Component Form

Definitions

The vector represented by the directed line segment $\overline{A B}$ has initial point A and terminal point B and its length is denoted by $|\overrightarrow{A B}|$. Two vectors are equal if they have the same length and direction.

Definition

If $\mathbf{v}=\vec{v}$ is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point (v_{1}, v_{2}), then the component form of $\mathbf{v}=\vec{v}$ is

$$
\mathbf{v}=\vec{v}=\left\langle v_{1}, v_{2}\right\rangle
$$

If $\mathbf{v}=\vec{v}$ is a three-dimensional vector equal to the vector with initial point at the origin and terminal point (v_{1}, v_{2}, v_{3}), then the component form of $\mathbf{v}=\vec{v}$ is

$$
\mathbf{v}=\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

The magnitude or length of the vector $\mathbf{v}=\vec{v}=\overline{P Q}$ is the nonnegative number

$$
|\mathbf{v}|=|\stackrel{\rightharpoonup}{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Vector Algebra Operations

Definitions

Let $\mathbf{u}=\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors with k a scalar.
Addition:
$\mathbf{u}+\mathbf{v}=\vec{u}+\vec{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle$
Scalar multiplication: $\quad k \mathbf{u}=k \vec{u}=\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle$

Properties of Algebra Operations

Let $\mathbf{u}=\vec{u}, \mathbf{v}=\vec{v}, \mathbf{w}=\vec{w}$ be vectors and a, b be scalars.

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
$\vec{u}+\vec{v}=\vec{v}+\vec{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
$(\stackrel{\rightharpoonup}{u}+\stackrel{\rightharpoonup}{v})+\vec{w}=\vec{u}+(\stackrel{\rightharpoonup}{v}+\stackrel{\rightharpoonup}{w})$
3. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
$\vec{u}+\overrightarrow{0}=\vec{u}$
4. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
$\vec{u}+(-\vec{u})=\overrightarrow{0}$
5. $\quad \mathbf{0 u}=\mathbf{0}$
$0 \vec{u}=\overrightarrow{0}$
6. $\quad 1 \mathbf{u}=\mathbf{u}$
$1 \bar{u}=\bar{u}$
7. $a(b \mathbf{u})=(a b) \mathbf{u}$
$a(b \vec{u})=(a b) \vec{u}$
8. $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$
$a(\vec{u}+\stackrel{\rightharpoonup}{v})=a \stackrel{\rightharpoonup}{u}+a \stackrel{\rightharpoonup}{v}$
9. $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$
$(a+b) \vec{u}=a \bar{u}+b \bar{u}$

Unit Vectors

A vector $\mathbf{v}=\vec{v}$ of length 1 is called a unit vector.
The standard unit vectors are

$$
\mathbf{i}=\vec{i}=\langle 1,0,0\rangle \quad \mathbf{j}=\vec{j}=\langle 0,1,0\rangle \quad \mathbf{k}=\vec{k}=\langle 0,0,1\rangle
$$

If $\mathbf{v}=\vec{v} \neq \mathbf{0}=\overrightarrow{0}$, then its length $|\mathbf{v}|=|\vec{v}|$ is not zero and

$$
\left|\frac{1}{|\mathbf{v}|} \mathbf{v}\right|=\frac{1}{|\mathbf{v}|}|\mathbf{v}|=1 \quad \text { or } \quad\left|\frac{1}{|\vec{v}|} \vec{v}\right|=\frac{1}{|\vec{v}|}|\stackrel{\rightharpoonup}{v}|=1 \text {. }
$$

That is, $\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\stackrel{\rightharpoonup}{v}}{|\stackrel{\rightharpoonup}{v}|}$ is a unit vector in the direction of $\mathbf{v}=\vec{v}$, called the direction of the nonzero vector $\mathbf{v}=\vec{v}$.
If $\mathbf{v}=\vec{v} \neq \mathbf{0}=\overrightarrow{0}$, then

1. $\quad \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\stackrel{\rightharpoonup}{v}}{|\stackrel{\rightharpoonup}{v}|}$ is a unit vector called the direction of $\mathbf{v}=\vec{v}$
2. the equation $\mathbf{v}=|\mathbf{v}| \frac{\mathbf{v}}{|\mathbf{v}|}$ or $\quad \stackrel{\rightharpoonup}{v}=|\stackrel{\rightharpoonup}{v}| \frac{\vec{v}}{|\stackrel{\rightharpoonup}{v}|}$ express $\mathbf{v}=\vec{v}$ as its length times its direction.

