Definitions

Suppose D is a set of n-tuples of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A real-valued function f on D is a rule that assigns a unique (single) real number

$$
w=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

to each element in D. The set D is the function's domain. The set of w-values taken on by f is the function's range. The symbol w is the dependent variable of f, and f is said to be a function of the n independent variables x_{1} to x_{n}. We also call the x_{j} 's the function's input variables and call w the function's output variable.

Functions of Two Variables

Definitions

A point (x_{0}, y_{0}) in a region (set) R in the $x y$-plane is an interior point of R if is the center of a disk of positive radius that lies entirely in R (see figure in text, Figure 14.2 in $14^{\text {th }}$ edition). A point (x_{0}, y_{0}) is a boundary point of R if for every disk centered at (x_{0}, y_{0}) contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. The region's boundary points make up its boundary. A region is open if it consists entirely of interior points. A region is closed if it contains all its boundary points (see figure in text, Figure 14.3 in $14^{\text {th }}$ edition).

Definitions

A region in the plane is bounded if it lies inside a disk of finite radius. A region is unbounded if it is not bounded.

Graphs, Level Curves, and Contours of Functions of Two Variables

Definitions

The set of points in the plane where a function $f(x, y)$ has a constant value $f(x, y)=c$ is called a level curve of f. The set of all points $(x, y, f(x, y))$ in space, for (x, y) in the domain of f, is called the graph of f. The graph of f is also called the surface $z=f(x, y)$.

Functions of Three Variables

Definitions

The set of points (x, y, z) in space where a function of three independent variables has a constant value $f(x, y, z)=c$ is called a level surface of f.

Definitions

A point $\left(x_{0}, y_{0}, z_{0}\right)$ in a region R in space is an interior point of R if it is the center of a solid ball that lies entirely in R (see figure in text, Figure 14.9 a in $14^{\text {th }}$ edition). A point (x_{0}, y_{0}, z_{0}) is a boundary point of R if every solid ball centered at (x_{0}, y_{0}, z_{0}) contains points that lie outside of R as well as points that lie inside (see figure in text, Figure 14.9b in $14^{\text {th }}$ edition). The interior of R is the set of interior points of R. The boundary of R is the set of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if it contains its entire boundary.
2) $\varphi(x, y)=\sin (x y)$
a) $\ell\left(2, \frac{\pi}{6}\right)=\sin \left((2)\left(\frac{\pi}{6}\right)\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
b) $\rho\left(-3, \frac{\pi}{12}\right)=\sin \left((-3)\left(\frac{\pi}{12}\right)\right)=\sin \left(\frac{-\pi}{4}\right)=\frac{-1}{\sqrt{2}}$
c) $\rho\left(\pi, \frac{1}{4}\right)=\sin \left((\pi)\left(\frac{1}{4}\right)\right)=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
d)

$$
l\left(-\frac{\pi}{2},-7\right)=\sin \left(\left(\frac{-\pi}{2}\right)(-7)\right)=\sin \left(\frac{7 \pi}{2}\right)=\sin \left(\frac{4 \pi}{2}+\frac{3 \pi}{2}\right)=\sin \left(2 \pi+\frac{3 \pi}{2}\right)
$$

$$
=\sin \left(\frac{3 \pi}{2}\right)=-1
$$

4) $f(x, y, z)=\sqrt{49-x^{2}-y^{2}-z^{2}}$
a) $\varphi(0,0,0)=\sqrt{49-(0)^{2}-(0)^{2}-(0)^{2}}=\sqrt{49}=7$
b) $l(2,-3,6)=\sqrt{49-(2)^{2}-(-3)^{2}-(6)^{2}}=\sqrt{49-4-9-36}=\sqrt{0}=0$
c) $f(-1,2,3)=\sqrt{49-(-1)^{2}-(2)^{2}-(3)^{2}}=\sqrt{49-1-4-9}=\sqrt{35}$
d) 1

$$
\begin{aligned}
l\left(\frac{4}{\sqrt{2}}, \frac{5}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right) & =\sqrt{49-\left(\frac{4}{\sqrt{2}}\right)^{2}-\left(\frac{5}{\sqrt{2}}\right)^{2}-\left(\frac{6}{\sqrt{2}}\right)^{2}}=\sqrt{49-\frac{16}{2}-\frac{25}{2}-\frac{36}{2}} \\
& =\sqrt{49-8-\frac{25}{2}-18}=\sqrt{23-\frac{25}{2}}=\sqrt{\frac{46}{2}-\frac{25}{2}} \\
& =\sqrt{\frac{21}{2}}
\end{aligned}
$$

6)

$$
\begin{aligned}
& l(x, y)=\ln \left(x^{2}+y^{2}-4\right) \\
& x^{2}+y^{2}-4>0 \\
& x^{2}+y^{2}>4
\end{aligned}
$$

