Partial Derivatives of a Function of Two Variables

Definition

The partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=\left.\frac{d}{d x} f\left(x, y_{0}\right)\right|_{x=x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided the limit exists.

Definition

The partial derivative of $f(x, y)$ with respect to y at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=\left.\frac{d}{d y} f\left(x_{0}, y\right)\right|_{y=y_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided the limit exists.

Second-Order Partial Derivatives

$\frac{\partial^{2} f}{\partial x^{2}}=f_{x x} \quad$ Differentiate with respect to x twice
$\frac{\partial^{2} f}{\partial y^{2}}=f_{y y} \quad$ Differentiate with respect to y twice
$\frac{\partial^{2} f}{\partial x \partial y}=f_{y x} \quad$ Differentiate first with respect to y, then with respect to x
$\frac{\partial^{2} f}{\partial y \partial x}=f_{x y} \quad$ Differentiate first with respect to x, then with respect to y

The Mixed Derivative Theorem

Theorem 2 - The Mixed Derivative Theorem
If $f(x, y)$ and its partial derivatives $\frac{\partial f}{\partial x}=f_{x}, \frac{\partial f}{\partial y}=f_{y}, \frac{\partial^{2} f}{\partial y \partial x}=f_{x y}$, and $\frac{\partial^{2} f}{\partial x \partial y}=f_{y x}$ are defined throughout an open interval region containing a point (a, b) and are all continuous at (a, b), then

$$
\frac{\partial^{2}}{\partial y \partial x}(f(a, b))=\frac{\partial^{2}}{\partial x \partial y}(f(a, b)) \quad \text { or } \quad f_{x y}(a, b)=f_{y x}(a, b)
$$

Partial Derivatives of Still Higher Order

$\frac{\partial^{3} f}{\partial x \partial y^{2}}=f_{y y x} \quad$ Differentiate first with respect to y twice, then with respect to x
$\frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}=f_{y y x x} \quad$ Differentiate first with respect to y twice, then with respect to x twice

Differentiability

Definition

A function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if $\frac{\partial}{\partial x}\left(f\left(x_{0}, y_{0}\right)\right)=f_{x}\left(x_{0}, y_{0}\right)$ and $\frac{\partial}{\partial y}\left(f\left(x_{0}, y_{0}\right)\right)=f_{y}\left(x_{0}, y_{0}\right)$ exist and $\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)$ satisfies an equation of the form

$$
\Delta z=f\left(x_{0}, y_{0}\right) \Delta x+f\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

in which each of $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$ as both $\Delta x, \Delta y \rightarrow 0$. We call f differentiable if it is differentiable at every point in its domain, and say that its graph is a smooth surface.

Theorem 3 - The Increment Theorem for Functions of Two Variables

Suppose that the first partial derivatives of $f(x, y)$ are defined throughout an open region R containing the point $\left(x_{0}, y_{0}\right)$ and that $\frac{\partial f}{\partial x}=f_{x}$ and $\frac{\partial f}{\partial y}=f_{y}$ are continuous at (x_{0}, y_{0}). Then the change

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)
$$

in the value of f that results from moving from $\left(x_{0}, y_{0}\right)$ to another point $\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$ in R satisfies an equation of the form

$$
\Delta z=f\left(x_{0}, y_{0}\right) \Delta x+f\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

in which each of $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$ as both $\Delta x, \Delta y \rightarrow 0$.

Corollary of Theorem 3

If the partial derivatives $\frac{\partial f}{\partial x}=f_{x}$ and $\frac{\partial f}{\partial y}=f_{y}$ of a function $f(x, y)$ are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem 4 - Differentiability Implies Continuity
If a function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then f is continuous at $\left(x_{0}, y_{0}\right)$.
2)

$$
\begin{aligned}
& f(x, y)=x^{2}-x y+y^{2} \\
& \frac{\partial \varphi}{\partial x}=[2 x]-y[1]+0=2 x-y \\
& \frac{\partial P}{\partial y}=0-x[1]+[2 y]=-x+2 y
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4) } f(x, y)=5 x y-7 x^{2}-y^{2}+3 x-6 y+2 \\
& \frac{\partial f}{\partial x}=5 y[1]-7[2 x]-0+3[1]-0+0=5 y-14 x+3 \\
& \frac{\partial f}{\partial y}=5 x[1]-0-[2 y]+0-6[1]+2=5 x-2 y-6
\end{aligned}
$$

