Definition

A power series about $x=0$ is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\cdots \tag{1}
\end{equation*}
$$

A power series about $x=a$ is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots \tag{2}
\end{equation*}
$$

in which the center a and the coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \ldots$ are constants.

Theorem 18 - The Convergence Theorem for Power Series

If the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
$$

converges at $x=c \neq 0$, then it converges absolutely for all x with $|x|<|c|$. If the series diverges at $x=d$, then it diverges for all x with $|x|>|d|$.

Corollary to Theorem 18

The convergence of the series $\sum c_{n}(x-a)^{n}$ is described by one of the following three cases:

1. There is a positive number R such that the series diverges for x with $|x-a|>R$ but converges absolutely for x with $|x-a|<R$. The series may or may not converge at either of the endpoints $x=a-R$ and $x=a+R$.
2. The series converges absolutely for every $x(R=\infty)$.
3. The series converges at $x=a$ and diverges elsewhere $(R=0)$.

How to Test a Power Series for Convergence

1. Use the Ratio Test (or Root Test) to find the largest open interval where the series converges absolutely.

$$
|x-a|<R \quad \text { or } \quad a-R<x<a+R .
$$

2. If R is finite, test for convergence or divergence at each endpoint, as in Examples 3a and b (see pages 626 to 628). Use a Comparison Test, the Integral Test, or the Alternating Series Test.
3. If R is finite, the series diverges for $|x-a|>R$ (it does not even converge conditionally) because the nth term does not approach zero for those values of x.

Theorem 19 - Series Multiplication for Power Series
If $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ converge absolutely for $|x|<R$, and

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+\cdots+a_{n-1} b_{1}+a_{n} b_{0}=\sum_{k=0}^{n} a_{k} b_{n-k},
$$

then $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely to $A(x) B(x)$ for $|x|<R$:

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Theorem 20
If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely for $|x|<R$ and f is a continuous function, then $\sum_{n=0}^{\infty} a_{n}(f(x))^{n}$ converges absolutely on the set of points x where $|f(x)|<R$.

Theorem 21 - Term-by-Term Differentiation
If $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, it defines a function

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad \text { on the interval } \quad a-R<x<a+R .
$$

This function f has derivatives of all orders inside the interval, and we obtain the derivatives by differentiating the original series term by term:

$$
\begin{gathered}
f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
f^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) c_{n}(x-a)^{n-2}
\end{gathered}
$$

and so on. Each of these derived series converges at every point of the interval $a-R<x<a+R$.

Theorem 22 - Term-by-Term Integration

Suppose that

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

converges for $a-R<x<a+R(R>0)$. Then

$$
\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

converges for $a-R<x<a+R$ and

$$
\int f(x) d x=\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}+C
$$

for $a-R<x<a+R$.

MATH 21200 section 10.7

$$
\begin{aligned}
& \text { 2) } \sum_{n=0}^{\infty}(x+5)^{n} \quad\left|a_{n}\right|=\mu_{n}=(x+5)^{n} \quad \mu_{n+1}=(x+5)^{n+1} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{(x+5)^{n+1}}{(x+5)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left((x+5)^{n}\right)\left((x+5)^{\prime}\right)}{(x+5)^{n}}\right|=\lim _{n \rightarrow \infty}|x+5|=|x+5| \\
& |x+5|<1 \quad \text { when } x=-6, \sum_{n=0}^{\infty}((-6)+5)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \text { which is }
\end{aligned}
$$

$$
-1<x+5<1
$$

$$
-6<x<-4
$$ an alternating divergent series when $x=-4, \sum_{n=0}^{\infty}((-4)+5)^{n}=\sum_{n=0}^{\infty}(1)^{n}$ which is

$$
|x|<1
$$ a divergent series

a) the radius is I
the interval of convergence is $-6<x<-4$
b) the interval of absolute convergence is $-6<x<-4$
c) there are no values for which the series converges conditionally

