Lines and Line Segments in Space

Suppose that L is a line in space passing through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to a vector $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ or $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$. Then L is the set of all points $P(x, y, z)$ for which $\overrightarrow{P_{0} P}$ is parallel to $\mathbf{v}=\vec{v}$ (see Figure in the text, Figure 12.36 in $14^{\text {th }}$ edition). Thus, $\overline{P_{0} P}=t \mathbf{v}=t \bar{v}$ for some scalar parameter t. The value of t depends on the location of the point P along the line, and the domain of t is $(-\infty, \infty)$. The expanded form of the equation $\overrightarrow{P_{0} P}=t \mathbf{v}=t \stackrel{\rightharpoonup}{v}$ is

$$
\begin{aligned}
\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k} & =t\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}\right) \\
\left(x-x_{0}\right) \vec{i}+\left(y-y_{0}\right) \vec{j}+\left(z-z_{0}\right) \vec{k} & =t\left(v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}\right)
\end{aligned}
$$

which can be rewritten as

$$
\begin{gather*}
x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=x_{0} \mathbf{i}+y_{0} \mathbf{j}+z_{0} \mathbf{k}+t\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}\right) \tag{1}\\
x \stackrel{\rightharpoonup}{i}+y \vec{j}+z \vec{k}=x_{0} \stackrel{\rightharpoonup}{i}+y_{0} \vec{j}+z_{0} \vec{k}+t\left(v_{1} \stackrel{\rightharpoonup}{i}+v_{2} \vec{j}+v_{3} \vec{k}\right) .
\end{gather*}
$$

If $\mathbf{r}(t)=\vec{r}(t)$ is the position vector of a point $P(x, y, z)$ on the line and $\mathbf{r}_{0}=\vec{r}_{0}$ is the position vector of the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$, then Equation (1) gives the following vector form for the equation of a line in space.

Vector Equation for a Line

A vector equation for the line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\mathbf{v}=\vec{v}$ is

$$
\begin{equation*}
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad \vec{r}(t)=\vec{r}_{0}+t \stackrel{\rightharpoonup}{\mathbf{v}}, \quad-\infty<t<\infty, \tag{2}
\end{equation*}
$$

where $\mathbf{r}=\vec{r}$ is the position vector of a point $P(x, y, z)$ on L and $\mathbf{r}_{0}=\vec{r}_{0}$ is the position vector of $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$.

Parametric Equation for a Line

The standard parametrization of the line through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ or $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$ is

$$
\begin{equation*}
x=x_{0}+t v_{1}, \quad y=y_{0}+t v_{2}, \quad z=z_{0}+t v_{3}, \quad-\infty<t<\infty \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}=\mathbf{r}_{0}+t|\mathbf{v}| \frac{\mathbf{v}}{|\mathbf{v}|}=\underset{\substack{\text { Intial } \\
\text { position }}}{\mathbf{r}_{0}}+\underset{\text { Time }}{t}|\mathbf{v}| \underset{\text { Speed }}{ } \frac{\mathbf{v}}{|\mathbf{v}|} \\
& \overrightarrow{\text { Direction }} \tag{4}
\end{align*}
$$

The Distance from a Point to a Line in Space
Distance from a Point S to a Line Through P Parallel to $\mathbf{v}=\vec{v}$

$$
\begin{equation*}
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}=\frac{|\overrightarrow{P S} \times \bar{v}|}{|\bar{v}|} \tag{5}
\end{equation*}
$$

An Equation for a Plane in Space

Equation for a Plane

The plane trough $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ normal to $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ or $\vec{n}=A \vec{i}+B \vec{j}+C \vec{k}$ has

Vector equation:

$$
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0 \quad \vec{n} \cdot \overrightarrow{P_{0} P}=0
$$

Component equation:

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

Component equation simplified: $\quad A x+B y+C z=D \quad$ where $D=A x_{0}+B y_{0}+C z_{0}$
The vector $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ or $\vec{n}=A \vec{i}+B \vec{j}+C \vec{k}$ is normal to the plane $A x+B y+C z=D$.
Distance from a Point S to a Plane with Normal $\mathbf{n}=\vec{n}$ at Point P

$$
\begin{equation*}
d=\left|\overrightarrow{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=\left|\overrightarrow{P S} \cdot \frac{\vec{n}}{|\stackrel{\rightharpoonup}{n}|}\right| \tag{6}
\end{equation*}
$$

MATH 21200 section 12.5
2)

$$
\begin{aligned}
& P(1,2,-1) \quad Q(-1,0,1) \\
& \overrightarrow{P Q}=\{(-1)-(1)\} \vec{i}+\{(0)-(2)\} \vec{j}+\{(1)-(-1)\} \vec{l}=-2 \vec{i}-2 \vec{j}+2 \vec{l} \\
& x=(1)+(-2) t \\
& y=(2)+(-2) t \\
& z=(-1)+(2) t \\
& x=1-2 t \\
& y=2-2 t \\
& z=-1+2 t
\end{aligned}
$$