$$
\text { 6) } \overline{l(x, y)}=\overline{(2 x}-3 y)^{3}
$$

$$
\frac{\partial \varphi}{\partial x}=3(2 x-3 y)^{2}(2)=6(2 x-3 y)^{2}
$$

$$
\frac{\partial \varphi}{\partial y}=3(2 x-3 y)^{2}(-3)=-9(2 x-3 y)^{2}
$$

$$
\begin{aligned}
& \text { 8) } \ell(x, y)=\left(x^{3}+\frac{y}{2}\right)^{2 / 3} \\
& \frac{\partial \varphi}{\partial x}=\frac{2}{3}\left(x^{3}+\frac{y}{2}\right)^{\frac{-1}{3}}\left(3 x^{2}\right)=\frac{2 x^{2}}{\sqrt[3]{x^{3}+\frac{y}{2}}} \\
& \frac{\partial \varphi}{\partial y}=\frac{2}{3}\left(x^{3}+\frac{y}{2}\right)^{\frac{-1}{3}}\left(\frac{1}{2}\right)=\frac{1}{3 \sqrt[3]{x^{3}+\frac{y}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10) } f(x, y)=\frac{x}{x^{2}+y^{2}}=x\left(x^{2}+y^{2}\right)^{-1} \\
& \frac{\partial l}{\partial x}=\frac{\left(x^{2}+y^{2}\right)[1]-(x)[2 x]}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial l}{\partial y}=x\left[-1\left(x^{2}+y^{2}\right)^{-2}(2 y)\right]=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12) } \begin{array}{ll}
\rho(x, y)=\tan ^{-1}\left(\frac{y}{x}\right) \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right) & \frac{\partial \theta}{\partial x}=\frac{-y}{x^{2} \sec ^{2} \theta} \\
\tan \theta=\frac{y}{x}=y x^{-1} & =\frac{-y}{x^{2}\left(\frac{\sqrt{x^{2}+y^{2}}}{x}\right)^{2}}=\frac{-y}{x^{2}+y^{2}} \Rightarrow \frac{\partial \varphi}{\partial x}=\frac{-y}{x^{2}+y^{2}} \\
\sec ^{2} \theta \frac{\partial \theta}{d x}=y\left[-1 x^{-2}\right] ;
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { using same set up as al } \\
& \sec ^{2} \theta \frac{d \theta}{d y}=\frac{1}{x}[1]
\end{aligned}
$$

using same set up as above: $\frac{\partial t}{\partial y}=\frac{1}{x \sec ^{2} \theta}$
14) $f(x, y)=e^{-x} \sin (x+y)$

$$
\begin{aligned}
\frac{\partial \varphi}{\partial x} & =\left(e^{-x}\right)[\cos (x+y)(1)]+(\sin (x+y))\left[e^{-x}(-1)\right] \\
& =e^{-x} \cos (x+y)-e^{-x} \sin (x+y)=\frac{\cos (x+y)}{e^{x}}-\frac{\sin (x+y)}{e^{x}} \\
& =\frac{\cos (x+y)-\sin (x+y)}{e^{x}} \\
\frac{\partial \varphi}{\partial x} & =e^{-x}[\cos (x+y)(1)]=e^{-x} \cos (x+y)=\frac{\cos (x+y)}{e^{x}}
\end{aligned}
$$

16)

$$
\begin{aligned}
& \text { 6) } \varphi(x, y)=e^{x y} \ln y \\
& \frac{\partial \varphi}{\partial x}=\ln y\left[e^{x y}(y)\right]=y e^{x y} \ln y \\
& \frac{\partial \varphi}{\partial y}=\left(e^{x y}\right)\left[\frac{1}{y}(1)\right]+(\ln y)\left[e^{x y}(x)\right]=\frac{e^{x y}}{y}+x e^{x y} \ln y
\end{aligned}
$$

$$
\begin{aligned}
& \text { 18) } l(x, y)=\cos ^{2}\left(3 x-y^{2}\right) \\
& \frac{\partial \varphi}{\partial x}=2 \cos \left(3 x-y^{2}\right)\left(-\sin \left(3 x-y^{2}\right)\right)(3)=-6 \cos \left(3 x-y^{2}\right) \sin \left(3 x-y^{2}\right) \\
& \frac{\partial \varphi}{\partial y}=2 \cos \left(3 x-y^{2}\right)\left(-\sin \left(3 x-y^{2}\right)\right)(-2 y)=-4 y \cos \left(3 x-y^{2}\right) \sin \left(3 x-y^{2}\right)
\end{aligned}
$$

20) $\ell(x, y)=\log _{y} x=\frac{\ln x}{\ln y}=\ln x(\ln y)^{-1}$

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x}=\frac{1}{\ln y}\left[\frac{1}{x}(1)\right]=\frac{1}{x \ln y} \\
& \frac{\partial \varphi}{\partial y}=\ln x\left[-1(\ln y)^{-2}\left(\frac{1}{y}(1)\right)\right]=\frac{-\ln x}{y(\ln y)^{2}}
\end{aligned}
$$

24)

$$
\begin{aligned}
& l_{x}=\frac{\partial l}{\partial x}=y[1]+0+z[1]=y+z \\
& l_{y}=\frac{\partial \varphi}{\partial y}=x[1]+z[1]+0=x+z \\
& l_{z}=\frac{\partial l}{\partial z}=0+y[1]+x[1]=y+x
\end{aligned}
$$