$$
\begin{aligned}
& \text { 4) } \sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n} \quad\left|a_{n}\right|=\mu_{n}=\frac{(3 x-2)^{n}}{n} \quad \mu_{n+1}=\frac{(3 x-2)^{n+1}}{n+1} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{\frac{(3 x-2)^{n+1}}{n+1}}{\frac{(3 x-2)^{n}}{n}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{(3 x-2)^{n+1}}{n+1}\right)\left(\frac{n}{(3 x-2)^{n}}\right)\right| \\
& \left.1>\lim _{n \rightarrow \infty}\left|\left(\frac{\left((3 x-2)^{n}\right)\left((3 x-2)^{\prime}\right)}{n+1}\right)\right|\left(\frac{n}{(3 x-2)^{n}}\right)\left|=\lim _{n \rightarrow \infty}\right| \frac{(3 x-2) n}{n+1} \right\rvert\, \\
& 1>\lim _{n \rightarrow \infty}|3 x-2|\left|\frac{n}{n+1}\right|=|3 x-2|\left|\lim _{n \rightarrow \infty} \frac{n}{n+1}\right|=|3 x-2|\left|\lim _{n \rightarrow \infty} \frac{\frac{n}{n}}{\frac{n}{n}+\frac{1}{n}}\right| \\
& 1>|3 x-2|\left|\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}\right|=|3 x-2|\left|\frac{1}{1+0}\right|=|3 x-2|
\end{aligned}
$$

$$
|3 x-2|<1
$$

when $x=\frac{1}{3}, \sum_{n=1}^{\infty} \frac{\left(3\left(\frac{1}{3}\right)-2\right)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ which is

$$
-1<3 x-2<1
$$ the alternating harmonic series and is

$$
1<3 x<3
$$ conditionally convergent.

$$
\frac{1}{3}<x<1
$$

$$
|3 x|<1
$$

when $x=1, \sum_{n=1}^{\infty} \frac{(3(1)-2)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(1)^{n}}{n}$ which is

$$
|x|<\frac{1}{3}
$$ the divergent harmonic series.

a) the radius is $\frac{1}{3}$ the interval of convergence is $\frac{1}{3} \leq x<1$
b) the interval of absolute convergence is $\frac{1}{3}<x<1$
c) the series converges conditionally at $x=\frac{1}{3}$
8) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n} \quad\left|a_{n}\right|=\mu_{n}=\frac{(x+2)^{n}}{n} \quad u_{n+1}=\frac{(x+2)^{n+1}}{n+1}$

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|<1
$$

$$
1>\lim _{n \rightarrow \infty}\left|\frac{\frac{(x+2)^{n+1}}{n+1}}{\frac{(x+2)^{n}}{n}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{(x+2)^{n+1}}{n+1}\right)\left(\frac{n}{(x+2)^{n}}\right)\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{\left((x+2)^{n}\right)\left((x+2)^{1}\right)}{n+1}\right)\left(\frac{n}{(x+2)^{n}}\right)\right|
$$

$$
\left.\left|>\lim _{n \rightarrow \infty}\right| \frac{(x+2) n}{n+1}\left|=\lim _{n \rightarrow \infty}\right| x+2| | \frac{n}{n+1}|=|x+2|| \lim _{n \rightarrow \infty} \frac{n}{n+1}|=|x+2|| \lim _{n \rightarrow \infty} \frac{\frac{n}{n}}{\frac{n}{n}+\frac{1}{n}} \right\rvert\,
$$

$$
1>|x+2|\left|\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}\right|=|x+2|\left|\frac{1}{1+0}\right|=|x+2|
$$