4) $P(1,2,0) \quad Q(1,1,-1)$

$$
\begin{array}{rlrl}
\overrightarrow{P Q} & =\{(1)-(1)\} \vec{i}+\{(1)-(2)\} \vec{j}+\{(-1)-(0)\} \vec{k}=0 \vec{i}-(\vec{j}-1 \vec{k} \\
& =-\vec{j}-\vec{k} \\
x & =(1)+(0) t & y=(2)+(-1) t & z=(0)+(-1) t \\
x & =1 & y=2-t & z
\end{array}
$$

6) $(3,-2,1)$ Ito $x=1+2 t, y=2-t, z=3 t$

$$
\text { II to } 2 \vec{i}-1 \vec{j}+3 \vec{k}
$$

$$
\begin{array}{lll}
x=(3)+(2) t & y=(-2)+(-1) t & z=(1)+(3) t \\
x=3+2 t & y=-2-t & z=1+3 t
\end{array}
$$

- 8) $\overline{(2,4,5)}$ L to plane $\overline{3 x+7 y}-5 z=21 \Rightarrow \vec{u}=3 \vec{i}+7 \vec{j}-5 \vec{k}$

$$
\begin{array}{lll}
x=(2)+(3) t & y=(4)+(7) t & z=(5)+(-5) t \\
x=2+3 t & y=4+7 t & z=5-5 t
\end{array}
$$

$$
\begin{aligned}
\vec{n} & =\vec{\mu} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right|=+\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
1 & 3 \\
3 & 5
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right| \vec{k} \\
& =\{(2)(5)-(3)(4)\} \vec{i}-\{(1)(5)-(3)(3)\} \vec{j}+\{(1)(4)-(2)(3)\} \vec{k} \\
& =\{10-12\} \vec{i}-\{5-9\} \vec{y}+\{4-6\} \vec{k}=\{-2\} \vec{i}-\{-4\} \vec{y}+\{-2\} \vec{k} \\
& =-2 \vec{i}+4 \vec{y}-2 \vec{k} \\
x & =(2)+(-2) t \quad y=(3)+(4) t \quad z=(0)+(-2) t \\
x & =2-2 t \quad y=3+4 t \quad z=-2 t
\end{aligned}
$$

12) the z-axis \Rightarrow vector: $0 \vec{i}+O_{j} \vec{j}+1 \vec{k}=\vec{k}$ point: $(0,0,0)$

$$
\begin{array}{lll}
x=(0)+(0) t & y=(0)+(0) t & z=(0)+(1) t \\
x=0 & y=0 & z=t
\end{array}
$$

$14) P(0,0,0) \quad Q(1,0,0)$

$$
\begin{aligned}
& \overrightarrow{P Q}=\{(1)-(0)\} \vec{i}+\{(0)-(0)\} \vec{y}+\{(0)-(0)\} \vec{k} \\
& =1 \vec{i}+0 \vec{j}+0 \vec{k}=\vec{i} \\
& (0,0,0)
\end{aligned} \begin{aligned}
& x=(0)+(1) t \quad y=(0)+(0) t \quad z=(0)+(0) t \\
& x=A \quad y=0 \quad z=0
\end{aligned}
$$

16) $P(1,1,0) \quad Q(1,1,1)$

17) $P(0,2,0) \quad Q(3,0,0)$

$$
\begin{aligned}
& \overrightarrow{P Q}=\{(3)-(0)\} \vec{i}+\{(0)-(2)\} \vec{y}+\{(0)-(0)\} \vec{k} \\
&=3 \vec{i}-2 \vec{j}+0 \vec{k}=3 \vec{i}-2 \vec{y} \\
&(0,2,0) \\
& x=(0)+(3) t \quad y=(2)+(-2) t \quad z=(0)+(0) t \\
& x=3 t \quad y=2-2 t \quad z=0
\end{aligned}
$$

$$
0 \leq t \leq 1
$$

20) $P(1,0,-1) \quad Q(0,3,0)$

$$
\left.\begin{array}{l}
\overrightarrow{P Q}=\{(0)-(1)\} \vec{i}+\{(3)-(0)\} \vec{y}+\{(0)-(-1)\} \vec{h} \\
=-1 \vec{i}+3 \vec{j}+1 \vec{k}=-\vec{i}+3 \vec{j}+\vec{h} \\
(1,0,-1)
\end{array}\right\} \begin{aligned}
& x=(1)+(-1) t \quad y=(0)+(3) t \quad z=(-1)+(1) t \\
& x=1-t \quad y=3 t \quad z=-1+t \\
& \quad 0 \leq t \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{P Q}=\{(1)-(1)\} \overrightarrow{\dot{d}}+\{(1)-(1)\} \vec{y}+\{(1)-(0)\} \vec{a} \\
& =0 \vec{i}+0 \vec{j}+1 \vec{k}=\vec{k} \\
& (1,1,0) \\
& x=(1)+(0) t \\
& y=(1)+(0) t \\
& z=(0)+(1) t \\
& x=1 \\
& y=1 \\
& z=t
\end{aligned}
$$

