Theorem 6: If f is a one-to-one continuous function defined on an interval, then its inverse function f^{-1} is also continuous.

Theorem 7: [Numerical answer] If f is a one-to-one differentiable function with inverse function f^{-1} and $f^{\prime}\left(f^{-1}(a)\right) \neq 0$, then the inverse function is differentiable at a and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

Additional examples:
4) The function is one-to-one because for all values of x shown, there is only one value of $f(x)$.
6) The function is one-to-one because no horizontal line intersects more than once.
8) The function is not one-to-one because there are locations that horizontal line intersects more than once.
10) The function is on-to-one because the function is linear and for all values of x there is only one value of $f(x)$.
12) The function $g(x)=\cos x$ is a periodic function (wave shape). Therefore, it fails the horizontal line test.
14) The function is not one-to-one because eventually we stop growing at certain age.
18) a) It passes the horizontal line test. b) domain of $f^{-1}[-1,3]$; range of $f^{-1}[-3,3]$
c) $f^{-1}(2)=0$
d) $f^{-1}(0) \approx-1.75$
20) $m=f(v)=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

$\frac{m_{0}}{m}=\sqrt{1-\frac{v^{2}}{c^{2}}} \quad v=\sqrt{c^{2}\left(1-\frac{m_{0}{ }^{2}}{m^{2}}\right)}$
f^{-1} gives the velocity v of the particle in terms of its mass m.
24)

$$
\begin{gather*}
y=f(x)=2 x^{3}+3 \\
y=2 x^{3}+3 \\
y-3=2 x^{3} \\
\frac{y-3}{2}=x^{3} \\
\sqrt[3]{\frac{y-3}{2}}=x \\
f^{-1}(x)=\sqrt[3]{\frac{x-3}{2}}
\end{gather*}
$$

$$
f(x)=\sqrt{x-2} \quad a=2
$$

a) The function f is same as \sqrt{x} with horizontal translation of 2 units to the right. Since \sqrt{x} is one-toone, so f is one-to-one.

$$
\begin{gathered}
f^{\prime}(x)=\frac{d f}{d x}=\frac{1}{2 \sqrt{x-2}} \\
f^{-1}(2)=b \Rightarrow 2=f(b)=\sqrt{b-2} \Rightarrow b=6
\end{gathered}
$$

b)

$$
f(6)=2 \Rightarrow f^{-1}(2)=6
$$

$$
\left(f^{-1}\right)(2)=\frac{1}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{\frac{1}{2 \sqrt{(6)-2}}}=\frac{1}{\frac{1}{2 \sqrt{4}}}=2 \sqrt{4}=2(2)=4
$$

c) $y=\sqrt{x-2} \Rightarrow y^{2}=x-2 \Rightarrow y^{2}+2=x$
$f^{-1}(x)=x^{2}+2, \quad x \geq 0 \quad$ domain: $[0, \infty) \quad$ range: $[2, \infty)$
d) $\frac{d f^{-1}}{d x}=\left.2 x \quad \frac{d f^{-1}}{d x}\right|_{x=2}=2(2)=4$
e)

$$
f(x)=\frac{1}{x-1} \quad x>1 \quad a=2
$$

a) The function f is same as $\frac{1}{x}$ with horizontal translation of 1 units to the right. Since $\frac{1}{x}$ is one-to-one, so f is one-to-one.

$$
f^{\prime}(x)=\frac{d f}{d x}=\frac{-1}{(x-1)^{2}}
$$

$$
f^{-1}(2)=b \Rightarrow 2=f(b)=\frac{1}{b-1} \Rightarrow b=\frac{3}{2}
$$

b)

$$
f\left(\frac{3}{2}\right)=2 \Rightarrow f^{-1}(2)=\frac{3}{2}
$$

$$
\left(f^{-1}\right)(2)=\frac{1}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{f^{\prime}\left(\frac{3}{2}\right)}=\frac{1}{\frac{-1}{\left(\left(\frac{3}{2}\right)-1\right)^{2}}}=-\left(\left(\frac{3}{2}\right)-1\right)^{2}=-\left(\frac{1}{2}\right)^{2}=\frac{-1}{4}
$$

c)

$$
y=\frac{1}{x-1} \Rightarrow x-1=\frac{1}{y} \Rightarrow x=\frac{1}{y}+1
$$

$$
f^{-1}(x)=\frac{1}{x}+1, \quad x>0 \quad \text { domain: }(0, \infty) \quad \text { range: }(1, \infty)
$$

d) $\frac{d f^{-1}}{d x}=\left.\frac{-1}{x^{2}} \quad \frac{d f^{-1}}{d x}\right|_{x=2}=\frac{-1}{(2)^{2}}=\frac{-1}{4}$
e)