$|x+2|<1 \quad$ When $x=-3, \sum_{n=1}^{\infty} \frac{(-1)^{n}((-3)+2)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(1)^{n}}{n}$
$-1<x+2<1 \quad$ which is the divergent harmonic series
$-3<x<-1$$\quad \sum_{n}^{\infty}(-1)^{n}((-1)+2)^{n} \sum^{\infty}(-1)^{n}(1)^{n} \sum^{\infty}(-1)^{n}$ $-3<x<-1$
$|x|<1$$\quad$ when $x=-1, \sum_{n=1}^{\infty} \frac{(-1)^{n}((-1)+2)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ $|x|<1$ which is the alternating harmonic series and is conditionally comergent.
a) the radius is I
the interval of convergence is $-3<x \leq-1$
b) the interval of absolute comergence is $-3<x<-1$
c) the series converge conditionally at $x=-1$
$|x-1|<1 \quad$ when $x=0, \sum_{n=1}^{\infty} \frac{(10)-1)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ which is an $-1<x-1<1 \quad$ alternating p-series and is conditionally
$0<x<2$ $|x|<1$ comergent.
when $x=2, \sum_{n=1}^{\infty} \frac{((2)-1)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(1)^{n}}{\sqrt{n}}$ which is a divergent P-series because $\rho=\frac{1}{2} \leq 1$
a) the radius is 1
the interval of convergence is $0 \leq x<2$
b) the interval of absolute comergence is $0<x<2$
c) the shies comerges conditionally at $x=0$.

$$
\begin{aligned}
& \text { 12) } \sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n!} \quad\left|a_{n}\right|=\mu_{n}=\frac{3^{n} x^{n}}{n!} \quad \mu_{n+1}=\frac{3^{n+1} x^{n+1}}{(x+1)!} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& \left.1>\lim _{n \rightarrow \infty}\left|\frac{\frac{3^{n+1} x^{n+1}}{(n+1)!}}{\frac{3^{n} x^{n}}{n!}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{\left(3^{n+1} x^{n+1}\right.}{(n+1)!}\right)\left(\frac{n!}{3^{n} x}\right)\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{\left(3^{n}\right)\left(3^{\prime}\right)\left(x^{2}\right)\left(x^{2}\right)}{(n+1) n!}\right)\right|\left(\frac{n^{n}!}{3^{n} x^{n}}\right) \right\rvert\, \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{3 x}{n+1}\right|=\lim _{n \rightarrow \infty}|3 x|\left|\frac{1}{n+1}\right|=|3 x|\left|\lim _{n \rightarrow \infty} \frac{1}{n+1}\right|=|3 x||0|=0
\end{aligned}
$$

$0<1$ for all values of x
a) the radius is ∞ the series converges for all $x(-\infty, \infty)$
b) the series converges absolutely for all $(-\infty, \infty)$
c) there are no values for which the series converge conditionally
14) $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n^{3} 3^{n}} \quad\left|a_{n}\right|=\mu_{n}=\frac{(x-1)^{n}}{n^{3} 3^{n}} \quad \mu_{n+1}=\frac{(x-1)^{n+1}}{(n+1)^{3} 3^{n+1}}$
$|x-1|<3 \quad$ which is an alternating p-series and is $-3<x-1<3 \quad$ absolutely convergent because $\varphi=3>1$ $\frac{1}{3}|x|<1 \quad$ when $x=4, \sum_{n=1}^{\infty} \frac{((4)-1)^{n}}{n^{3} 3^{n}}=\sum_{n=1}^{\infty} \frac{(3)^{n}}{n^{3} 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
a) the radius is 3
which is an absolutely comergent P-series
the interval of convergence is $-2 \leq x \leq 4$
b) the interval of absolute convergence is $-2 \leq x \leq 4$
c) there are no values for which the series converge conditionally

