Definition

If x and y are given as functions

$$
x=f(t) \quad y=g(t),
$$

over an interval I of t-values, then the set of points $(x, y)=(f(t)), g(t))$ defined by these equations is a parametric curve. The equations are parametric equations for the curve.
2) $x=-\sqrt{t}, y=t, t \geq 0$

t	x	y
0	0	0
1	-1	1
4	-2	4

4) $x=3-3 t, y=2 t, 0 \leq t \leq 1$

t	x	y
0	3	0
$\frac{1}{2}$	$\frac{3}{2}$	1
1	0	2

$$
\begin{aligned}
& x=3-3 t \\
& 3 t=3-x \\
& t=1-\frac{x}{3} \\
& y=2\left(1-\frac{x}{3}\right)=2-\frac{2}{3} x, 0 \leq x \leq 3
\end{aligned}
$$

6) $x=\cos (\pi-t), y=\sin (\pi-t), 0 \leq t \leq \pi$

t	x	y
0	-1	0
$\frac{\pi}{2}$	0	1
π	1	0

$$
\begin{aligned}
& (\cos (\pi-t))^{2}+(\sin (\pi-t))^{2}=1^{2} \\
& \cos ^{2}(\pi-t)+\sin ^{2}(\pi-t)=1 \\
& x^{2}+y^{2}=1, y \geq 0 \\
& y^{2}=1-x^{2} \\
& y= \pm \sqrt{1-x^{2}} \Rightarrow y=+\sqrt{1-x^{2}}
\end{aligned}
$$

8) $x=4 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi$

t	x	y
0	0	5
$\frac{\gamma}{2}$	4	0
π	0	-5
$\frac{3 \pi}{2}$	-4	0
2π	0	5

$x=4 \sin t \quad y=5 \cos t$
$\frac{x}{4}=\sin t \quad \frac{y}{5}=\cos t$
$\sin ^{2} t+\cos ^{2} t=1$
$\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{5}\right)^{2}=1$
$\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
10) $x=1+\sin t, y=\cos t-2,0 \leq t \leq \pi$

t	x	y
0	1	-1
$\frac{\pi}{2}$	2	-2
π	1	-3

$\underbrace{t=0}_{t=\pi}$

$$
\begin{aligned}
& x=1+\sin t \quad y=\cos t-2 \\
& x-1=\sin t \quad y+2=\cos t \\
& \sin ^{2} t+\cos ^{2} t=1 \\
& (x-1)^{2}+(y+2)^{2}=1, \quad 1 \leq x \leq 2 \\
& (y+2)^{2}=1-(x-1)^{2} \\
& y+2= \pm \sqrt{1-(x-1)^{2}} \\
& y=-2 \pm \sqrt{1-(x-1)^{2}} \Rightarrow y=-2+\sqrt{1-(x-1)^{2}}
\end{aligned}
$$

$$
\begin{gathered}
x=\frac{t}{t-1} \\
x(t-1)=t \\
x t-x=t \\
x t-t=x \\
t(x-1)=x \\
t=\frac{x}{x-1} \\
y=\left(\frac{\left(\frac{x}{x-1}\right)-2}{\left(\frac{x}{x-1}\right)+1}\right)\left(\frac{x-1}{1}\right)=\frac{x-2(x-1)}{x+1(x-1)} \\
y=\frac{x-2 x+2}{x+x-1}=\frac{-x+2}{2 x+1}=\frac{2-x}{2 x+1}
\end{gathered}
$$

14) $x=\sqrt{t+1}, y=\sqrt{t}, t \geq 0$

t	x	y
0	1	0
2	$\sqrt{3}$	$\sqrt{2}$
3	2	$\sqrt{3}$
8	3	$\sqrt{8}=2 \sqrt{2}$

$$
\begin{aligned}
& y=\sqrt{t} \\
& y^{2}=t \\
& x=\sqrt{y^{2}+1}, y \geq 0 \\
& \text { on } \\
& x=\sqrt{t+1} \\
& x^{2}=t+1 \\
& x^{2}-1=t \\
& y=\sqrt{x^{2}-1}, x \geq 1
\end{aligned}
$$

16) $x=-\sec t, y=\tan t, \frac{-\pi}{2}<t<\frac{\pi}{2}$

t	x	y
$\frac{-\pi}{2}$	undefined undefined	
0	-1	0
$\frac{-\infty}{2}$	undefined	undefined
$+\infty$		

$$
\begin{aligned}
& (-\sec t)^{2}-(\tan t)^{2}=1 \\
& \sec ^{2} t-\tan ^{2} t=1 \\
& x^{2}-y^{2}=1, x<0 \\
& \text { or } \\
& x^{2}=y^{2}+1 \\
& x= \pm \sqrt{y^{2}+1} \\
& x=-\sqrt{y^{2}+1}
\end{aligned}
$$

18) $x=2 \sinh t, y=2 \cosh t,-\infty<t<\infty$

t	x	y
-1	$2\left(\frac{e^{-1}-e^{\prime}}{2}\right)$	$2\left(\frac{e^{-1}+e^{\prime}}{2}\right)$
0	0	$2\left(\frac{e^{0}+e^{-0}}{2}\right)=2$
1	$2\left(\frac{e^{\prime}-e^{-1}}{2}\right)$	$2\left(\frac{e^{\prime}+e^{-t}}{2}\right)$