2.2) $(1,-1,3)$ to $3 x+y+z=7$

$$
\begin{array}{l:l}
3(x-(1))+1(y-(-1))+1(z-(3))=0 & 3 x+y+z-5=0 \\
3(x-1)+(y+1)+(z-3)=0 & 3 x+y+z=5 \\
3 x-3+y+1+z-3=0 &
\end{array}
$$

24) $P(2,4,5) \quad Q(1,5,7) \quad R(-1,6,8)$

$$
\begin{aligned}
\overrightarrow{P Q} & =\{(1)-(2)\} \vec{i}+\{(5)-(4)\} \vec{j}+\{(7)-(5)\} \vec{k}=-1 \vec{i}+1 \vec{j}+2 \vec{k}=-\vec{i}+\vec{j}+2 \vec{k} \\
\overrightarrow{P R} & =\{(-1)-(2)\} \vec{k}+\{(6)-(4)\} \vec{y}+\{(8)-(5)\} \vec{k}=-3 \vec{i}+2 \vec{j}+3 \vec{k} \\
\vec{n} & =\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & 1 & 2 \\
-3 & 2 & 3
\end{array}\right|=+\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
-1 & 2 \\
-3 & 3
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
-1 & 1 \\
-3 & 2
\end{array}\right| \vec{l} \\
& =\{(1)(3)-(2)(2)\} \vec{i}-\{(-1)(3)-(2)(-3)\} \vec{j}+\{(-1)(2)-(1)(-3)\} \vec{k} \\
& =\{3-4\} \vec{i}-\{-3+6\} \vec{j}+\{-2+3\} \vec{k}=\{-1 \vec{i}-\{3\} \vec{j}+\{1\} \vec{k}=-1 \vec{i}-3 \vec{j}+1 \vec{k} \\
& =-\vec{i}-3 \vec{j}+\vec{k}
\end{aligned}
$$

now use any point

$$
\begin{aligned}
& (-1)(x-(2))+(-3)(y-(4))+(1)(z-(5))=0 \\
& -(x-2)-3(y-4)+(z-5)=0 \\
& -x+2-3 y+12+z-5=0 \\
& -x-3 y+z+9=0 \\
& \quad 9=x+3 y-z \Rightarrow x+3 y-z=9
\end{aligned}
$$

26) $\quad A(1,-2,1) \quad O(0,0,0)$

$$
\begin{aligned}
& \overrightarrow{O A}=\{(1)-(0)\} \vec{j}+\{(-2)-(0)\} \vec{y}+\{(1)-(0)\} \vec{k}=1 \vec{i}-2 \vec{y}+1 \vec{k} \\
&=\vec{i}-2 \vec{y}+\vec{k} \\
& \begin{array}{ll}
(1)(x-(1))+(-2)(y-(-2))+(1)(z-(1))=0 & x-2 y+z-6=0 \\
(x-1)-2(y+2)+(z-1)=0 & x-2 y+z=6 \\
x-1-2 y-4+z-1=0 &
\end{array}
\end{aligned}
$$

28)

$$
\left.\begin{array}{lll}
\text { 28) } \begin{array}{ll}
x=t & y=-t+2 \\
x=2 s+2 & y=s+3
\end{array} & z=t+1 \\
t=x=2 s+2 & -t+2=y=s+3 \\
t=2 s+2 & -t+2=s+3
\end{array}\right\} \begin{array}{r}
-(2 s+2 \\
-2 s-2 \\
-2
\end{array}
$$

$$
z=t+1
$$

$$
\begin{array}{cc}
-(2 s+2)+2=1+3 & t=2(-1)+2 \\
-2 s-2+2=1+3 & t=-2+2 \\
-2 s=s+3 & t=0 \\
-3=31 & t=0
\end{array}
$$

the lines intersect when $t=0$ and $s=-\overline{-1}$

$$
-1=2
$$ so the point is $x=(0)=0, y=-(0)+2=2, z=(0)+1=1$

$$
\begin{aligned}
& \quad P(0,2,1) \\
& \vec{n}_{1}=\mid \vec{i}-1 \vec{j}+1 \vec{k} \quad x_{2}=2 \vec{i}+1 \vec{j}+5 \vec{k} \\
& \overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -1 & 1 \\
2 & 1 & 5
\end{array}\right|=+\left|\begin{array}{cc}
-1 & 1 \\
1 & 5
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
1 & 1 \\
2 & 5
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right| \vec{k} \\
&=\{(-1)(5)-(1)(1)\} \vec{i}-\{(1)(5)-(1)(2)\} \vec{j}+\{(1)(1)-(-1)(2)\} \vec{k}=-6 \vec{i}-3 \vec{j}+3 \vec{k}
\end{aligned}
$$

plane: $(-6)(x-(0))+(-3)(y-(2))+(3)(z-(1))=0!-6 x-3 y+3 z+3=0$

$$
\begin{array}{l|l}
-6(x)-3(y-2)+3(z-1)=0 & 3=6 x+3 y-3 z \\
-6 x-3 y+6+3 z-3=0 & 6 x+3 y-3 z=3
\end{array}
$$