Midpoint of a Line Segment

The midpoint M of the line segment joining points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is the point

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) .
$$

MATH 21200
section 12,2

$$
\vec{\mu}=(3,-2\rangle \quad \vec{v}=\langle-2,5\rangle
$$

2) a) $-2 \vec{v}=\langle-2(-2),-2(5)\rangle=\langle 4,-10\rangle$
b) $|-2 \vec{v}|=\sqrt{(4)^{2}+(-10)^{2}}=\sqrt{16+100}=\sqrt{116}=2 \sqrt{29}$

4-a) $\vec{\mu}-\vec{v}=\langle 3-(-2),-2-5\rangle=\langle 5,-7\rangle$

$$
\text { b) }|\vec{u}-\vec{v}|=\sqrt{(5)^{2}+(-7)^{2}}=\sqrt{25+49}=\sqrt{74}
$$

$6-a)-2 \vec{u}=\langle-2(3),-2(-2)\rangle=\langle-6,4\rangle \quad 5 \vec{v}=\langle 5(-2), 5(5)\rangle=\langle-10,25\rangle$

$$
\begin{aligned}
& -2 \vec{u}+5 \vec{v}=\langle-6+(-10), 4+25\rangle=\langle-16,29\rangle \\
& \text { b) }|-2 \vec{u}+5 \vec{v}|=\sqrt{(-16)^{2}+(29)^{2}}=\sqrt{256+841}=\sqrt{1097}
\end{aligned}
$$

8-a) $\frac{-5}{13} \vec{\mu}=\left\langle\frac{-5}{13}(3), \frac{-5}{13}(-2)\right\rangle=\left\langle\frac{-15}{13}, \frac{10}{13}\right\rangle$

$$
\begin{aligned}
& \frac{12}{13} \vec{v}=\left\langle\frac{12}{13}(-2), \frac{12}{13}(5)\right\rangle=\left\langle\frac{-24}{13}, \frac{60}{13}\right\rangle \\
& \frac{-5}{13} \vec{u}+\frac{12}{13} \vec{v}=\left\langle\frac{-15}{13}+\left(\frac{-24}{13}\right), \frac{10}{13}+\frac{60}{13}\right\rangle=\left\langle\frac{-39}{13}, \frac{70}{13}\right\rangle=\left\langle-3, \frac{70}{13}\right\rangle
\end{aligned}
$$

b) $\left|\frac{-5}{13} \vec{\mu}+\frac{12}{13} \vec{v}\right|=\sqrt{(-3)^{2}+\left(\frac{70}{13}\right)^{2}}=\sqrt{\left(\frac{-39}{13}\right)^{2}+\left(\frac{70}{13}\right)^{2}}=\sqrt{\frac{(-39)^{2}+(70)^{2}}{(13)^{2}}}$

$$
=\frac{\sqrt{1521+4900}}{13}=\frac{\sqrt{6421}}{13}
$$

10) $\overrightarrow{0}:\langle 0,0\rangle ; R=(2,-1), S=(-4,3) \quad \overline{\vec{p}}=\left\langle\frac{2+(-4)}{2}, \frac{-1+3}{2}\right\rangle=\langle-1,1\rangle$

$$
\overrightarrow{O P}=\langle-1-0,1-0\rangle=\langle-1,1\rangle
$$

14) $\theta=\frac{-3 \pi}{4} \quad x=1 \cos \left(\frac{-3 \pi}{4}\right)=1\left(\frac{-1}{\sqrt{2}}\right)=\frac{-1}{\sqrt{2}} \quad y=1 \sin \left(\frac{-3 \pi}{4}\right)=1\left(\frac{-1}{\sqrt{2}}\right)=\frac{-1}{\sqrt{2}}$ vectov: $\langle x, y\rangle=\left\langle\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\rangle$
15) unit vector $\langle 1,0\rangle 135^{\circ}$ counterclockwise: $\theta=\frac{3 \pi}{4}$

$$
x=1 \cos \left(\frac{3 \pi}{4}\right)=\frac{-1}{\sqrt{2}} \quad y=1 \sin \left(\frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

vector: $\langle x, y\rangle=\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
18) $P_{1}(1,2,0), P_{2}(-3,0,5)$

$$
\overrightarrow{P_{1} P_{2}}=(-3-1) \vec{i}+(0-2) \vec{j}+(5-0) \vec{k}=-4 \vec{l}-2 \vec{j}+5 \vec{k}
$$