$$
\begin{aligned}
& \text { 16) } \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{\sqrt{n}+3} \quad\left|a_{n}\right|=\mu_{n}=\frac{x^{n+1}}{\sqrt{n}+3} \quad \mu_{n+1}=\frac{x^{n+2}}{\sqrt{n+1}+3} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& \left.1>\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+2}}{\sqrt{n+1}+3}}{\frac{x^{n+1}}{\sqrt{n}+3}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{x^{n+2}}{(\sqrt{n+1}+3}\right)\right| \frac{\sqrt{n}+3}{x^{n+1}}\right) \left.\left|=\lim _{n \rightarrow \infty}\right|\left(\frac{(x)\left(x^{n+1}\right)}{\sqrt{n+1}+3}\right)\left(\frac{\sqrt{n}+3}{x^{n+1}}\right) \right\rvert\, \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{x(\sqrt{n}+3)}{\sqrt{n+1}+3}\right|=\lim _{n \rightarrow \infty}|x|\left|\frac{\sqrt{n}+3}{\sqrt{n+1}+3}\right|=|x|\left|\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n}}{\sqrt{n}}+\frac{3}{\sqrt{n}}}{\frac{\sqrt{n+1}}{\sqrt{n}}+\frac{3}{\sqrt{n}}}\right| \\
& 1>|x|\left|\lim _{n \rightarrow \infty} \frac{1+\frac{3}{\sqrt{n}}}{\sqrt{\frac{n}{n}+\frac{1}{n}}+\frac{3}{\sqrt{n}}}\right|=|x|\left|\lim _{n \rightarrow \infty} \frac{1+\frac{3}{\sqrt{n}}}{\sqrt{1+\frac{1}{n}}+\frac{3}{n}}\right|=|x|\left|\frac{1+0}{\sqrt{1+0}+0}\right|=|x|
\end{aligned}
$$

$|x|<1$ When $x=-1, \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n+1}}{\sqrt{n}+3}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n}(-1)^{\prime}}{\sqrt{n}+3}=\sum_{n=0}^{\infty} \frac{-1}{\sqrt{n}+3}$
$-1<x<1$
$|x|<1$
which is a diverging series by the thirect Comparison Test using $\sum_{n=0}^{\infty} \frac{-1}{\sqrt{n}}$ which is a diverging P-series.
when $x=1, \sum_{n=0}^{\infty} \frac{(-1)^{n}(1)^{n}}{\sqrt{n}+3}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n}+3}$ which is an alternating series and is conditionally convergent. Compare with $\sum_{n=0}^{\infty} \frac{(-1)^{2}}{\sqrt{n}}$
a) the radius is 1
the interval of convergence is $-1<x \leq 1$
b) the interval of absolute convergence is $-1<x<1$
c) the series converges conditionally at $x=1$

$$
\text { 18) } \sum_{n=0}^{\infty} \frac{n x^{n}}{4^{n}\left(n^{2}+1\right)} \quad\left|a_{n}\right|=\mu_{n}=\frac{n x^{n}}{4^{n}\left(n^{2}+1\right)} \quad \mu_{n+1}=\frac{(n+1) x^{n+1}}{4^{n+1}\left((n+1)^{2}+1\right)}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& \left.1>\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1) x^{n+1}}{4^{n+1}\left((n+1)^{2}+1\right)}}{\frac{n x^{n}}{4 x^{n}\left(n^{2}+1\right)}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{(n+1) x^{n+1}}{4^{n+1}((n+1)+1)}\right)\right|\left(\frac{4^{x}\left(n^{2}+1\right)}{x x^{n}}\right) \right\rvert\, \\
& 1>\lim _{n \rightarrow \infty}\left|\left(\frac{(n+1)\left(x^{2}\right)\left(x^{4}\right)}{\left.\left.\left(4^{n}\right)\left(4^{1}\right)\left(n^{2}+2 n+1\right)+1\right)\right)}\right)\left(\frac{4^{n}\left(n^{2}+1\right)}{n x^{2}}\right)\right|=\lim _{n \rightarrow \infty}\left|\frac{x(n+1)\left(n^{2}+1\right)}{4 n\left(n^{2}+2 n+2\right)}\right| \\
& \left.1>\lim _{n \rightarrow \infty}|x|\left|\frac{n^{3}+n^{2}+n+1}{4 n^{3}+8 n^{2}+2 n}\right|=|x|\left|\lim _{n \rightarrow \infty} \frac{n^{3}+n^{2}+n+1}{4 n^{3}+8 n^{2}+2 n}\right|=|x| \lim _{n \rightarrow \infty} \frac{\frac{n^{3}}{n^{2}}+\frac{n^{2}}{n^{3}}+\frac{n}{n^{3}}+\frac{1}{n^{3}}}{\frac{4 n^{3}}{n^{2}}+\frac{n^{2}}{n^{2}}+\frac{2 n}{n^{2}}} \right\rvert\, \\
& 1>|x|\left|\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}+\frac{1}{n^{2}}+\frac{1}{n^{3}}}{4+\frac{8}{n}+\frac{2}{n^{2}}}\right|=|x|\left|\frac{1+0+0+0}{4+0+0}\right|=|x|\left|\frac{1}{4}\right|=|x| \frac{1}{4}=\frac{1}{4}|x|
\end{aligned}
$$