30) L1: $x=t, y=3-3 t, z=-2-t ;-\infty<t<\infty$

L2: $x=1+s, y=4+s, z=-1+s ;-\infty<s<\infty$

$$
\vec{v}_{1}=1 \vec{i}-3 \vec{j}-1 \vec{h} \quad \vec{v}_{2}=1 \vec{i}+1 \vec{j}+1 \vec{k}
$$

poist of intersection:
plane:

$$
\begin{aligned}
&(-2)(x-(0))+(-2)(y-(3))+(4)(z-(-2))=0 \\
&-2 x-2(y-3)+4(z+2)=0 \\
&-2 x-2 y+6+4 z+8=0 \\
&-2 x-2 y+4 z+14=0 \\
& 14=2 x+2 y-4 z
\end{aligned}
$$

$$
2 x+2 y-4 z=14
$$

or

$$
x+y-2 z=7
$$

$$
\begin{aligned}
& t=1+s \quad-2-t=-1+s \quad x=(0)=0 \\
& -2-(1+2)=-1+s \quad y=3-3(0)=3 \quad P(0,3,-2) \\
& t=1+(-1)=0 \\
& \begin{aligned}
-2-1-2 & =-1+2 \quad z=-2-(0)=-2 \\
-2 & =21
\end{aligned} \\
& -1=\infty \\
& \vec{n}=\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -3 & -1 \\
1 & 1 & 1
\end{array}\right|=+\left|\begin{array}{cc}
-3 & -1 \\
1 & 1
\end{array}\right| \vec{j}-\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
1 & -3 \\
1 & 1
\end{array}\right| \vec{k} \\
& =\{(-3)(1)-(-1)(1)\} \vec{i}-\{(1)(1)-(-1)(1)\} \vec{y}+\{(1)(1)-(-3)(1)\} \vec{k} \\
& =\{-3+1\} \vec{l}-\{1+1\} \vec{j}+\{1+3\} \vec{k}=-2 \vec{i}-2 \vec{j}+4 \vec{k}
\end{aligned}
$$

38) point: line: $x=10+4 t, y=-3, z=4 t$

$$
\begin{aligned}
& S(-1,4,3) \quad P(10,-3,0) \text { and } \vec{k}=4 \vec{i}+0 \vec{y}+4 \vec{k}=4 \vec{i}+4 \vec{k} \\
& \overrightarrow{P S}=\{(-1)-(10)\} \vec{i}+\{(4)-(-3)\} \vec{j}+\{(3)-(0)\} \vec{k}=-11 \vec{i}+7 \vec{j}+3 \vec{k} \\
& \overrightarrow{P S} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-11 & 7 & 3 \\
4 & 0 & 4
\end{array}\right|=+\left|\begin{array}{cc}
4 & 3 \\
0 & 4
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
-11 & 3 \\
4 & 4
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
-11 & 7 \\
4 & 0
\end{array}\right| \vec{k} \\
&=\{(7)(4)-(3)(0)\} \vec{i}-\{(-11)(4)-(3)(4)\} y+\{(-11)(0)-(7)(4)\} \vec{k} \\
&=\{28-0\} \vec{i}-\{-44-12\} \vec{y}+\{0-28\} \vec{k}=28 \vec{i}+56 \vec{j}-28 \vec{k} \\
& d=\frac{|\overrightarrow{P S} \times \vec{v}|}{|\vec{v}|}=\frac{\sqrt{(28)^{2}+(56)^{2}+(28)^{2}}}{\sqrt{(4)^{2}+(0)^{2}+(4)^{2}}}=\frac{\sqrt{(28)^{2}\left\{(1)^{2}+(2)^{2}+(1)^{2}\right\}}}{\sqrt{(4)^{2}\left\{(1)^{2}+(1)^{2}\right\}}}=\frac{28 \sqrt{6}}{4 \sqrt{2}} \\
&= \frac{28}{4} \sqrt{\frac{6}{2}}=7 \sqrt{3}
\end{aligned}
$$

40) point: plane: $3 x+2 y+6 z=6 \Rightarrow \vec{n}=3 \vec{i}+2 \vec{y}+6 \vec{a}$ $S(0,0,0)$ by triabbenor: $P(0,0,1)$ is on this plane

$$
\begin{aligned}
& \overrightarrow{P S}=\{(0)-(0)\} \vec{i}+\{(0)-(0)\} \vec{j}+\{(0)-(1)\} \vec{k}=0 \vec{i}+0 \vec{j}-1 \vec{k}=-\vec{k} \\
& \frac{\vec{n}}{|\vec{n}|}=\frac{3 \vec{i}+2 \vec{j}+6 \vec{k}}{\sqrt{(3)^{2}+(2)^{2}+(6)^{2}}}=\frac{3 \vec{i}+2 \vec{j}+6 \vec{k}}{\sqrt{9+4+36}}=\frac{3 \vec{i}+2 \vec{j}+6 \vec{k}}{\sqrt{49}}=\frac{3}{\sqrt{49}} \vec{i}+\frac{2}{\sqrt{49}} \vec{j}+\frac{6}{\sqrt{49}} \vec{k} \\
& d=\left|\overrightarrow{P S} \cdot \frac{\vec{n}}{|\vec{n}|}\right|=\left|(0)\left(\frac{3}{\sqrt{49}}\right)+(0)\left(\frac{2}{\sqrt{49}}\right)+(-1)\left(\frac{6}{\sqrt{44}}\right)\right|=\left|\frac{-6}{\sqrt{4 q}}\right|=\frac{6}{\sqrt{49}}
\end{aligned}
$$