$\cosh ^{2} t-\sinh ^{2} t=1$
$x=2 \sinh t y=2 \cos t$
$\frac{x}{2}=\sinh t \quad \frac{y}{2}=\cosh t$

$$
\begin{aligned}
& \left(\frac{y}{2}\right)^{2}-\left(\frac{x}{2}\right)^{2}=1 \\
& \frac{y^{2}}{4}-\frac{x^{2}}{4}=1 \\
& y^{2}-x^{2}=4, y>0 \\
& y^{2}=x^{2}+4 \\
& y=\sqrt[5]{x^{2}+4} \Rightarrow y=\sqrt{x^{2}+4}
\end{aligned}
$$

20) $x=\cos t, y=2 \sin t$
both x, y have period of 2π by the amplitude of x is 1 and of y is 2 ; so it will produce a graph of an ellipse. Picture B
21) $x=\sqrt{t}, y=\sqrt{t} \cos t$
both x, y are defined for $[0, \infty)$; while x will be all positive, y will be going from positive, to negative, to positive, to negative thus oscillating while increasing by factor of \sqrt{t}. Picture A.
22) $x=\cos t, y=\sin 3 t$
x has period of $2 x$ and y hos period of $\frac{2 \pi}{3}$. This means that y will oscillate 3 times quiches than x. Picture F
23) $x=\rho(t)=+t^{3} \quad y=g(t)=-t^{3}$
x increases and y decreases for $-\infty<t<\infty$ also note the amount of change is small near $t=0$ for both x and y while the quantity is identical except for the sign (positive b negative)

the arrow head marked in red shows the pace of the movement
24) $x=f(t)$ a 4 th degree polynomial opening upward so the value of x; decreases to -4 , increases to 0 , decreases to -4 , increases
$y=g(t)=t$ which is an increasing linear function here are some values as table

t	x	y
-2	0	-2
0	0	0
2	0	2

30) starts $(a, 0)$ ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
a) once clockwise:

$$
x=a \cos t, y=-b \sin t
$$

$$
0 \leq t \leq 2 \pi
$$

$$
\begin{aligned}
& \left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1 \quad(\cos t)^{2}+(\sin t)^{2}=1 \\
& \frac{x}{a}=\cos t \quad \frac{y}{b}=\sin t \\
& x=a \cos t \quad y=b \sin t
\end{aligned}
$$

b) Once counter clockwise:

$$
\begin{gathered}
x=a \cos t, y=b \sin t \\
0 \leq t \leq 2 \pi
\end{gathered}
$$

c) twice clockwise: $x=a \cos t, y=-b \sin t, 0 \leq t \leq 4 \pi$
d) Twice counter clockwise: $x=a \cos t, y=b \sin t, 0 \leq t \leq 4 \pi$
32) line segment with endpoints $(-1,3)$ and $(3,-2)$ start with point $(-1,3)$ and create the parametric equations $x=-1+a t$ and $y=3+b-t$. This equation will have the point $(-1,3)$ when $t=0$.
Now we need to find a and b so it ends at point $(3,-2)$ and to make our calculation simpler, we pick $t=1$.

$$
\begin{array}{lll}
x=-1+a t & y=3+b t \\
(3)=-1+a(1) & (-2)=3+b-(1) \\
3=-1+a & -2=3+b \\
4=a & -5=b & \text { so } x=-1+4 t \\
& y=3-5 t \\
& 0 \leq t \leq 1
\end{array}
$$

34) the left half of the parabola $y=x^{2}+2 x$

$$
y=x^{2}+2 x=x^{2}+2 x+1-1=(x+1)^{2}-1
$$

so the vertex is $(-1,-1)$ and $x \leq-1$
since thin is a parabola opening upward, the value of x can increase linearly and y must be quadratic so $x=t$ and using substitution we get $y=(t+1)^{2}-1=t^{2}+2 t$ so $x=t, y=t^{2}+2 t, t \leq-1$
38) $y=x^{2}(0,0) \rightarrow(3,9) \rightarrow(0,0) \rightarrow(-3,9) \rightarrow(0,0) \rightarrow(3,9) \rightarrow \ldots$
we need to make our path ocillate, so we must use sins or cost. Since we are starting form $(0,0)$ and x will vary $[-3,3]$ while y will vary $[0,9]$
let $x=3 \sin t$ and $y=(3 \sin t)^{2}=9 \sin ^{2} t \quad 0 \leq t<\infty$
42)

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \\
& x \tan \theta=y
\end{aligned}
$$

$$
\begin{array}{ll}
y=\sqrt{x} & y=\sqrt{x} \\
y^{2}=x & y=\sqrt{\cot ^{2} \theta} \\
(x \tan \theta)^{2}=x & y=\cot \theta \\
x^{2} \tan ^{2} \theta=x & \text { so } \\
\frac{x^{2}}{x}=\frac{1}{\tan ^{2} \theta} & y=\cot ^{2} \theta \\
x=\cot \theta \\
x=\cot ^{2} \theta & 0<\theta \leq \frac{\pi}{2}
\end{array}
$$

