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Definition 
A power series about  is a series of the form 0x =
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A power series about x a=  is a series of the form 
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in which the center  and the coefficients  are constants. a 0 1 2, , , , ,nc c c c… …
 
Theorem 18 - The Convergence Theorem for Power Series 
If the power series 
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converges at , then it converges absolutely for all 0x c= ≠ x  with x c< .  If the series diverges at x d= , then 

it diverges for all x  with x d> . 
 
Corollary to Theorem 18 
The convergence of the series ( )n

nc x a−∑  is described by one of the following three cases: 
 
1. There is a positive number R  such that the series diverges for x  with x a R− >  but converges 

absolutely for x  with x a R− < .  The series may or may not converge at either of the endpoints 
x a R= −  and x a R= + . 

 
2. The series converges absolutely for every x  ( R = ∞ ). 
 
3. The series converges at x a=  and diverges elsewhere ( 0R = ). 
 
How to Test a Power Series for Convergence 
1. Use the Ratio Test (or Root Test) to find the largest open interval where the series converges absolutely. 
  orx a R a R x a R− < − < < + . 
 
2. If R  is finite, test for convergence or divergence at each endpoint, as in Examples 3a and b (see pages 

626 to 628).  Use a Comparison Test, the Integral Test, or the Alternating Series Test. 
 
3. If R  is finite, the series diverges for x a R− >  (it does not even converge conditionally) because the 

nth term does not approach zero for those values of x . 
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Theorem 19 - Series Multiplication for Power Series 
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Theorem 20 

If  converges absolutely for 
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absolutely on the set of points x  where ( )f x R< . 
 
Theorem 21 - Term-by-Term Differentiation 

If  has radius of convergence , it defines a function 
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This function f  has derivatives of all orders inside the interval, and we obtain the derivatives by differentiating 
the original series term by term: 
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and so on.  Each of these derived series converges at every point of the interval a R . x a R− < < +
 
Theorem 22 - Term-by-Term Integration 
Suppose that  
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