$$
\text { 32) } \begin{aligned}
P_{1}(1,2,3) \quad P_{2}(3,2,1) & \text { to } 4 x-y+2 z=7 \\
& \vec{n}=4 \vec{i}-1 \vec{j}+2 \vec{k}
\end{aligned} \quad \begin{aligned}
\overrightarrow{P_{1} P_{2}} & =\{(3)-(1)\} \vec{i}+\{(2)-(2)\} \vec{j}+\{(1)-(3)\} \vec{l}=2 \vec{i}+0 \vec{j}-2 \vec{k}=2 \vec{i}-2 \vec{k} \\
\overrightarrow{P_{1} P_{2}} \times \vec{n} & =\left|\begin{array}{cc}
\vec{i} & \vec{j} \\
2 & \vec{k} \\
2 & 0 \\
4 & -1
\end{array}\right|=+\left|\begin{array}{cc}
0 & -2 \\
-1 & 2
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
2 & -2 \\
4 & 2
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
2 & 0 \\
4 & -1
\end{array}\right| \vec{k} \\
& =\{(0)(2)-(-2)(-1)\} \vec{i}-\{(2)(2)-(-2)(4)\} \vec{j}+\{(2)(-1)-(0)(4)\} \vec{k} \\
& =-2 \vec{i}-12 \vec{j}-2 \vec{k}
\end{aligned}
$$

using the point $P_{1}(1,2,3)$

$$
\begin{gathered}
(-2)(x-(1))+(-12)(y-(2))+(-2)(z-(3))=0 \\
-2(x-1)-12(y-2)-2(z-3)=0 \\
-2 x+2-12 y+24-2 z+6=0 \\
-2 x-12 y-2 z+32=0 \\
32=2 x+12 y+2 z \\
2 x+12 y+2 z=32 \\
0 \\
x+6 y+z=16
\end{gathered}
$$

34) point.

$$
\text { line: } x=5+3 t, y=5+4 t, z=-3-5 t
$$

$$
\begin{aligned}
& S(0,0,0) \quad P(5,5,-3) \text { and } \vec{v}=3 \vec{i}+4 \vec{j}-5 \vec{b} \\
& \overrightarrow{P S}=\{(0)-(5)\} \vec{i}+\{(0)-(5)\} \vec{j}+\{(0)-(-3)\} \vec{k}=-5 \vec{i}-5 \vec{j}+3 \vec{k} \\
& \overrightarrow{P S} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-5 & -5 & 3 \\
3 & 4 & -5
\end{array}\right|=+\begin{array}{cc}
-5 & 3 \\
4 & -5
\end{array}\left|\vec{i}-\begin{array}{cc}
-5 & 3 \\
3 & -5
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
-5 & -5 \\
3 & 4
\end{array}\right| \vec{k} \\
&=\{(-5)(-5)-(3)(4)\} \vec{i}-\{(-5)(-5)-(3)(3)\} \vec{j}+\{(-5)(4)-(-5)(3)\} \vec{k} \\
&=\{25-12\} \vec{i}-\{25-9\} \vec{j}+\{-20+15\} \vec{k}=13 \vec{i}-16 \vec{j}-5 \vec{k} \\
& d=\frac{|\overrightarrow{P S} \times \vec{v}|}{|\vec{v}|}=\frac{\sqrt{(13)^{2}+(-16)^{2}+(-5)^{2}}}{\sqrt{(3)^{2}+(4)^{2}+(5)^{2}}}=\frac{\sqrt{169+256+25}}{\sqrt{9+16+25}}=\frac{\sqrt{450}}{\sqrt{50}}=\sqrt{\frac{450}{50}}=\sqrt{9}=3
\end{aligned}
$$

36) point: line: $x=2 t, y=1+2 t, z=2 t$

$$
S(2,1,-1) \quad P(0,1,0) \text { and } \vec{v}=2 \vec{i}+2 \vec{j}+2 \vec{k}
$$

$$
\overrightarrow{P S}=\{(2)-(0)\} \vec{k}+\{(1)-(1)\} \vec{j}+\{(-1)-(0)\} \vec{k}=2 \vec{i}+0 \vec{j}-1 \vec{k}=2 \vec{i}-\vec{h}
$$

$$
\overrightarrow{P S} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{l} \\
2 & 0 & -1 \\
2 & 2 & 2
\end{array}\right|=+\left|\begin{array}{cc}
0 & -1 \\
2 & 2
\end{array}\right| \vec{j}-\left|\begin{array}{cc}
2 & -1 \\
2 & 2
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right| \vec{k}
$$

$$
=\{(0)(2)-(-1)(2)\} \vec{i}-\{(2)(2)-(-1)(2)\} \vec{j}+\{(2)(2)-(0)(2)\} \vec{h}=2 \vec{i}-6 \vec{j}+4 \vec{k}
$$