26) $l(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}$

$$
\begin{aligned}
& l_{x}=\frac{\partial l}{\partial x}=\frac{-1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{2}}(2 x+0+0)=-x\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{2}}=\frac{-x}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}} \\
& l_{y}=\frac{\partial P}{\partial y}=\frac{-1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{2}}(0+2 y+0)=-y\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{2}}=\frac{-y}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}} \\
& l_{z}=\frac{\partial l}{\partial z}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{2}}(0+0+2 z)=-z\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-3}{2}}=\frac{-z}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}}
\end{aligned}
$$

28) $f(x, y, z) \sec ^{-1}(x+y z)$

$$
\begin{aligned}
& l_{x}=\frac{\partial l}{\partial x}=\frac{1}{|x+y z| \sqrt{(x+y z)^{2}-1}}(1+0)=\frac{1}{|x+y z| \sqrt{(x+y z)^{2}-1}} \\
& l_{y}=\frac{\partial \varphi}{\partial y}=\frac{1}{|x+y z| \sqrt{(x+y z)^{2}-1}}(0+z[1])=\frac{z}{|x+y z| \sqrt{(x+y z)^{2}-1}} \\
& l_{z}=\frac{\partial P}{\partial z}=\frac{1}{|x+y z| \sqrt{(x+y z)^{2}-1}}(0+y[1])=\frac{y}{|x+y z| \sqrt{(x+y z)^{2}-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 30) } l(x, y, z)=y z \ln (x y) \\
& l_{x}=\frac{\partial \varphi}{\partial x}=y z\left[\frac{1}{x y}(y)\right]=\frac{y z}{x} \\
& l_{y}=\frac{\partial \varphi}{\partial y}=(y z)\left[\frac{1}{x y}(x)\right]+(\ln (x y))[z]=z+z \ln (x y) \\
& l_{z}=\frac{\partial \varphi}{\partial z}=y \ln (x y)[1]=y \ln (x y)
\end{aligned}
$$

32)

$$
\begin{aligned}
& \text { 2) } l(x, y, z)=e^{-x y z} \\
& l_{x}=\frac{\partial l}{\partial x}=e^{-x y z}(-y z)=-y z e^{-x y z}=\frac{-y z}{e^{x y z}} \\
& l_{y}=\frac{\partial l}{\partial y}=e^{-x y z}(-x z)=-x z e^{-x y z}=\frac{-x z}{e^{x y z}} \\
& l_{z}=\frac{\partial l}{\partial z}=e^{-x y z}(-x y)=-x y e^{-x y z}=\frac{-x y}{e^{x y z}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 34) } f(x, y, z)=\sinh \left(x y-z^{2}\right) \\
& l_{x}=\frac{\partial l}{\partial x}=\cosh \left(x y-z^{2}\right)(y-0)=y \cosh \left(x y-z^{2}\right) \\
& l_{y}=\frac{\partial l}{\partial y}=\cosh \left(x y-z^{2}\right)(x-0)=x \cosh \left(x y-z^{2}\right) \\
& l_{z}=\frac{\partial l}{\partial z}=\cosh \left(x y-z^{2}\right)(0-2 z)=-2 z \cosh \left(x y-z^{2}\right)
\end{aligned}
$$

36) $g(u, v)=v^{2} e^{\frac{2 u}{v}}$

$$
\begin{aligned}
& \frac{\partial g}{\partial u}=v^{2}\left[e^{\frac{2 \mu}{v}}\left(\frac{2}{v}\right)\right]=2 v e^{\frac{2 \mu}{v}} \\
& \begin{aligned}
\frac{\partial g}{\partial v} & =\left(v^{2}\right)\left[e^{\frac{2 \mu}{v}}\left(2 \mu\left(-1 v^{2}\right)\right)\right]+\left(e^{\frac{2 \mu}{v}}\right)[2 v]=\left(v^{2}\right)\left[-\frac{2 \mu}{v^{2}} e^{\frac{2 m}{v}}\right]+\left(e^{\frac{2 m}{v}}\right)[2 v] \\
& =-2 \mu e^{\frac{2 m}{v}}+2 v e^{\frac{2 m}{v}}=2 v e^{\frac{2 u}{v}}-2 \mu e^{\frac{2 \mu}{v}}
\end{aligned}
\end{aligned}
$$

38) $g(\Omega, \theta, z)=\Omega(1-\cos \theta)-z=\Omega-\Omega \cos \theta-z$

$$
\begin{aligned}
& \frac{\partial g}{\partial \Omega}=(1-\cos \theta)[1]-0=1-\cos \theta \\
& \frac{\partial g}{\partial \theta}=0-\Omega[-\sin \theta(1)]-0=\Omega \sin \theta \\
& \frac{\partial g}{\partial z}=0-[1]=-1
\end{aligned}
$$

