Theorem 23 - Taylor's Theorem

If f and its first n derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on the closed interval between a and b, and $f^{(n)}$ is differentiable on the open interval between a and b, then there exists a number c between a and b such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n}+\frac{f^{(n+1)}(a)}{(n+1)!}(b-a)^{n+1} .
$$

Taylor's Formula

Let f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I,

$$
\begin{equation*}
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x . \tag{2}
\end{equation*}
$$

If $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in I$, we say that the Taylor series generated by f at $x=a$ converges to f on I, and we write

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
$$

Theorem 24 - The Remainder Estimation Theorem

If there is a positive constant M such that $\left|f^{(n+1)}(t)\right| \leq M$ for all t between x and a, inclusive, then the remainder term $R_{n}(x)$ in Taylor's Theorem satisfies the inequality

$$
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}
$$

If this inequality hold for every n and the other conditions of Taylor's Theorem are satisfied by f, then the series converges to $f(x)$.

MATH 21200 section 10.9
2)

$$
\begin{aligned}
& e^{-\frac{x}{2}} \quad e^{x}=1+x+\frac{x^{2}}{2!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& e^{-\frac{x}{2}}=1+\left(\frac{(-x}{2}\right)+\frac{\left(-\frac{x}{2}\right)^{2}}{2!}+\frac{\left(\frac{-x}{2}\right)^{3}}{3!}+\cdots=1+\frac{(-1)^{1}(x)^{1}}{(21)!}+\frac{(-1)^{2}(x)^{2}}{\left(2^{2}\right) 2!}+\frac{(-1)^{3}(x)^{3}}{\left(2^{3}\right) 3!}+\cdots \\
&=\sum_{x=0}^{\infty} \frac{(-1)^{n} x^{n}}{2^{x} x!}
\end{aligned}
$$

$\overline{4)} \overline{\sin \left(\frac{x_{x}}{2}\right)} \quad \overline{\sin x}=x-\overline{\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots}=\overline{\sum_{n=0}^{\infty} \frac{(-1) x^{2 n+1}}{(2 n+1)!}}$

$$
\begin{aligned}
\sin \left(\frac{\pi x}{2}\right) & =\left(\frac{\pi x}{2}\right)-\frac{\left(\frac{\pi x}{2}\right)^{3}}{3!}+\frac{\left(\frac{\pi x}{2}\right)^{6}}{5!}+\cdots \\
& =\frac{(-1)^{0}\left(\pi^{\prime}\right) x^{\prime}}{\left(2^{1}\right) 1!}+\frac{(-1)^{1}\left(\pi^{3}\right) x^{3}}{\left(2^{3}\right) 3!}+\frac{(-1)^{2}\left(\pi^{5}\right) x^{5}}{\left(2^{5}\right) 5!}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\pi^{2 n+1}\right) x^{2 n+1}}{\left(2^{2 n+1}\right)(2 n+1)!}
\end{aligned}
$$

6) $\cos \left(\frac{x^{2 / 3}}{\sqrt{2}}\right) \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$

$$
\begin{aligned}
\cos \left(\frac{x^{2 / 3}}{\sqrt{2}}\right) & =1-\frac{\left(\frac{x^{2 / 3}}{\sqrt{2}}\right)^{2}}{2!}+\frac{\left(\frac{x^{2 / 3}}{\sqrt{2}}\right)^{4}}{4!}+\cdots \cdot \\
& =1-\frac{(-1)^{1}\left(x^{2 / 3}\right)^{2}}{(\sqrt{2})^{2} 2!}+\frac{(-1)^{2}\left(x^{2 / 3}\right)^{4}}{(\sqrt{2})^{4} 4!}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2 / 3}\right)^{2 n}}{(\sqrt{2})^{2 n}(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{\frac{4}{3} n}}{\left(2^{n}\right)(2 n)!}
\end{aligned}
$$