$$
d=\frac{|\overrightarrow{P S} \times \vec{v}|}{|\vec{v}|}=\frac{\sqrt{(2)^{2}+(-6)^{2}+(4)^{2}}}{\sqrt{(2)^{2}+(2)^{2}+(2)^{2}}}=\frac{\sqrt{4+36+16}}{\sqrt{4+4+4}}=\frac{\sqrt{4(1+9+4)}}{\sqrt{4(1+1+1)}}=\frac{\sqrt{4} \sqrt{1+9+4}}{\sqrt{4} \sqrt{1+1+1}}
$$

$$
=\frac{\sqrt{14}}{\sqrt{3}}=\sqrt{\frac{14}{3}}
$$

42) point: plane: $2 x+y+2 z=4 \Rightarrow \vec{n}=2 \vec{i}+\vec{y}+2 \vec{k}$
$S(2,2,3)$ lyetriab \& enow $P(2,0,0)$ is on this plane

$$
\begin{aligned}
& \overrightarrow{P S}=\{(2)-(2)\} \vec{i}+\{(2)-(0)\} \vec{j}+\{(3)-(0)\} \vec{h}=0 \vec{i}+2 \vec{j}+3 \vec{k}=2 \vec{j}+3 \vec{k} \\
& |\vec{n}|=\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}=\sqrt{4+1+4}=\sqrt{9}=3 \\
& \frac{\vec{n}}{|\vec{n}|}=\frac{2 \vec{i}+\vec{i}+2 \vec{k}}{3}=\frac{2}{3} \vec{i}+\frac{1}{3} \vec{j}+\frac{2}{3} \vec{k} \\
& d=|\overrightarrow{P S} \cdot \vec{n}|=\left|(0)\left(\frac{2}{3}\right)+(2)\left(\frac{1}{3}\right)+(3)\left(\frac{2}{3}\right)\right|=\left|\frac{2}{3}+\frac{6}{3}\right|=\left|\frac{8}{3}\right|=\frac{8}{3}
\end{aligned}
$$

44) point: plane: $-4 x+y+z=4 \Rightarrow \vec{n}=-4 \vec{i}+\vec{y}+\vec{h}$ $S(1,0,-1)$ by trialbenor: $P(-1,0,0)$ in on this plane

$$
\begin{aligned}
& \overrightarrow{P S}=\{(1)-(-1)\} \vec{i}+\{(0)-(0)\} \vec{j}+\{(-1)-(0)\} \vec{l}=2 \vec{i}+0 \vec{j}-\mid \vec{k}=2 \vec{i}-\vec{k} \\
& |\vec{n}|=\sqrt{(-4)^{2}+(1)^{2}+(1)^{2}}=\sqrt{16+1+1}=\sqrt{18}=3 \sqrt{2} \frac{\vec{n}}{|\vec{n}|}=\frac{-4 \vec{k}+\vec{j}+\vec{l}}{3 \sqrt{2}}=\frac{-4}{3 \sqrt{2}} \vec{i}+\frac{1}{3 \sqrt{2}} \vec{i}+\frac{1}{3 \sqrt{2}} \overrightarrow{\vec{l}} \\
& d=\left|\overrightarrow{P S} \cdot \frac{\vec{n}}{|\vec{n}|}\right|=\left|(2)\left(\frac{-4}{3 \sqrt{2}}\right)+(0)\left(\frac{1}{3 \sqrt{2}}\right)+(-1)\right|\left(\frac { 1 } { 3 \sqrt { 2 } } \left|=\left|\frac{-8}{3 \sqrt{2}}+0-\frac{1}{3 \sqrt{2}}\right|=\left|\frac{-9}{3 \sqrt{2}}\right|=\left|\frac{-3}{\sqrt{2}}\right|=\frac{3}{\sqrt{2}}\right.\right.
\end{aligned}
$$

46) line: $x=2+t, y=1+t, z=\frac{-1}{2}-\frac{1}{2} t$
let $t=-1$ then we get a point on this line $S(1,0,0)$ "this will be appoint that we end up with simpler calculations"

$$
\vec{v}=1 \vec{i}+1 \vec{j}-\frac{1}{2} \vec{k}=\vec{i}+\vec{y}-\frac{1}{2} \vec{k}
$$

plank: $x+2 y+6 z=1 \Rightarrow \vec{n}=1 \vec{i}+2 \vec{y}+6 \vec{l}$
46) continued...
$\vec{v} \cdot \vec{n}=(1)(1)+(1)(2)+\left(\frac{-1}{2}\right)(6)=1+2-3=0$ this implies that the line is parallel to the plane.
to make our calculation easier, we can use $P(10,0,0)$ which is on the plane