42) $\overline{\ell(x, y)}=\overline{\sin x y}$

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x}=\cos (x y)(y)=y \cos (x y) \quad \frac{\partial l}{\partial y}=\cos (x y)(x)=x \cos (x y) \\
& \frac{\partial^{2} \varphi}{\partial x^{2}}=y[-\sin (x y)(y)]=-y^{2} \sin (x y) \\
& \frac{\partial^{2} \varphi}{\partial y^{2}}=x[-\sin (x y)(x x)]=-x^{2} \sin (x y) \\
& \frac{\partial^{2} \rho}{\partial y \partial x}=(y)[-\sin (x y)(x)]+(\cos (x y))[1]=\cos (x y)-x y \sin (x y) \\
& \frac{\partial^{2} \varphi}{\partial x \partial y}=(x)[-\sin (x y)(y)]+(\cos (x y))[1]=\cos (x y)-x y \sin (x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44) } h(x, y)=x e^{y}+y+1 \\
& \frac{\partial h}{\partial x}=e^{y}[1]+0+0=e^{y} \quad \frac{\partial h}{\partial y}=x\left[e^{y}(1)\right]+[1]+0=x e^{y}+1 \\
& \frac{\partial^{2} h}{\partial x^{2}}=0 \quad \frac{\partial^{2} h}{\partial y^{2}}=x\left[e^{y}(1)\right]+0=x e^{y} \\
& \frac{\partial^{2} h}{\partial y \partial x}=e^{y}(1)=e^{y} \quad \frac{\partial^{2} h}{\partial x \partial y}=e^{y}[1]+0=e^{y}
\end{aligned}
$$

46) s $(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$

$$
\theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

$$
\sec ^{2} \theta \frac{\partial \theta}{\partial x}=y\left[-1 x^{-2}\right]
$$

$\tan \theta=\frac{y}{x}$

$$
\frac{d \theta}{d x}=\frac{-y}{x^{2} \sec ^{2} \theta}=\frac{-y}{x^{2}\left(\frac{\left.\sqrt{x^{2}+y^{2}}\right)^{2}}{x}\right)^{2}}=\frac{-y}{x^{2}+y^{2}}
$$

$$
\sec ^{2} \theta \frac{\partial \theta}{\partial y}=\frac{1}{x}
$$

$$
\frac{d \theta}{d y}=\frac{1}{x \cdot \sec ^{2} \theta}=\frac{1}{x\left(\frac{\left.\sqrt{x^{2}+y^{2}}\right)^{2}}{x}\right.}=\frac{1}{\frac{x^{2}+y^{2}}{x}}=\frac{x}{x^{2}+y^{2}}
$$

$$
\frac{\partial A}{\partial x}=\frac{-y}{x^{2}+y^{2}}=-y\left(x^{2}+y^{2}\right)^{-1}
$$

$$
\frac{\partial s}{\partial y}=\frac{x}{x^{2}+y^{2}}=x\left(x^{2}+y^{2}\right)^{-1}
$$

$$
\frac{\partial^{2} s}{\partial x^{2}}=-y\left[-1\left(x^{2}+y^{2}\right)^{-2}(2 x)\right]=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

$$
\frac{\partial^{2} \Delta}{\partial y^{2}}=x\left[-1\left(x^{2}+y^{2}\right)^{-2}(2 y)\right]=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

$$
\frac{\partial^{2} s}{\partial y \partial x}=\frac{\left.\left(x^{2}+y^{2}\right)[-1]\right]-(-y)[\theta+2 y]}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-x^{2}-y^{2}+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

$$
\frac{\partial^{2} I}{\partial x \partial y}=\frac{\left(x^{2}+y^{2}\right)[1]-(x)[2 x+0]}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

$$
\begin{aligned}
& 48) w=y e^{x^{2}-y} \\
& \frac{\partial w}{\partial x}=y\left[e^{x^{2}-y}(2 x-0)\right]=2 x y e^{x^{2}-y} \\
& \frac{\partial w}{\partial y}=(y)\left[e^{x^{2}-y}(0-1)\right]+\left(e^{x^{2}-y}\right)[1]=e^{x^{2}-y}-y e^{x^{2}-y}=(1-y) e^{x^{2}-y} \\
& \begin{aligned}
\frac{\partial^{2} w}{\partial x^{2}} & =(2 x y)\left[e^{x^{2}-y}(2 x-0)\right]+\left(e^{x^{2}-y}\right)[2 y]=4 x^{2} y e^{x^{2}-y}+2 y e^{x^{2}-y} \\
& =2 y\left(2 x^{2}+1\right) e^{x^{2}-y} \\
\frac{\partial^{2} w}{\partial y^{2}} & =(1-y)\left[e^{x^{2}-y}(0-1)\right]+\left(e^{x^{2}-y}\right)[0-1]=-e^{x^{2}-y}+y e^{x^{2}-y}-e^{x^{2}-y} \\
& =y e^{x^{2}-y}-2 e^{x^{2}-y}=(y-2) e^{x^{2}-y} \\
\frac{\partial^{2} w}{\partial y \partial x} & =(2 x y)\left[e^{x^{2}-y}(0-1)\right]+\left(e^{x^{2}-y}\right)[2 x]=2 x e^{x^{2}-y}-2 x y e^{x^{2}-y} \\
& =2 x(1-y) e^{x^{2}-y} \\
\frac{\partial^{2} w}{\partial x \partial y} & =(1-y)\left[e^{x^{2}-y}(2 x-0)\right]=2 x(1-y) e^{x^{2}-y}
\end{aligned}
\end{aligned}
$$