8)

$$
\begin{aligned}
& \tan ^{-1}\left(3 x^{4}\right) \quad \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \\
& \begin{aligned}
\tan ^{-1}\left(3 x^{4}\right) & =\left(3 x^{4}\right)-\frac{\left(3 x^{4}\right)^{3}}{3}+\frac{\left(3 x^{4}\right)^{5}}{5} \cdots \\
& =(-1)^{0}\left(33^{1}\right)\left(x^{4}\right)^{1}+\frac{(-1)^{1}\left(3^{3}\right)\left(x^{4}\right)^{3}}{3}+\frac{(-1)^{2}\left(3^{5}\right)\left(x^{4}\right)^{5}}{5}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(3^{2 n+1}\right)\left(x^{4}\right)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(3^{2 n+1}\right) x^{8 n+4}}{2 n+1}
\end{aligned}
\end{aligned}
$$

10) $\frac{1}{2-x} \quad \frac{1}{1-x}=1+x+x^{2}+\cdots=\sum_{n=0}^{\infty} x^{n}$

$$
\begin{aligned}
\frac{1}{2-x} & =\frac{1}{2\left(1-\frac{x}{2}\right)}=\frac{1}{2}\left(\frac{1}{1-\frac{x}{2}}\right)=\frac{1}{2}\left\{1+\left(\frac{x}{2}\right)+\left(\frac{x}{2}\right)^{2}+\cdots\right\} \\
& =\frac{1}{2}+\frac{x}{2^{2}}+\frac{x^{2}}{2^{3}}+\cdots=\frac{x^{0}}{2^{1}}+\frac{x^{1}}{2^{2}}+\frac{x^{2}}{2^{3}}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n+1}}
\end{aligned}
$$

12) $e^{-x^{2}+\ln 5} \quad e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

$$
\begin{aligned}
e^{-x^{2}+\ln 5} & =e^{\left(\ln 5-x^{2}\right)}=\left(e^{\ln 5}\right)\left(e^{-x^{2}}\right)=5 e^{-x^{2}}=5\left\{1+\left(-x^{2}\right)^{1}+\frac{\left(-x^{2}\right)^{2}}{2!}+\frac{\left(-x^{2}\right)^{3}}{3!}+\cdots\right\} \\
& =5\left\{(-1)^{0}\left(x^{2}\right)^{0}+(-1)^{1}\left(x^{2}\right)^{1}+\frac{(-1)^{2}\left(x^{2}\right)^{2}}{2!}+\frac{(-1)^{3}\left(x^{2}\right)^{3}}{3!}+\cdots\right\} \\
& =5 \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{n}}{n!}=5 \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}
\end{aligned}
$$

14) $x^{2} \sin x \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

$$
\begin{aligned}
x^{2} \sin x & =x^{2}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\right)=x^{2}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+3}}{(2 n+1)!}=x^{3}-\frac{x^{5}}{3!}+\frac{x^{7}}{5!}+\cdots
\end{aligned}
$$

16) $\sin x-x+\frac{x^{3}}{3!} \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

$$
\begin{aligned}
\sin x-x+\frac{x^{3}}{3!} & =\left(\sum_{n=0}^{\infty} \frac{(-1)^{\infty} x^{2 n+1}}{(2 n+1)!}\right)-x+\frac{x^{3}}{3!}=\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)-x+\frac{x^{3}}{3!} \\
& =\frac{x^{5}}{5!}-\frac{x^{9}}{7!}+\cdots=\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

18) $x^{2} \cos \left(x^{2}\right)$

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

$$
\begin{aligned}
x^{2} \cos \left(x^{2}\right) & =x^{2}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n}}{(2 x)!}\right)=x^{2}\left(1-\frac{\left.(x)^{2}\right)^{2}}{2!}+\frac{\left(x^{2}\right)^{4}}{4!}-\cdots\right) \\
& =x^{2}-\frac{x^{6}}{2!}+\frac{x^{10}}{4!}-\cdots=(-1)^{0} x^{0+2}+\frac{(-1)^{1} x^{4+2}}{2!}+\frac{(-1)^{2} x^{8+2}}{4!}+\cdots \\
& =\sum_{x=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n}\left(x^{2}\right)}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 x+2}}{(2 n)!}
\end{aligned}
$$