$$
\begin{aligned}
& \overrightarrow{P S}=\{(1)-(10)\} \vec{i}+\{(0)-(0)\} \vec{j}+\{(0)-(0)\} \vec{k}=-9 \vec{i}+0 \vec{j}+0 \vec{k}=-9 \vec{i} \\
& |\vec{n}|=\sqrt{()^{2}+(2)^{2}+(6)^{2}}=\sqrt{1+4+36}=\sqrt{41} \frac{\vec{n}}{|\vec{m}|}=\frac{\mid \vec{i}+2 \vec{j}+6 \vec{k}}{\sqrt{41}}=\frac{1}{\sqrt{41}} \vec{i}+\frac{2}{\sqrt{41}} \vec{y}+\frac{6}{\sqrt{41}} \vec{l} \\
& \left.\left.d=|\overrightarrow{P S} \cdot \vec{n}|=|(-9)|\left(\frac{1}{\sqrt{41}}\right)+(0)\left(\frac{2}{\sqrt{41}}\right)+(0) \right\rvert\, \frac{6}{\sqrt{41}}\right)\left|=\left|\frac{-9}{\sqrt{41}}\right|=\frac{9}{\sqrt{41}}\right.
\end{aligned}
$$

48) $5 x+y-z=10 \Rightarrow \vec{n}_{1}=5 \vec{i}+1 \vec{j}-1 \vec{k}$

$$
\begin{aligned}
& \left|\vec{n}_{1}\right|=\sqrt{(5)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{25+1+1}=\sqrt{24} \\
& x-2 y+3 z=-1 \Rightarrow \vec{x}_{2}=1 \vec{i}-2 \vec{j}+3 \overrightarrow{2} \\
& \left|\vec{x}_{2}\right|=\sqrt{(1)^{2}+(-2)^{2}+(3)^{2}}=\sqrt{1+4+9}=\sqrt{14} \\
& \overrightarrow{x_{1}} \cdot \vec{n}_{2}=(5)(1)+(1)(-2)+(-1)(3)=5-2-3=0 \\
& \theta=\cos ^{-1}\left(\frac{\vec{x}_{1} \cdot \vec{n}_{2}}{\left|\vec{x}_{1}\right|\left|\vec{x}_{2}\right|}\right)=\cos ^{-1}\left(\frac{(0)}{(\sqrt{27})(\sqrt{14})}\right)=\cos ^{-1}(0)=\frac{\pi}{2}
\end{aligned}
$$

52) line: $x=2, y=3+2 t, z=1-2 t$

$$
\begin{aligned}
& \vec{v}=0 \vec{i}+2 \vec{y}-2 \vec{k}=2 \vec{y}-2 \vec{k} \\
& |\vec{v}|=\sqrt{(0)^{2}+(2)^{2}+(-2)^{2}}=\sqrt{0+4+4}=\sqrt{4(1+1)}=2 \sqrt{2}
\end{aligned}
$$

plane: $x-y+z=0 \Rightarrow \vec{n}=1 \vec{i}-1 \vec{j}+1 \vec{k}$

$$
\begin{gathered}
|\vec{n}|=\sqrt{(1)^{2}+(-1)^{2}+(1)^{2}}=\sqrt{1+1+1}=\sqrt{3} \\
\vec{v} \cdot \vec{n}=(0)(1)+(2)(-1)+(-2)(1)=0-2-2=-4 \\
\theta=\cos ^{-1}\left(\frac{\vec{v} \cdot \vec{n}}{|\vec{v}||\vec{n}|}\right)=\cos ^{-1}\left(\frac{(-4)}{(2 \sqrt{2})(\sqrt{3})}\right)=\cos ^{-1}\left(\frac{-2}{\sqrt{6}}\right)
\end{gathered}
$$

58) line: $x=2, y=3+2 t, z=-2-2 t$ plane: $6 x+3 y-4 z=-12$

$$
\begin{array}{c:l}
6(2)+3(3+2 t)-4(-2-2 t)=-12 & x=2 \\
12+9+6 t+8+8 t=-12 & y=3+2\left(\frac{-41}{14}\right)=3-\frac{41}{7} \\
14 t+29=-12 & =\frac{21}{7}-\frac{41}{7}=\frac{-20}{7} \\
14 t=-41 & z=-2-2\left(\frac{-41}{14}\right)=-2+\frac{41}{7} \\
t=\frac{-41}{14} & =\frac{-14}{7}+\frac{41}{7}=\frac{27}{7}
\end{array}
$$

the point is $\left(2, \frac{-20}{7}, \frac{27}{7}\right)$
60) Sine: $x=-1+3 t, y=-2, z=5 t$
plane: $2 x-3 z=7 ; \quad x=-1+3(-1)=-4$

$$
\begin{gathered}
2(-1+3 t)-3(5 t)=7 \\
-2+6 t-15 t=7 \\
-2-9 t=7 \\
-9=9 t \\
-1=t
\end{gathered}
$$

$$
y=-2
$$

$$
z=5(-1)=-5
$$

The point is $(-4,-2,-5)$
\qquad
62)

