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Partial Derivatives of a Function of Two Variables 
 
Definition 
 
The partial derivative of ( , )f x y  with respect to x  at the point 0 0( , )x y  is 
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provided the limit exists. 
 
Definition 
 
The partial derivative of ( , )f x y  with respect to  at the point y 0 0( , )x y  is 
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provided the limit exists. 
 
Second-Order Partial Derivatives 
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 Differentiate with respect to x  twice 
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  Differentiate with respect to  twice y
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  Differentiate first with respect to y , then with respect to x  
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  Differentiate first with respect to x , then with respect to  y

 
The Mixed Derivative Theorem 
 
Theorem 2 - The Mixed Derivative Theorem 
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Partial Derivatives of Still Higher Order 
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  Differentiate first with respect to y  twice, then with respect to x  
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  Differentiate first with respect to  twice, then with respect to y x  twice 

 
Differentiability 
 
Definition 
 

A function ( , )f x y  is differentiable at 0 0( , )x y  if ( )0 0 0 0( , ) ( , )xf x y f x y
x
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 and ( )0 0 0 0( , ) ( , )yf x y f x y
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exist and  satisfies an equation of the form 0 0 0( , ) ( ,z f x x y y f x yΔ = + Δ + Δ − 0 )
 
  0 0 0 0 1 2( , ) ( , )z f x y x f x y y x yε εΔ = Δ + Δ + Δ + Δ  
 
in which each of 1 2, 0ε ε →  as both .  We call ,x yΔ Δ → 0 f  differentiable if it is differentiable at every point 
in its domain, and say that its graph is a smooth surface. 
 
Theorem 3 – The Increment Theorem for Functions of Two Variables 
 
Suppose that the first partial derivatives of ( , )f x y  are defined throughout an open region R  containing the 

point 0 0( , )x y  and that x
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x
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 are continuous at 0 0( , )x y .  Then the change 

 
   0 0 0( , ) ( ,z f x x y y f x yΔ = + Δ + Δ − 0 )
 
in the value of f  that results from moving from 0 0( , )x y  to another point 0 0( , )x x y yΔ + Δ  in + R  satisfies an 
equation of the form  
 
  0 0 0 0 1 2( , ) ( , )z f x y x f x y y x yε εΔ = Δ + Δ + Δ + Δ  
 
in which each of 1 2, 0ε ε →  as both . , 0x yΔ Δ →

 
Corollary of Theorem 3 

If the partial derivatives x
f f
x
∂

=
∂

 and y
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 of a function ( , )f x y  are continuous throughout an open region 

R , then f  is differentiable at every point of R . 
 
Theorem 4 – Differentiability Implies Continuity 
If a function ( , )f x y  is differentiable at 0 0( , )x y , then f  is continuous at 0 0( , )x y . 
 


