$\frac{1}{4}|x|<1 \quad$ when $x=4, \sum_{n=0}^{\infty} \frac{n(4)^{2}}{4^{n}\left(x^{2}+1\right)}=\sum_{n=0}^{\infty} \frac{n}{n^{2}+1}$ which is a divergent $|x|<4$ shies. Use $\sum_{n \rightarrow 0}^{\infty} \frac{1}{n}$ which is divergent and use the times $-4<x<4$ Comparison Jest.
$\frac{1}{4}|x|<1 \quad$ when $x=-4, \sum_{n=0}^{\infty} \frac{n(-4)^{n}}{4^{n}\left(n^{2}+1\right)}=\sum_{n=0}^{\infty} \frac{n(-1)^{n}\left(4^{n}\right)}{4^{n}\left(n^{2}+1\right)}=\sum_{n=0}^{\infty} \frac{n(-1)^{n}}{n^{2}+1}$
$|x|<4 \quad$ which is an alternating series and is conditionally convergent.
a) the radius is 4
the interval of convergence is $-4 \leq x<4$
b) the interval of absolute convergence is $-4<x<4$
c) the series converges conditionally at $x=-4$

$$
\begin{aligned}
& \text { 20) } \sum_{n=1}^{\infty} \sqrt[n]{n}(2 x+5)^{n} \\
& \left|a_{n}\right|=\mu_{n}=\sqrt[n]{n}(2 x+5)^{n} \quad \mu_{n+1}=\sqrt[n+1]{n+1}(2 x+5)^{n+1} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{\sqrt[n+1]{n+1}(2 x+5)^{n+1}}{\sqrt[n]{n}(2 x+5)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\sqrt[n+1]{n+1}\left((2 x+5)^{n}\right)\left((2 x+5)^{1}\right)}{\sqrt[n]{n}(2 x+5)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\sqrt[n+1]{n+1}(2 x+5)}{\sqrt[n]{n}}\right| \\
& \left.\left|>\lim _{n \rightarrow \infty}\right| 2 x+5| | \frac{\sqrt[n+1]{n+1}}{\sqrt[n]{n}}|=|2 x+5|| \lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{n+1}}{\sqrt[n]{n}}|=|2 x+5|| \frac{\lim _{n \rightarrow \infty} \sqrt[n+1]{n+1}}{\lim _{n \rightarrow \infty} \sqrt[n]{n}} \right\rvert\, \\
& \lim _{n \rightarrow \infty} \sqrt[n]{n}=? \quad \lim _{n \rightarrow \infty} \frac{\lim _{n}^{+\infty}}{n} \leq \lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{1}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 ; \lim _{n \rightarrow \infty} \sqrt[n+1]{n+1}=\lim _{t \rightarrow \infty} \sqrt[t]{t} \\
& y=\sqrt[n]{n} \\
& \ln y=\ln (\sqrt[n]{n}) \\
& \begin{array}{ll}
\ln y=0 \\
\Downarrow
\end{array} \quad \lim _{n \rightarrow \infty} \sqrt[n]{n}=1 \quad, \text { et } n+1=t \quad=1 \\
& \ln y=\frac{\ln n}{n} \\
& 1>|2 x+5|\left|\frac{1}{1}\right|=|2 x+5|
\end{aligned}
$$