Domain: all points (x, y) outside the circle $x^{2}+y^{2}=\psi$
8) $f(x, y)=\frac{\sin (x y)}{x^{2}+y^{2}-25}$
numerators all real numbers denominator: not $x^{2}+y^{2}-25=0$

$$
x^{2}+y^{2}=25
$$

$$
x^{2}+y^{2}=(5)^{2}
$$

Domain: all points (x, y) not lying on the graph $x^{2}+y^{2}=25$
10)

$$
\begin{array}{ll}
f(x, y)=\ln (x y+x-y-1) \\
x y+x-y-1>0 & x-1=0 \\
x(y+1)-1(y+1)>0 & x=1 \\
(x-1)(y+1)>0 & y+1=0 \\
(x-1)(y+1)>0 & y=-1
\end{array}
$$

Domain: all pointer (x, y) satisfying $(x-1)(y+1)>0$
12)

$$
\begin{aligned}
& l(x, y)=\frac{1}{\ln \left(4-x^{2}-y^{2}\right)} \\
& 4-x^{2}-y^{2}>0 \quad \text { also, } \\
& 4>x^{2}+y^{2} \quad \begin{array}{l}
\quad 4-x^{2}-y^{2}=1
\end{array} \\
& \begin{array}{l}
3=x^{2}+y^{2} \\
(\sqrt[3]{ })^{2}=x^{2}+x^{2}+y^{2}
\end{array}
\end{aligned}
$$

 Domain; all points (x, y) inside the circle $x^{2}+y^{2}=2^{2}$ such that $x^{2}+y^{2} \neq 3$

$$
\text { 14) } f(x, y)=x^{2}+y^{2}
$$

$$
c=0,1,4,9,16,25
$$

$x^{2}+y^{2}=0$ "paint at origin"

$$
x^{2}+y^{2}=1
$$

$$
x^{2}+y^{2}=4
$$

$$
x^{2}+y^{2}=9
$$

$$
x^{2}+y^{2}=16
$$

$$
x^{2}+y^{2}=25
$$

$$
\begin{array}{ll}
\text { 16) } \ell(x, y)=\sqrt{25-x^{2}-y^{2}} \\
c=0,1,2,3,4 & \\
\sqrt{25-x^{2}-y^{2}}=0 & \sqrt{25-x^{2}-y^{2}}=3 \\
25-x^{2}-y^{2}=0 & 25-x^{2}-y^{2}=9 \\
25=x^{2}+y^{2} & 16=x^{2}+y^{2} \\
\sqrt{25-x^{2}-y^{2}}=1 & \sqrt{25-x^{2}-y^{2}}=4 \\
25-x^{2}-y^{2}=1 & 25-x^{2}-y^{2}=16 \\
24=x^{2}+y^{2} & 9=x^{2}+y^{2} \\
\sqrt{25-x^{2}-y^{2}}=2 & \\
25-x^{2}-y^{2}=4 & 21=x^{2}+y^{2}
\end{array}
$$

18) $\ell(x, y)=\sqrt{y-x}$
a) Domain set of all (x, y) such that $y-x \geq 0 \Rightarrow y \geq x$
b) Range: $l(x, y)=z \geq 0$
c) level curves are straight lines of the form $y-x=c$ where $c \geq 0$
d) boundary is $\sqrt{y-x}=0 \Rightarrow y=x$, a straight line
e) closed
p) unbounded
20) $\ell(x, y)=x^{2}-y^{2}$
a) Domain: all points in the x y-plane
b) Range: all real numbers
c) level curves: for $l(x, y)=0$, the union of the line $y= \pm x$ for $l(x, y)=c \neq 0$, hyperbolas centered at $(0,0)$ with foci on the x-axis if $c>0$ and on the y-axis if $c<0$
d) no boundary points
e) both open and closed
p) unbounded
22) $f(x, y)=\frac{y}{x^{2}}$
a) Domain: set of all (x, y) such that $(x, y) \neq(0, y)$
b) Range: all real numbers
c) level curves: for $f(x, y)=0$, the x-axis minus the origin for $f(x, y)=c \neq 0$, the parabolas $y=c x^{2}$ minus the origin
d) boundary is the line $x=0$
e) open