$$
\text { 50) } w=\frac{x-y}{x^{2}+y}
$$

$$
\frac{\partial w}{\partial x}=\frac{\left(x^{2}+y\right)[1-0]-(x-y)[2 x+0]}{\left(x^{2}+y\right)^{2}}=\frac{x^{2}+y-2 x^{2}+2 x y}{\left(x^{2}+y\right)^{2}}=\frac{-x^{2}+2 x y+y}{\left(x^{2}+y\right)^{2}}
$$

$$
\frac{\partial w}{\partial y}=\frac{\left(x^{2}+y\right)[0-1]-(x-y)[0+1]}{\left(x^{2}+y\right)^{2}}=\frac{-x^{2}-y-x+y}{\left(x^{2}+y\right)^{2}}=\frac{-x^{2}-x}{\left(x^{2}+y\right)^{2}}=\left(-x^{2}-x\right)\left(x^{2}+y\right)^{-2}
$$

50) continued

$$
\begin{aligned}
& \frac{\partial^{2} w}{\partial x^{2}}=\frac{\left(\left(x^{2}+y\right)^{2}\right)[-2 x+2 y]-\left(-x^{2}+2 x y+y\right)\left[2\left(x^{2}+y\right)^{\prime}(2 x)\right]}{\left(\left(x^{2}+y\right)^{2}\right)^{2}} \\
&=\frac{2\left(x^{2}+y\right)\left\{\left(x^{2}+y\right)[-x+y]-\left(-x^{2}+2 x y+y\right)[2 x]\right\}}{\left(x^{2}+y\right)^{4}} \\
&=\frac{2\left\{-x^{3}-x y+x^{2} y+y^{2}+2 x^{3}-4 x^{2} y-2 x y\right\}}{\left(x^{2}+y\right)^{3}} \\
&=\frac{2\left\{x^{3}-3 x^{2} y-3 x y+y^{2}\right\}}{\left(x^{2}+y\right)^{3}} \\
& \frac{\partial^{2} w}{\partial y^{2}}=\left(-x^{2}-x\right)\left[-2\left(x^{2}+y\right)^{-3}(0+1)\right]=\frac{2\left(x^{2}+x\right)}{\left(x^{2}+y\right)^{3}}=\frac{2 x^{2}+2 x}{\left(x^{2}+y\right)^{3}} \\
& \begin{aligned}
\frac{\partial^{2} w}{\partial y \partial x} & =\frac{\left(\left(x^{2}+y\right)^{2}\right)[0+2 x+1]-\left(-x^{2}+2 x y+y\right)\left[2\left(x^{2}+y\right)^{\prime}(0+1)\right]}{\left(\left(x^{2}+y\right)^{2}\right)^{2}} \\
& =\frac{\left(x^{2}+y\right)\left\{\left(x^{2}+y\right)[2 x+1]-\left(-x^{2}+2 x y+y\right)[2]\right\}}{\left(x^{2}+y\right)^{4}} \\
& =\frac{2 x^{3}+2 x y+x^{2}+y+2 x^{2}-4 x y-2 y}{\left(x^{2}+y\right)^{3}}=\frac{2 x^{3}+3 x^{2}-2 x y-y}{\left(x^{2}+y\right)^{3}} \\
\frac{\partial^{2} w}{\partial x \partial y} & =\frac{\left(\left(x^{2}+y\right)^{2}\right)[-2 x-1]-\left(-x^{2}-x\right)\left[2\left(x^{2}+y\right)^{\prime}(2 x)\right]}{\left(\left(x^{2}+y\right)^{2}\right)^{2}} \\
& =\frac{\left(x^{2}+y\right)\left\{\left(x^{2}+y\right)[-2 x-1]-\left(-x^{2}-x\right)[4 x]\right\}}{\left(x^{2}+y\right)^{4}} \\
& =\frac{-2 x^{3}-2 x y-x^{2}-y+4 x^{3}+4 x^{2}}{\left(x^{2}+y\right)^{3}}=\frac{2 x^{3}+3 x^{2}-2 x y-y}{\left(x^{2}+y\right)^{3}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 52) g(x, y)=\cos \left(x^{2}\right)-\sin (3 y) \\
& \frac{\partial g}{\partial x}=\left[-\sin \left(x^{2}\right)(2 x)\right]-0=-2 x \sin \left(x^{2}\right) \\
& \frac{\partial g}{\partial y}=0-[\cos (3 y)(3)]=-3 \cos (3 y) \\
& \frac{\partial^{2} g}{\partial x^{2}}=(-2 x)\left[\cos \left(x^{2}\right)(2 x)\right]+\left(\sin \left(x^{2}\right)\right)[-2]=-4 x^{2} \cos \left(x^{2}\right)-2 \sin \left(x^{2}\right) \\
& \frac{\partial^{2} g}{\partial y^{2}}=-3[-\sin (3 y)(3)]=9 \sin (3 y) \\
& \frac{\partial^{2} g}{\partial y \partial x}=0 \\
& \left.\frac{54}{5 y}\right)=\frac{\partial^{2} g}{\partial x \partial y}=0 \\
& \frac{\partial z}{\partial x}=(x)\left[e^{\frac{x}{y^{2}}}\left(\frac{1}{y^{2}}\right)\right]+\left(e^{\frac{x}{y^{2}}}=x\right)[1]=\frac{x}{y^{2}}=e^{x y^{\frac{2}{y}}}+e^{\frac{x}{y^{2}}}=\left(\frac{x}{y^{2}}+1\right) e^{\frac{x}{y^{2}}} \\
& \frac{\partial z}{\partial y}=x\left[e^{\frac{x}{y^{2}}}\left(x\left(-2 y^{-3}\right)\right)\right]=\frac{-2 x^{2}}{y^{3}} e^{\frac{x}{y^{2}}}=\frac{-2 x^{2} e^{\frac{x}{y^{2}}}}{y^{3}} \\
& \frac{\partial^{2} z}{\partial x^{2}}=\left(\frac{x}{y^{2}}+1\right)\left[e^{\frac{x}{y^{2}}}\left(\frac{1}{y^{2}}\right)\right]+\left(e^{\frac{x}{y^{2}}}\right)\left[\frac{1}{y^{2}}\right]=\frac{1}{y^{2}}\left\{\left(\frac{x}{y^{2}}+1\right)+1\right\} e^{\frac{x}{y^{2}}} \\
& =\frac{1}{y^{2}}\left\{\frac{x}{y^{2}}+2\right\} e^{\frac{x}{y^{2}}}
\end{aligned}
$$

