J}$$

The work from 1.5 to 2 is equal in magnitude than 1 to 1.5 but in opposite direction.

8)	let L be the natural length of the spring in meters. $F(x) = kx$	$\int kx dx = \frac{k}{2}x^2 + C$
----	--	------------------------------------

	Start length	Start displacement	End length	End displacement	Work
1	10 cm	(0.10-L) m	12 cm	(0.12-L) m	6 J
2	12 cm	(0.12-L) m	14 cm	(0.14-L) m	10 J

$$W_{1} = \int_{(0.10-L)}^{(0.12-L)} kx \, dx = \left[\frac{k}{2}x^{2} + C\right]_{(0.10-L)}^{(0.12-L)} = \left[\frac{k}{2}(0.12-L)^{2} + C\right] - \left[\frac{k}{2}(0.10-L)^{2} + C\right]$$

$$= \frac{k}{2} \left\{ \left[0.0144 - 0.24L - L^{2}\right] - \left[0.01 - 0.2L - L^{2}\right] \right\} = \frac{k}{2} \left\{0.0044 - 0.04L\right\}$$

$$W_{1} = 6 = \frac{k}{2} \left\{0.0044 - 0.04L\right\} \Rightarrow 12 = 0.0001k \left\{44 - 400L\right\}$$

$$12 = k \left\{0.0044 - 0.04L\right\} \Rightarrow 120000 = k \left\{44 - 400L\right\}$$

$$W_{2} = \int_{(0.12-L)}^{(0.14-L)} kx \, dx = \left[\frac{k}{2}x^{2} + C\right]_{(0.12-L)}^{(0.14-L)} = \left[\frac{k}{2}(0.14-L)^{2} + C\right] - \left[\frac{k}{2}(0.12-L)^{2} + C\right]$$

$$= \frac{k}{2} \left\{ \left[0.0196 - 0.28L - L^{2}\right] - \left[0.0144 - 0.24L - L^{2}\right] \right\} = \frac{k}{2} \left\{0.0052 - 0.04L\right\}$$

$$W_{2} = 10 = \frac{k}{2} \left\{0.0052 - 0.04L\right\}$$

$$\Rightarrow 20 = 0.0001k \left\{52 - 400L\right\}$$

$$200000 = k \left\{52 - 400L\right\}$$

Now we have 2 equations with 2 unknowns. Since we want L we solve W_1 and get $k = \frac{120000}{44 - 400L}$.

$$200000 = \left(\frac{120000}{44 - 400L}\right) \{52 - 400L\}$$

$$\frac{200000}{120000} = \frac{52 - 400L}{44 - 400L}$$

$$\Rightarrow 220 - 2000L = 156 - 1200L \Rightarrow = 0.08 \text{ m}$$

$$\frac{5}{3} = \frac{52 - 400L}{44 - 400L}$$

$$64 = 800L \Rightarrow 80 \text{ cm}$$

Since the weight of the bucket does not change, $W_B = (4 \text{ lbs/ft})(80 \text{ ft}) = 320 \text{ ft-lbs}$.

We are loosing water at a constant rate and the bucket is moving at a constant speed but we need the rate of water lost per distance traveled in order for us to compute our work.

The bucket is being pulled up at a rate of $2 \text{ ft/sec} = \frac{2 \text{ ft}}{1 \text{ sec}}$ and the water leaking is $0.2 \text{ lbs/sec} = \frac{0.2 \text{ lbs}}{1 \text{ sec}}$.

Therefore, the rate of water lost over the distance is $\frac{\frac{6.2 \text{ los}}{1 \text{ sec}}}{\frac{2 \text{ ft}}{1 \text{ sec}}} = 0.1 \text{ lbs/ft} = \frac{1}{10} \text{ lbs/ft}$ and for any arbitrary

distance (x ft) traveled be the bucket, we lost $\left(\frac{1}{10} \text{ lbs/ft}\right)(x \text{ ft}) = \frac{1}{10} x \text{ lbs}$.

We started with 40 lbs of water and at a height x ft, we have $\left(40 - \frac{1}{10}x\right)$ lbs of water left in the bucket.

$$W_{water} = \int_{0}^{80} \left(40 - \frac{1}{10} x \right) dx = \left[40x - \frac{1}{10} x^{2} + C \right]_{0}^{80} = \left[40(80) - \frac{1}{10} (80)^{2} + C \right] - \left[40(0) - \frac{1}{10} (0)^{2} + C \right]$$

$$= \left[40(80) - \frac{1}{10} (80)(80) \right] - \left[0 \right] = (3200 - 320) \text{ ft-lbs}$$

$$W = W_{B} + W_{water} = (320) + (3200 - 320) = 3200 \text{ ft-lbs}$$

The rate of chain weight per foot is $\frac{25 \text{ lbs}}{10 \text{ ft}} = 2.5 \text{ lbs/ft}$. Let's analyze by link and