20) $A(1,0,3), B(-1,4,5)$

$$
\overrightarrow{A B}=(-1-1) \vec{i}+(4-0) \vec{j}+(5-3) \vec{k}=-2 \vec{i}+4 \vec{j}+2 \vec{k}
$$

22) $\vec{\mu}=\langle-1,0,2\rangle, \vec{v}=\langle 1,1,1\rangle$

$$
\begin{aligned}
-2 \vec{u}+3 \vec{v} & =-2\langle-1,0,2\rangle+3\langle 1,1,1\rangle=\langle 2,0,-4\rangle+\langle 3,3,3\rangle \\
& =\langle 2+3,0+3,-4+3\rangle=\langle 5,3,-1\rangle=5 \vec{i}+3 \vec{j}-\vec{k}
\end{aligned}
$$

26) $9 \vec{i}-2 \vec{j}+6 \vec{k}$
length: $|9 \vec{i}-2 \vec{j}+6 \vec{k}|=\sqrt{(9)^{2}+(-2)^{2}+(6)^{2}}=\sqrt{81+4+36}=\sqrt{121}=11$
direction: $\frac{9 \vec{i}-2 \vec{j}+6 \vec{k}}{11}=\frac{9}{11} \vec{i}-\frac{2}{11} \vec{j}+\frac{6}{11} k$

$$
9 \vec{i}-2 \vec{j}+6 \vec{k}=11\left(\frac{9}{11} \vec{i}-\frac{2}{11} \vec{j}+\frac{6}{11} \vec{k}\right)
$$

28) $\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j}$
length: $\left|\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j}\right|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}}=\sqrt{\frac{9}{25}+\frac{16}{25}}=\sqrt{\frac{25}{25}}=\sqrt{1}=1$
direction: $\frac{\frac{3}{5}}{1} \vec{i}+\frac{\frac{4}{5}}{1} \vec{j}=\frac{3}{5} \vec{l}+\frac{4}{5} \vec{j}$

$$
\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j}=1\left(\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j}\right)
$$

30) $\frac{\vec{i}}{\sqrt{3}}+\frac{\vec{i}}{\sqrt{3}}+\frac{\vec{k}}{\sqrt{3}}$
length: $\left|\frac{\vec{l}}{\sqrt{3}}+\frac{\vec{i}}{\sqrt{3}}+\frac{\vec{t}}{\sqrt{3}}\right|=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=\sqrt{\frac{3}{3}}=1$
direction: $\frac{\frac{1}{\sqrt{3}}}{1} \vec{i}+\frac{\frac{1}{\sqrt{3}}}{1} \vec{j}+\frac{\frac{1}{\sqrt{3}}}{1} \vec{k}=\frac{1}{\sqrt{3}} \vec{i}+\frac{1}{\sqrt{3}} \vec{j}+\frac{1}{\sqrt{3}} \vec{k}$

$$
\frac{\vec{i}}{\sqrt{3}}+\frac{\vec{i}}{\sqrt{3}}+\frac{\vec{k}}{\sqrt{3}}=1\left(\frac{1}{\sqrt{3}} \vec{i}+\frac{1}{\sqrt{3}} \vec{j}+\frac{1}{\sqrt{3}} \vec{k}\right)
$$