54) continued

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial y^{2}} & =\frac{\left(y^{3}\right)\left[-2 x^{2} e^{\frac{x}{y}}\left(-2 y^{-3}\right)\right]-\left(-2 x^{2} e^{\frac{x}{y^{2}}}\right)\left[3 y^{2}\right]}{\left(y^{3}\right)^{2}} \\
& =\frac{\left(y^{3}\right)\left[\frac{4 x^{2}}{y^{3}} e^{\frac{x}{y^{2}}}\right]-\left(-2 x^{2} e^{\frac{x}{y^{2}}}\right)\left[3 y^{2}\right]}{y^{6}}=\frac{4 x^{2} e^{\frac{x}{y^{2}}}+6 x^{2} y^{2} e^{\frac{x}{y^{2}}}}{y^{6}} \\
\frac{\partial^{2} z}{\partial y \partial x} & \left.=\left(\frac{x}{y^{2}}+1\right)\left[e^{\frac{x}{y^{2}}\left(x-\left(-2 y^{-3}\right)\right.}\right]\right]+\left(e^{\frac{x}{y^{2}}}\right)\left[x\left(-2 y^{-3}\right)\right] \\
& =\left(\frac{x}{y^{2}}+1\right)\left[\frac{-2 x}{y^{3}} e^{\frac{x}{y^{2}}}\right]+\left(e^{\frac{x}{y^{2}}}\right)\left[\frac{-2 x}{y^{3}}\right] \\
& =\frac{-2 x}{y^{3}}\left\{\left(\frac{x}{y^{2}}+1\right)+1\right\} e^{\frac{x}{y^{2}}}=\frac{-2 x}{y^{3}}\left\{\frac{x}{y^{2}}+2\right\} e^{\frac{x}{y^{2}}} \\
& =\frac{-2 x^{2}}{y^{5}} e^{\frac{x}{y^{2}}}-\frac{4 x}{y^{3}} e^{\frac{x}{y^{2}}} \\
\frac{\partial^{2} z}{\partial x \partial y} & =\left(\frac{-2 x^{2}}{y^{3}}\right)\left[e^{\frac{x}{y^{2}}}\left(\frac{1}{y^{2}}(1)\right)\right]+\left(e^{\frac{x}{y^{2}}}\right)\left[\frac{-2}{y^{3}}(2 x)\right] \\
& =\frac{-2 x^{2}}{y^{5}} e^{\frac{x}{y^{2}}}-\frac{4 x}{y^{3}} e^{\frac{x}{y^{2}}} \\
& =\frac{-2 x}{y^{3}}\left\{\frac{x}{y^{2}}+2\right\} e^{\frac{x}{y^{2}}}
\end{aligned}
$$

