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Theorem 23 - Taylor’s Theorem 
 
If f  and its first n derivatives ( ), , , nf f f′ ′′…  are continuous on the closed interval between  and , and a b ( )nf  
is differentiable on the open interval between  and b , then there exists a number c  between a  and b  such a
that 
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Taylor’s Formula 
 
Let f  has derivatives of all orders in an open interval I  containing , then for each positive integer  and for a n
each x  in I , 
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where 

  
( 1)

1( )( ) ( )
( 1)!

n
n

n
f cR x x
n

+
+= −

+
a   for some c  between  and a x .   (2) 

 
If  as  for all ( ) 0nR x → n →∞ x I∈ , we say that the Taylor series generated by f  at x a=  converges to f  on 
I , and we write 
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Theorem 24 - The Remainder Estimation Theorem 
 
If there is a positive constant M  such that ( 1) ( )nf t M+ ≤  for all  between t x  and , inclusive, then the a
remainder term ( )nR x  in Taylor’s Theorem satisfies the inequality 
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If this inequality hold for every  and the other conditions of Taylor’s Theorem are satisfied by n f , then the 
series converges to ( )f x . 
 
 
 
