20) $\sin ^{2} x \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$

$$
\begin{aligned}
\sin ^{2} x & =\frac{1}{2}(1-\cos (2 x))=\frac{1}{2}\left(1-\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}\right)\right) \\
& =\frac{1}{2}\left(1-\left(1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots\right)\right)=\frac{1}{2}\left(\frac{\left(2^{2}\right) x^{2}}{2!}-\frac{\left(2^{4}\right) x^{4}}{4!}+\cdots\right) \\
& =\frac{(-1)^{0}\left(2^{2}\right) x^{2}}{(2) 2!}+\frac{(-1)^{1}\left(2^{4}\right) x^{4}}{(2) 4!}+\cdots=\frac{(-1)^{0}\left(2^{1}\right) x^{2}}{2!}+\frac{(-1)^{\prime}\left(2^{3}\right) x^{4}}{4!}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\left(2^{n n-1}\right) x^{2 n}}{(2 n)!} \quad 0 \quad=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\left(2^{2 n-1}\right) x^{2 n}}{(2 n)!}
\end{aligned}
$$

$$
\text { 22) } \begin{aligned}
x \ln (1+2 x) \quad \ln (1+x) & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n} \\
x \ln (1+2 x) & =x\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2 x)^{n}}{n}\right)=x\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\left(2^{n}\right) x^{n}}{n}\right) \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\left(2^{n}\right)\left(x^{n}\right)\left(x^{\prime}\right)}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\left(2^{n}\right) x^{n+1}}{n}
\end{aligned}
$$

24) $\frac{2}{(1-x)^{3}} \quad \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{2}$

$$
\begin{aligned}
& \text { let } l(x)=\frac{1}{1-x}=(1-x)^{-1} \quad \frac{d P}{d x}=\left[-1(1-x)^{-2}(-1)\right]=(1-x)^{-2}=\frac{1}{(1-x)^{2}} \\
& \frac{d^{2} l}{d x^{2}}
\end{aligned}=\left[-2(1-x)^{-3}(-2)\right]=\frac{2}{(1-x)^{3}} \quad \begin{aligned}
\frac{2}{(1-x)^{3}} & =\frac{d^{2}}{d x}\left(\frac{1}{1-x}\right)=\frac{d^{2}}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right)=\frac{d}{d x}\left(\sum_{n=1}^{\infty}(n) x^{n-1}\right) \\
& =\sum_{n=2}^{\infty}(n)(x-1) x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) x^{n}
\end{aligned}
$$

26) $(\sin x)(\cos x) \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1) i}$

$$
\begin{aligned}
\sin x \cos x & =\frac{1}{2} \sin (2 x)=\frac{1}{2}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n+1}}{(2 n+1)!}\right) \\
& =\frac{1}{2}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(2^{2 n+1}\right) x^{2 n+1}}{(2 n+1)!}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(2^{2 n}\right)\left(2^{1}\right) x^{2 n+1}}{2(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(2^{2 x}\right) x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

28) $\cos x-\sin x \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$

$$
\begin{aligned}
\cos x-\sin x & =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\right)-\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\right) \\
& =\sum_{n=0}^{\infty}\left(\frac{(-1)^{n} x^{2 n}}{(2 n)!}-\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 30) } \ln (1+x)-\ln (1-x) \quad \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n} \\
& \ln (1+x)-\ln (1-x)=\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}\right)-\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-x)^{n}}{n}\right) \\
& =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right)-\left((-x)-\frac{(-x)^{2}}{2}+\frac{(-x)^{3}}{3}-\frac{(-x)^{4}}{4}+\cdots\right) \\
& =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)-\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right) \\
& =2 x+\frac{2 x^{3}}{3}+\frac{2 x^{5}}{5}+\cdots=\frac{2 x^{1}}{1}+\frac{2 x^{2+1}}{2+1}+\frac{2 x^{4+1}}{4+1}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{2 x^{2 n+1}}{2 n+1}
\end{aligned}
$$

32) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\cdots \\
\frac{\ln (1+x)}{1-x} & =(\ln (1-x))\left(\frac{1}{1-x}\right)
\end{aligned}
$$

32) continued

$$
\begin{aligned}
\frac{\ln (1+x)}{1-x} & =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right)\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& =x+\frac{1}{2} x^{2}+\frac{5}{6} x^{3}+\frac{7}{12} x^{4}+\cdots
\end{aligned}
$$

34) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\cos ^{2} x \sin x & =\cos x(\sin x \cos x)=\cos x\left(\frac{1}{2} \sin (2 x)\right) \\
=\frac{1}{2} \cos x \sin (2 x) & =\frac{1}{2}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)\left((2 x)-\frac{(2 x)^{3}}{3!}+\frac{(2 x)^{5}}{5!}-\frac{(2 x)^{7}}{7!}+\cdots\right) \\
& =x-\frac{7}{6} x^{3}+\frac{61}{120} x^{5}-\frac{1247}{5040} x^{7}+\cdots
\end{aligned}
$$

36) $\sin x=x-\frac{x^{3}}{3!}+\overline{\frac{x^{5}}{5!}}-\frac{x^{7}}{7!}+\cdots \quad \tan ^{" 1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$

$$
\begin{aligned}
& \sin \left(\tan ^{-1} x\right)=\sin \left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots\right) \\
& =\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots\right)-\frac{1}{3!}\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots\right)^{3} \\
& \quad+\frac{1}{5!}\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots\right)-\frac{1}{7!}\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots\right)+\cdots \\
& =x-\frac{1}{2} x^{3}+\frac{3}{8} x^{5}-\frac{5}{16} x^{7}+\cdots
\end{aligned}
$$

38) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$

$$
\begin{aligned}
& \cos \sqrt{x}+\ln (\cos x)=\left(1-\frac{(\sqrt{x})^{2}}{2!}+\frac{(\sqrt{x})^{4}}{4!}-\frac{(\sqrt{x})^{6}}{6!}+\cdots\right)+\ln \left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right) \\
& \begin{array}{r}
=\left(1-\frac{x}{2!}+\frac{x^{2}}{3!}-\frac{x^{3}}{6!}+\cdots\right)+\left\{\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)-\frac{1}{2}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)^{2}\right. \\
\left.\quad+\frac{1}{3}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)^{3}-\frac{1}{4}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)^{4}+\cdots\right\} \\
=1+\sum_{k=1}^{\infty} \frac{(-1)^{61}}{6}-\frac{1}{2} x-\frac{11}{24} x^{2}-\frac{1}{720} x^{3}-\cdots=1-\frac{1}{2} x-\frac{11}{24} x^{2}-\frac{1}{720} x^{3}-\cdots
\end{array}
\end{aligned}
$$

40) $P_{4}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}$
since $n=4, f^{(5)}(x)=e^{x}$ and $\left|\rho^{(5)}(x)\right| \leq M$ on $\left[0, \frac{1}{2}\right]$
4

$$
\left|e^{x}\right| \leq e^{\frac{1}{2}}=\sqrt{e} \text { on }\left[0, \frac{1}{2}\right]
$$

4
5teterm let $M=2.7$
then $\left|R_{4}(0.5)\right| \leq M \frac{|(0.5)-(0)|^{5}}{5!}=(2.7) \frac{(0.5)^{5}}{5!}=7.03 \times 10^{-4}$

$$
\ln 02 \leq 7.03 \times 10^{-4}
$$