56) $w=e^{x}+x \ln y+y \ln x$

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=\left[e^{x}(1)\right]+\ln y[1]+y\left[\frac{1}{x}(1)\right]=e^{x}+\ln y+\frac{y}{x} \\
& \frac{\partial w}{\partial y}=0+x\left[\frac{1}{y}(1)\right]+\ln x[1]=\frac{x}{y}+\ln x \\
& \frac{\partial^{2} w}{\partial y \partial x}=0+\left[\frac{1}{y}(1)\right]+\frac{1}{x}[1]=\frac{1}{y}+\frac{1}{x} \\
& \frac{\partial^{2} w}{\partial x \partial y}=\frac{1}{y}[1]+\left[\frac{1}{x}(1)\right]=\frac{1}{y}+\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 58) } w=x \sin y+y \sin x+x y \\
& \frac{\partial w}{\partial x}=\sin y[1]+y[\cos x(1)]+y[1]=\sin y+y \cos x+y \\
& \frac{\partial w}{\partial y}=x[\cos y(1)]+\sin x[1]+x[1]=x \cos y+\sin x+x \\
& \frac{\partial^{2} w}{\partial y \partial x}=[\cos y(1)]+\cos x[1]+[1]=\cos y+\cos x+1 \\
& \frac{\partial^{2} w}{\partial x \partial y}=\cos y[1]+[\cos x(1)]+[1]=\cos y+\cos x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 60)w}=\frac{3 x-y}{x+y} \\
& \frac{\partial w}{\partial x}=\frac{(x+y)[3]-(3 x-y)[1]}{(x+y)^{2}}=\frac{3 x+3 y-3 x+y}{(x+y)^{2}}=\frac{4 y}{(x+y)^{2}} \\
& \frac{\partial w}{\partial y}=\frac{(x+y)[-1]-(3 x-y)[1]}{(x+y)^{2}}=\frac{-x-y-3 x+y}{(x+y)^{2}}=\frac{-4 x}{(x+y)^{2}} \\
& \begin{aligned}
\frac{\partial^{2} w}{\partial y \partial x} & =\frac{\left((x+y)^{2}\right)[4]-(4 y)\left[2(x+y)^{\prime}(1)\right]}{\left((x+y)^{2}\right)^{2}}=\frac{4(x+y)\{(x+y)[1]-(y)[2]\}}{(x+y)^{4}} \\
& =\frac{4\{x+y-2 y\}}{(x+y)^{3}}=\frac{4\{x-y\}}{(x+y)^{3}} \\
\frac{\partial^{2} w}{\partial x \partial y} & =\frac{\left((x+y)^{2}\right)[-4]-(-4 x)\left[2(x+y)^{1}(1)\right]}{\left((x+y)^{2}\right)^{2}}=\frac{4(x+y)\{(x+y)[-1]-(-x)[2]\}}{(x+y)^{4}} \\
& =\frac{4\{-x-y+2 x\}}{(x+y)^{3}}=\frac{4\{x-y\}}{(x+y)^{3}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 84) } l(x, y, z)=2 z^{3}-3\left(x^{2}+y^{2}\right) z=2 z^{3}-3 x^{2} z-3 y^{2} z \\
& \frac{\partial l}{\partial x}=0-3 z[2 x]-0=-6 x z \quad \frac{\partial l}{\partial y}=0-0-3 z[2 y]=-6 y z \\
& \frac{\partial l}{\partial z}=2\left[3 z^{2}\right]-3\left(x^{2}+y^{2}\right)[1]=6 z^{2}-3\left(x^{2}+y^{2}\right) \\
& \frac{\partial^{2} l}{\partial x^{2}}=-6 z[1]=-6 z \quad \quad \frac{\partial^{2} l}{\partial y^{2}}=-6 z[1]=-6 z \quad \frac{\partial^{2} l}{\partial z^{2}} 6[2 z]-0=12 z \\
& \frac{\partial^{2} l}{\partial x^{2}}+\frac{\partial^{2} l}{\partial y^{2}}+\frac{\partial^{2} l}{\partial z^{2}}=(-6 z)+(-6 z)+(12 z)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 86) } P(x, y)=\ln \sqrt{x^{2}+y^{2}}=\ln \left(x^{2}+y^{2}\right)^{\frac{1}{2}}=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) \\
& \frac{\partial l}{\partial x}=\frac{1}{2}\left[\frac{1}{x^{2}+y^{2}}(2 x)\right]=\frac{x}{x^{2}+y^{2}} \quad \frac{\partial l}{\partial y}=\frac{1}{2}\left[\frac{1}{x^{2}+y^{2}}(2 y)\right]=\frac{y}{x^{2}+y^{2}} \\
& \frac{\partial^{2} P}{\partial x^{2}}=\frac{\left(x^{2}+y^{2}\right)[1]-(x)[2 x]}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial^{2} \varphi}{\partial y^{2}}=\frac{\left(x^{2}+y^{2}\right)[1]-(y)[2 y]}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}+y^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial^{2} l}{\partial x^{2}}+\frac{\partial^{2} l}{\partial y^{2}}=\left(\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)+\left(\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)=\frac{y^{2}-x^{2}+x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0
\end{aligned}
$$