$|2 x+5|<1 \quad$ when $x=-3, \sum_{n=1}^{\infty} \sqrt[n]{n}(2(-3)+5)^{n}=\sum_{n=1}^{\infty}(-1)^{n} \sqrt[n]{n}$ which is $-1<2 x+5<1 \quad$ an alternating series and it diverges
$-6<2 x<-4 \quad$ because $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
$-3<x<-2$
$|2 x|<1$$\quad$ when $x=-2, \sum_{n=1}^{\infty} \sqrt[n]{n}(2(-2)+5)^{n}=\sum_{n=1}^{\infty}(1)^{n} \sqrt[n]{n}=\sum_{n=1}^{\infty} \sqrt[n]{n}$ $2 / x /<1 \quad$ which is a divergent series.
a) the radius is $\frac{1}{2}$
the interval of convergence is $-3<x<-2$
b) the interval of absolute convergence is $-3<x<-2$
c) there are no values for which the series converge conditionally
22) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}(x-2)^{n}}{3_{n}} \quad\left|a_{n}\right|=\mu_{n}=\frac{3^{2 n}(x-2)^{n}}{3_{n}} \quad \mu_{n+1}=\frac{3^{2(n+1)}(x-2)^{n+1}}{3(n+1)}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& \left.1>\lim _{n \rightarrow \infty}\left|\frac{\frac{3^{2(n+1)}(x-2)^{n+1}}{3(n+1)}}{\frac{3^{2 n}(x-2)^{n}}{3 n}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{3^{2 n+2}(x-2)^{n+1}}{3(a+1)}\right)\right|\left(\frac{3 n}{3^{2 n}(x-2)^{n}}\right) \right\rvert\, \\
& \left.1>\lim _{n \rightarrow \infty}\left|\left(\frac{\left(3^{2 n}\right)\left(3^{2}\right)\left((x-2)^{n}\right)\left((x-2)^{\prime}\right)}{3(n+1)}\right)\right|\left(\frac{3 n}{3^{2 n}(x-2)^{n}}\right)\left|=\lim _{n \rightarrow \infty}\right| \frac{9 n(x-2)}{n+1} \right\rvert\, \\
& 1>\lim _{n \rightarrow \infty}|x-2|\left|\frac{q_{n}}{n+1}\right|=|x-2|\left|\lim _{n \rightarrow \infty} \frac{q_{n}}{n+1}\right|=|x-2|\left|\lim _{n \rightarrow \infty} \frac{\frac{q_{n}}{n}}{\frac{n}{n}+\frac{1}{n}}\right|=|x-2|\left|\lim _{n \rightarrow \infty} \frac{9}{1+\frac{1}{n}}\right| \\
& 1>|x-2|\left|\frac{9}{1+0}\right|=|x-2||9|=9|x-2| \\
& 9|x-2|<1 \quad \text { when } x=\frac{17}{9}, \sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}\left(\left(\frac{17}{9}\right)-2\right)^{n}}{3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}\left(\frac{-1}{9}\right)^{n}}{3^{n}} \\
& |x-2|<\frac{1}{9} \\
& -\frac{1}{9}<x-2<\frac{1}{9} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}(-1)^{n}\left(\frac{1}{3^{2}}\right)^{n}}{3 n}=\sum_{n=1}^{\infty} \frac{3^{2 n}\left(\frac{1}{3^{n n}}\right)}{3 n}=\sum_{n=1}^{\infty} \frac{1}{3 n}
\end{aligned}
$$