32)

a) $7(-\vec{j})=-7 \vec{j}$
b) $\sqrt{2}\left(\frac{-3}{5} \vec{i}-\frac{4}{5} \vec{k}\right)=\frac{-3 \sqrt{2}}{5} \vec{i}-\frac{4 \sqrt{2}}{5} \vec{k}$
c) $\frac{13}{12}\left(\frac{3}{13} \vec{l}-\frac{4}{13} \vec{j}-\frac{12}{13} \vec{k}\right)=\frac{1}{4} \vec{i}-\frac{1}{3} \vec{j}-\vec{k}$
d) $a\left(\frac{1}{\sqrt{2}} \vec{i}+\frac{1}{\sqrt{3}} \vec{j}-\frac{1}{\sqrt{6}} \vec{k}\right)=\frac{a}{\sqrt{2}} \vec{i}+\frac{a}{\sqrt{3}} \vec{j}-\frac{a}{\sqrt{6}} \vec{k}, a>0$
36) $P_{1}(1,4,5), P_{2}(4,-2,7)$

$$
\begin{aligned}
& \overrightarrow{P_{1} P_{2}}=(4-1) \vec{i}+(-2-4) \vec{j}+(7-5) \vec{k}=3 \vec{i}-6 \vec{j}+2 \vec{k} \\
& \left|\vec{P}_{1} \vec{P}_{2}\right|=\sqrt{(3)^{2}+(-6)^{2}+(2)^{2}}=\sqrt{9+36+4}=\sqrt{49}=7
\end{aligned}
$$

direction is $\frac{3}{7} \vec{i}-\frac{6}{7} \vec{j}+\frac{2}{7} \vec{k}$
b) midpoint is $\left(\frac{1+4}{2}, \frac{4+(-2)}{2}, \frac{5+7}{2}\right)=\left(\frac{5}{2}, 1,6\right)$
38) $P_{1}(0,0,0), P_{2}(2,-2,-2)$

$$
\begin{aligned}
& \text { a) } \overrightarrow{P_{1} P_{2}}=(2-0) \vec{i}+(-2-0) \vec{j}+(-2-0) \vec{k}=2 \vec{i}-2 \vec{j}-2 \vec{k} \\
& \left|\overrightarrow{P_{1} P_{2}}\right|=\sqrt{(2)^{2}+(-2)^{2}+(-2)^{2}}=\sqrt{4+4+4}=\sqrt{4(1+1+1)}=\sqrt{4(3)}=2 \sqrt{3}
\end{aligned}
$$

direction is $\frac{2}{2 \sqrt{3}} \vec{i}-\frac{2}{2 \sqrt{3}} \vec{j}-\frac{2}{2 \sqrt{3}} k=\frac{1}{\sqrt{3}} \vec{i}-\frac{1}{\sqrt{3}} \vec{j}-\frac{1}{\sqrt{3}} \vec{k}$
b) midpoint is $\left(\frac{2+0}{2}, \frac{-2+0}{2}, \frac{-2+0}{2}\right)=(1,-1,-1)$
42) $\vec{u}=\vec{i}-2 \vec{j}, \vec{v}=2 \vec{i}+3 \vec{j}, \vec{w}=\vec{i}+\vec{j}$ $\vec{\mu}=\vec{\mu}_{1}+\vec{\mu}_{2}$ where $\vec{\mu}_{1}$ is $\|$ to \vec{v} and $\vec{\mu}_{2}$ is 11 to \vec{w} since $\vec{\mu}_{1}$ is 11 to $\vec{v}: \vec{\mu}_{1}=a(2 \vec{i}+3 \vec{j})=2 a \vec{i}+3 a \vec{j}$ $\vec{\mu}_{2}$ is 11 to $\vec{w}: \vec{u}_{2}=b(\vec{i}+\vec{j})=b \vec{i}+b \vec{j}$

$$
\vec{i}-2 \vec{j}=\vec{\mu}=\vec{\mu}_{1}+\vec{\mu}_{2}=2 a \vec{i}+3 a \vec{j}+b \vec{i}+b \vec{j}
$$

$$
\text { so } \left.\begin{array}{rl}
\vec{i}=2 a \vec{i}+b \vec{i} \Rightarrow 1=2 a+b \Rightarrow b=1-2 a \\
-2 \vec{j}=3 a \vec{j}+b \vec{j} \Rightarrow-2=3 a+b
\end{array}\right\} \begin{aligned}
& -2=3 a+(1-2 a) \\
& -2=a+1 \quad b=1-2(-3)=7 \\
& -3=a
\end{aligned}
$$

$$
\vec{\mu}_{1}=2(-3) \vec{i}+3(-3) \vec{j}=-6 \vec{i}-9 \vec{j} \quad \vec{u}_{2}=(7) \vec{i}+(7) \vec{j}=7 \vec{i}+7 \vec{j}
$$