88) $f(x, y)=\tan ^{-1}\left(\frac{x}{y}\right)$

$$
\sec ^{2} \theta \frac{d \theta}{d x}=\frac{1}{y}
$$

$$
\theta=\tan ^{-1}\left(\frac{x}{y}\right)
$$

$\tan \theta=\frac{x}{y}$

$$
\frac{d \theta}{d x}=\frac{1}{y \sec ^{2} \theta}=\frac{1}{y\left(\frac{\sqrt{x^{2} y^{2}}}{y}\right)^{2}}=\frac{y}{x^{2}+y^{2}}
$$

$$
\begin{aligned}
& \sec ^{2} \theta \frac{d \theta}{d y}=x\left[-1 y^{-2}\right]=\frac{-x}{y^{2}} \\
& \frac{d \theta}{d y}=\frac{-x}{y^{2} x^{2} \theta}=\frac{-x}{y^{2}\left(\frac{\sqrt{x+y^{2}}}{y}\right)^{2}}=\frac{-x}{x^{2}+y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial l}{\partial x}=\frac{y}{x^{2}+y^{2}}=y\left(x^{2}+y^{2}\right)^{-1} \quad \frac{\partial l}{\partial y}=\frac{-x}{x^{2}+y^{2}}=-x\left(x^{2}+y^{2}\right)^{-1} \\
& \frac{\partial^{2} l}{\partial x^{2}}=y\left[-1\left(x^{2}+y^{2}\right)^{-2}(2 x)\right]=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial^{2} l}{\partial y^{2}}=-x\left[-1\left(x^{2}+y^{2}\right)^{-2}(2 y)\right]=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial^{2} l}{\partial x^{2}}+\frac{\partial^{2} l}{\partial y^{2}}=\left(\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right)+\left(\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& 90) \varphi(x, y, z)=e^{3 x+4 y} \cos (5 z) \\
& \frac{\partial \varphi}{\partial x}=\cos (5 z)\left[e^{3 x+4 y}(3)\right]=3 e^{3 x+4 y} \cos (5 z) \\
& \frac{\partial l}{\partial y}=\cos (5 z)\left[e^{3 x+4 y}(4)\right]=4 e^{3 x+4 y} \cos (5 z) \\
& \frac{\partial \varphi}{\partial z}=e^{3 x+4 y}[-\sin (5 z)(5)]=-5 e^{3 x+4 y} \sin (5 z) \\
& \frac{\partial^{2} l}{\partial x^{2}}=3 \cos (5 z)\left[e^{3 x+4 y}(3)\right]=9 e^{3 x+4 y} \cos (5 z) \\
& \frac{\partial^{2} l}{\partial y^{2}}=4 \cos (5 z)\left[e^{3 x+4 y}(4)\right]=16 e^{3 x+4 y} \cos (5 z) \\
& \frac{\partial^{2} l}{\partial z^{2}}=-5 e^{3 x+4 y}[\cos (5 z)(5)]=-25 e^{3 x+4 y} \cos (5 z) \\
& \frac{\partial^{2} l}{\partial x^{2}}+\frac{\partial^{2} l}{\partial y^{2}}+\frac{\partial^{2} l}{\partial z^{2}} \\
& =\left(9 e^{3 x+4 y} \cos (5 z)\right)+\left(16 e^{3 x+4 y} \cos (5 z)\right)+\left(-25 e^{3 x+4 y} \cos (5 z)\right) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& 92) w=\cos (2 x+2 c t) \\
& \frac{\partial w}{\partial x}=-\sin (2 x+2 c t)(2)=-2 \sin (2 x+2 c t) \\
& \frac{\partial w}{\partial t}=-\sin (2 x+2 c t)(2 c)=-2 c \sin (2 x+2 c t) \\
& \frac{\partial^{2} w}{\partial x^{2}}=-2[\cos (2 x+2 c t)(2)]=-4 \cos (2 x+2 c t) \\
& \frac{\partial^{2} w}{\partial t^{2}}=-2 c[\cos (2 x+2 c t)(2 c)]=-4 c^{2} \cos (2 x+2 c t) \\
& \frac{\partial^{2} w}{\partial t^{2}}=-4 c^{2} \cos (2 x+2 c t)=c^{2}\{-4 \cos (2 x+2 c t)\}=c^{2} \frac{\partial^{2} w}{\partial x^{2}} \\
& q 4) w \\
& \frac{9}{}{ }^{2}-\ln (2 x+2 c t) \\
& \frac{\partial w}{\partial x}=\frac{1}{2 x+2 c t}(2)=\frac{2}{2 x+2 c t}=\frac{1}{x+c t} \quad \frac{\partial w}{\partial t}=\frac{1}{2 x+2 c t}(2 c)=\frac{2 c}{2 x+2 c t}=\frac{c}{x+c t t} \\
& \frac{\partial^{2} w}{\partial x^{2}}=-1(x+c t)^{-2}(1)=\frac{-1}{(x+c t)^{2}} \\
& \frac{\partial^{2} w}{\partial t^{2}}=c\left[-1(x+c t)^{-2}(c)\right]=\frac{-c^{2}}{(x+c t)^{2}} \\
& \frac{\partial^{2} w}{\partial t^{2}}=\frac{-c^{2}}{(x+c t)^{2}}=c^{2}\left\{\frac{-1}{(x+c t)^{2}}\right\}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}
\end{aligned}
$$