$$
\begin{aligned}
& \text { 2) } \begin{array}{l}
3 x-6 y-2 z=3 \Rightarrow \vec{n}_{1}=3 \vec{i}-6 \vec{j}-2 \vec{k} \\
2 x+y-2 z=2 \Rightarrow \overrightarrow{n_{2}}=2 \vec{i}+1 \vec{j}-2 \vec{k} \\
\vec{n}_{1} \times \vec{n}_{2}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right|=+\left|\begin{array}{cc}
-6 & -2 \\
1 & -2
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
3 & -2 \\
2 & -2
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
3 & -6 \\
2 & 1
\end{array}\right| \vec{k} \\
=\{(-6)(-2)-(-2)(1)\} \vec{i}-\{(3)(-2)-(-2)(2)\} \vec{j}+\{(3)(1)-(-6)(2)\} \vec{k} \\
\quad=\{12+2\} \vec{i}-\{-6+4\} \vec{i}+\{3+12\} \vec{k}=14 \vec{i}+2 \vec{j}+15 \vec{k}
\end{array}
\end{aligned}
$$

by trial benor, the point $(1,0,0)$ is on both planes parametrization:

$$
\begin{array}{lll}
x=(1)+(14) t & y=(0)+(2) t & z=(0)+(15) t \\
x=1+14 t & y=2 t & z=15 t
\end{array}
$$

$$
\text { 64) } \begin{aligned}
& 5 x-2 y=11 \Rightarrow 5 x-2 y+0 z=11 \Rightarrow \overrightarrow{n_{1}}=5 \vec{i}-2 \vec{y}+0 \vec{k} \\
& 4 y-5 z=-17 \Rightarrow 0 x+4 y-5 z=-17 \Rightarrow \vec{n}_{2}=0 \vec{i}+4 \vec{y}-5 \vec{h} \\
& \vec{n}_{1} \times \vec{n}_{2}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{h} \\
5 & -2 & 0 \\
0 & 4 & -5
\end{array}\right|=+\left|\begin{array}{cc}
-2 & 0 \\
4-5
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
5 & 0 \\
0 & -5
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
5 & -2 \\
0 & 4
\end{array}\right| \vec{k} \\
&=\{(-2)(-5)-(0)(4)\} \vec{i}-\{(5)(-5)-(0)(0)\} \vec{j}+\{(5)(4)-(-2)(0)\} \vec{k} \\
&=\{(0-0\} \vec{i}-\{-25-0\} \vec{y}+\{20-0\} \vec{k}=10 \vec{i}+25 \vec{y}+20 \vec{k}
\end{aligned}
$$

by trial bevor, the point $(1,-3,1)$ is on both planes parametrization:

$$
\begin{array}{lll}
x=(1)+(10) t & y=(-3)+(25) t & z=(1)+(20) t \\
x=1+10 t & y=-3+25 t & z=1+20 t
\end{array}
$$

68) $P_{1}(4,1,5) ; \overrightarrow{n_{1}}=\vec{i}-2 \vec{j}+\vec{h} \quad P_{2}(3,-2,0) ; \vec{n}_{2}-\sqrt{2} \vec{i}+2 \sqrt{2} \vec{y}-\sqrt{2} \vec{l}$

$$
\begin{array}{ll}
(1)(x-(4))+(-2)(y-(1))+(1)(z-(5))=0 & (-\sqrt{2})(x-(3))+(2 \sqrt{2})(y-(-2))+(-\sqrt{2})(z-(0))=0 \\
(x-4)-2(y-1)+(z-5)=0 & -\sqrt{2}(x-3)+2 \sqrt{2}(y+2)-\sqrt{2}(z)=0 \\
x-4-2 y+2+z-5=0 & -\sqrt{2} x+3 \sqrt{2}+2 \sqrt{2} y+4 \sqrt{2}-\sqrt{2} z=0 \\
x-2 y+z-7=0 & -\sqrt{2} x+2 \sqrt{2} y-\sqrt{2} z+7 \sqrt{2}=0 \\
x-2 y+z=7 & 7 \sqrt{2}=\sqrt{2} x-2 \sqrt{2} y+\sqrt{2} z \\
& \sqrt{2} x-2 \sqrt{2} y+\sqrt{2} z=7 \sqrt{2}
\end{array}
$$

72)

$$
\begin{aligned}
& A_{1} x+B_{1} y+C_{1} z=D_{1} \Rightarrow \vec{x}_{1}=A_{1} \vec{i}+B_{1} \vec{j}+C_{1} \vec{k} \\
& A_{2} x+B_{2} y+C_{2} z=D_{2} \Rightarrow \vec{x}_{2}=A_{2} \vec{i}+B_{2} \vec{y}+C_{2} \vec{k}
\end{aligned}
$$

parallel: (1) if either vector \vec{n}_{1} or \vec{n}_{2} is a multiple of the other.
(2) $\vec{n}_{1} \times \vec{n}_{2}=\left(A_{1} \vec{i}+B_{j}+C_{1} \vec{n}\right) \times\left(A_{2} \vec{i}+B_{2} \vec{j}+C_{2} \vec{b}\right)=\overrightarrow{0}$
perpendicular: when this normals are \perp

$$
\vec{n}_{1} \cdot \vec{n}_{2}=\left(A_{1} \vec{i}+B_{1} \vec{j}+C_{1} \vec{b}\right) \cdot\left(A_{2} \vec{i}+B_{2} \vec{j}+C_{2} \vec{l}\right)=0
$$