1) unbounded
2) $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
a) Domain: set of all (x, y) satisfying $9-x^{2}-y^{2} \geq 0 \Rightarrow x^{2}+y^{2} \leq 9$
b) Range: $0 \leq z=\ell(x, y) \leq 3$
c) level curves are circles with center $(0,0)$ and radii $\Omega \leq 3$
d) boundary is the circle $x^{2}+y^{2}=9$
e) closed
3) bounded
4) $l(x, y)=e^{-\left(x^{2}+y^{2}\right)}$
a) Domain: all points in the $x y$-plane
b) Range: $0 \leq z=f(x, y) \leq 1$
c) level curer are the origin itself and the circles with center $(0,0)$ and radii $r>0$
j) no boundary points
e) both open and closed
p) unbounded
5) $f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$
a) Domain: set of all (x, y) such that $x \neq 0$
b) Range: $\frac{-\pi}{2}<z=\rho(x, y)<\frac{\pi}{2}$
c) level curves are the straight lines of the form $y=c x$, where c is any real number and $x \neq 0$.
d) boundary is the line $x=0$
e) open
6) unbounded
7) $f(x, y)=\ln \left(9-x^{2}-y^{2}\right)$
a) Domain: set of all (x, y) such that $9-x^{2}-y^{2}>0 \Rightarrow x^{2}+y^{2}<9$ inside the circle $x^{2}+y^{2}=9$
b) Range: $l(x, y)=z<\ln 9$
c) level curves are circles with center $(0,0)$ with radii $s<3$
d) boundary: the circle $x^{2}+y^{2}=9$
e) open
8) bounded
9) picture: e; equation: $l z=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$
10) picture: c; equation: $k z=\frac{1}{4 x^{2}+y^{2}}$
11) picture: b; equation: $g \quad z=\frac{-x y^{2}}{x^{2}+y^{2}}$
12) $\varphi(x, y)=\sqrt{x}$
(a)
(b)

13) $l(x, y)=\sqrt{x^{2}+y^{2}}$

(a)

$$
\text { 42) } \ell(x, y)=4-x^{2}-y^{2}
$$

(b)

(a)
 44) $\ell(x, y)=6-2 x-3 y$
(l)

$$
4 \overline{6) P(x, y)}=\overline{1-|x|}-\overline{|y|}
$$

(a)

(b)

48) $\ell(x, y)=\sqrt{x^{2}+y^{2}-4}$
(a)

(b)

50) $\ell(x, y)=\sqrt{x^{2}-1},(1,0)$

$$
\begin{aligned}
& z=\sqrt{(1)^{2}-1}=\sqrt{0}=0 \\
& \sqrt{x^{2}-1}=0 \\
& x^{2}-1=0 \\
& (x+1)(x-1)=0 \\
& x+1=0 \mid x-1=0 \\
& x=-1 \mid x=1
\end{aligned}
$$

52)

$$
\begin{aligned}
& \text { 2) } l(x, y)=\frac{2 y-x}{x+y+1},(-1,1) \\
& z=\frac{2(1)-(-1)}{(-1)+(1)+1}=\frac{2+1}{1}=3 \\
& \frac{2 y-x}{x+y+1}=3 \\
& 2 y-x=3(x+y+1) \\
& 2 y-x=3 x+3 y+3 \\
& -4 x-3=y \\
& y=-4 x-3
\end{aligned}
$$

54)

$$
\begin{gathered}
l(x, y, z)=\ln \left(x^{2}+y^{2}+z^{2}\right) \\
\ln \left(x^{2}+y^{2}+z^{2}\right)=0 \\
v \\
x^{2}+y^{2}+z^{2}=1
\end{gathered}
$$

56) $f(x, y, z)=z$

$$
z=1
$$

58) $l(x, y, z)=y^{2}+z^{2}$

$$
y^{2}+z^{2}=1
$$

60) $f(x, y, z)=\frac{x^{2}}{25}+\frac{y^{2}}{16}+\frac{z^{2}}{9}$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}+\frac{z^{2}}{9}=1
$$

$$
\begin{aligned}
& \text { 62) } f(x, y, z)=\overline{\ln \left(x^{2}+y+z^{2}\right) ;}(-1,2,1) \\
& \omega=\ell(x, y, z) \quad \ln 4=\ln \left(x^{2}+y+z^{2}\right) \\
& \omega=\ln \left((-1)^{2}+(2)+(1)^{2}\right)=\ln (1+2+1)=\ln 4 \Rightarrow \quad 4=x^{2}+y+z^{2} \\
& \text { 64) } g(x, y, z)=\frac{x-y+z}{2 x+y-z} ;(1,0,-2) \\
& w=\frac{x-y+z}{2 x+y-z} \quad-\frac{1}{4}=\frac{x-y+z}{2 x+y-z} \\
& 0=6 x-3 y+3 z \\
& \omega=\frac{(1)-(0)+(-2)}{2(1)+(0)-(-2)}=\frac{1-2}{2+2}=\frac{-1}{4} \Rightarrow \begin{array}{l}
-1(2 x+y-z)=4(x-y+z) \\
-2 x-y+z=4 x-4 y+4 z
\end{array} \Rightarrow \begin{array}{l}
0=3(2 x-y+z) \\
0=2 x-y+z
\end{array}
\end{aligned}
$$