 Δx be the length of the link. The lowest link of chain must travel $10 \text{ ft} = 10 - 0(\Delta x) \text{ ft}$. The next link does not reach the top because only the lowest link occupies this space. So, 2^{nd} link travels $(10-2(\Delta x))$ ft and 3^{rd} link travels $(10-2(2\Delta x)) = (10-4(\Delta x))$ ft. This continues until we fold the chain which is 5 ft. Therefore, our interval is $0 \le x \le 5$ and we can formulate the amount of chain that will affect the force:

$$F(x) = (2.5 \text{ lbs/ft})((10-2x) \text{ ft}) = (25-5x) \text{ lbs}$$
 for any $0 \le x \le 5$

$$W = \int_0^5 (25 - 5x) \, dx = \left[25x - \frac{5}{2}x^2 + C \right]_0^5$$
$$= \left[25(5) - \frac{5}{2}(5)^2 + C \right] - \left[25(0) - \frac{5}{2}(0)^2 + C \right]$$
$$= 125 \left[1 - \frac{1}{2} \right] = \frac{125}{2} \text{ ft-lbs}$$

pumping distance: p = (x+4)18)

pumping distance:
$$p = (x^2 + y^2) = (3)^2$$

$$y^2 = 9 - x^2$$

$$y = \pm \sqrt{9 - x^2}$$

$$y = \sqrt{9 - x^2}$$

$$A = \pi y^2 = \pi \left(\sqrt{9 - x^2}\right)^2$$

$$= \pi (9 - x^2) \text{ m}^2$$

$$\Delta V = A\Delta x$$

$$= \pi (9 - x^2) \Delta x \text{ m}^3$$

Top View

Side View -3 3 m х Δx

3

There is an error in this part, the density here should be $\delta_{water} = 1000 \text{ kg/m}^3$ because the measurement of a) the tank is metric. The interval is $-3 \le x \le 3$.

$$\Delta m = (\delta)(\Delta V) = (1000 \text{ kg/m}^3)(\pi (9 - x^2)\Delta x \text{ m}^3) = 1000\pi (9 - x^2)\Delta x \text{ kg}$$

$$\Delta F = (\Delta m)(a) = (1000\pi(9 - x^2)\Delta x \text{ kg})(9.8 \text{ m/sec}^2) = 9800\pi(9 - x^2)\Delta x \text{ N}$$

$$\Delta W = (\Delta F)(p) = (9800\pi(9 - x^2)\Delta x \text{ N})((x+4) \text{ m}) = 9800\pi(36 + 9x - 4x^2 - x^3)\Delta x \text{ J}$$

$$W = \int_{-3}^{3} 9800\pi (36 + 9x - 4x^2 - x^3) dx = 9800\pi \left[36x + \frac{9}{2}x^2 - \frac{4}{3}x^3 - \frac{1}{4}x^4 + C \right]_{-3}^{3}$$

$$=9800\pi\left\{ \left[36(3)+\frac{9}{2}(3)^2-\frac{4}{3}(3)^3-\frac{1}{4}(3)^4+C\right]-\left[36(-3)+\frac{9}{2}(-3)^2-\frac{4}{3}(-3)^3-\frac{1}{4}(-3)^4+C\right]\right\}$$

$$=9800\pi\left\{3^{2}\left[12(1)+\frac{9}{2}-4-\frac{9}{4}\right]-\left[12(-1)+\frac{9}{2}+4-\frac{9}{4}\right]\right\}=9800\pi\left\{3^{2}\left[8+\frac{9}{2}-\frac{9}{4}\right]-\left[-8+\frac{9}{2}-\frac{9}{4}\right]\right\}$$

$$=9800\pi(9)(16) = 1411200\pi$$
 J

The oil has density of $\delta_{oil} = 900 \text{ kg/m}^3$ and the tank is only half full. The interval is $0 \le x \le 3$. b)

$$\Delta m = (\delta)(\Delta V) = (900 \text{ kg/m}^3)(\pi (9 - x^2)\Delta x \text{ m}^3) = 900\pi (9 - x^2)\Delta x \text{ kg}$$

$$\Delta F = (\Delta m)(a) = (900\pi(9 - x^2)\Delta x \text{ kg})(9.8 \text{ m/sec}^2) = 8820\pi(9 - x^2)\Delta x \text{ N}$$

$$\Delta W = (\Delta F)(p) = (8820\pi(9 - x^2)\Delta x \text{ N})((x+4) \text{ m}) = 8820\pi(36 + 9x - 4x^2 - x^3)\Delta x \text{ J}$$

$$W = \int_0^3 8820\pi (36 + 9x - 4x^2 - x^3) dx = 8820\pi \left[36x + \frac{9}{2}x^2 - \frac{4}{3}x^3 - \frac{1}{4}x^4 + C \right]_0^3$$

$$=8820\pi\left\{\left[36(3)+\frac{9}{2}(3)^2-\frac{4}{3}(3)^3-\frac{1}{4}(3)^4+C\right]-\left[36(0)+\frac{9}{2}(0)^2-\frac{4}{3}(0)^3-\frac{1}{4}(0)^4+C\right]\right\}$$

$$=8820\pi\left\{3^{2}\left[12(1)+\frac{9}{2}-4-\frac{9}{4}\right]-\left[0\right]\right\}=8820\pi\left\{3^{2}\left[8+\frac{18}{4}-\frac{9}{4}\right]\right\}=8820\pi\left\{3^{2}\left[8+\frac{9}{4}\right]\right\}$$

=
$$8820\pi(9)\left(\frac{41}{4}\right)$$
 = $(9)(41)(2205)\pi$ = 813645π J