$\frac{17}{9}<x<\frac{19}{9}$
$9|x|<1$ $|x|<\frac{1}{9}$
which is a divergent series. Use $\sum_{n=1}^{\infty} \frac{1}{n}$ which is a divergent P-series and use the Limit Comparison Jest, when $x=\frac{19}{9}, \sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}\left(\left(\frac{19}{9}\right)-2\right)^{n}}{3 n}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}\left(\frac{1}{32}\right)^{n}}{3 n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3 n}$ which is an alternating series and is conditionally convergent.
a) the radius is $\frac{1}{9}$
the interval of comergence is $\frac{17}{9}<x \leq \frac{19}{9}$
b) the interval of absolute convergence is $\frac{17}{9}<x<\frac{19}{9}$
c) the shies converges conditionally at $x=\frac{19}{9}$
24) $\sum_{n=1}^{\infty}(\ln n) x^{n} \quad\left|a_{n}\right|=\mu_{n}=(\ln n) x^{n} \quad \mu_{n+1}=(\ln (n+1)) x^{n+1}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{(\ln (n+1)) x^{n+1}}{(\ln x) x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(\ln (n+1))\left(x^{n}\right)\left(x^{\prime}\right)}{(\ln n) x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x \ln (n+1)}{\ln n}\right| \\
& 1>\lim _{n \rightarrow \infty}|x|\left|\frac{\ln (n+1)}{\ln n}\right|=|x|\left|\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln _{n}^{+\infty}}\right|=|x|\left|\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{n+1}} \frac{1}{n}\right| \\
& 1>|x|\left|\lim _{n \rightarrow \infty} \frac{n+\infty}{\substack{n+1 \\
+\infty}}\right| \underline{L}|x|\left|\lim _{n \rightarrow \infty} \frac{1}{1}\right|=|x|\left|\frac{1}{1}\right|=|x|
\end{aligned}
$$

$|x|<1 \quad$ When $x=1, \sum_{n=1}^{\infty}(\ln n)(1)^{n}=\sum_{n=1}^{\infty} \ln n$ which is a $-1<x<1$ divergent series because by the n th-Ierm $\mid x /<1 \quad$ Jest for thivergence $\lim _{n \rightarrow \infty}(\ln x)=+\infty \neq 0$.
when $x=-1, \sum_{n=1}^{\infty}(\ln n)(-1)^{n}$ which is an alternating series and it diverges because $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty}(\ln n) \neq 0$,
a) the radius is 1 the interval of convergence is $-1<x<1$
b) the interval of absolute convergence is $-1<x<1$
c) there are no values for which the series converge conditionally
26) $\sum_{x=0}^{\infty} n!(x-4)^{n} \quad\left|a_{n}\right|=\mu_{n}=n!(x-4)^{n} \quad \mu_{n+1}=(n+1)!(x-4)^{n+1}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x-4)^{n+1}}{n!(x-4)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) n!\left((x-4)^{n}\right)\left((x-4)^{\prime}\right)}{n!(x-4)^{n}}\right| \\
& \left|>\lim _{n \rightarrow \infty}\right|(n+1)(x-4)\left|=\lim _{n \rightarrow \infty}\right| x-4| | n+1|=|x-4|| \lim _{n \rightarrow \infty}(n+1) \mid
\end{aligned}
$$

 that will satisfy the inequality is when $x=4$
when $x=4, \sum_{n=0}^{\infty} n!((4)-4)^{n}=\sum_{n=0}^{\infty} n!(0)^{n}=\sum_{n=0}^{\infty} 0=0$
a) the radius is 0
the series converges only for $x=4$
b) the series absolutely converges only for $x=4$
c) there are no values for which the series converges conditionally

$$
\begin{aligned}
& \text { 28) } \sum_{n=0}^{\infty}(-2)^{n}(n+1)(x-1)^{n} \quad\left|a_{n}\right|=\mu_{n}=2^{n}(n+1)(x-1)^{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}((n+1)+1)(x-1)^{n+1}}{2^{n}(n+1)(x-1)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(2^{n}\right)\left(2^{1}\right)(n+2)\left((x-1)^{n}\right)\left((x-1)^{1}\right)}{2^{n}(n+1)(x-1)^{n}}\right| \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{2(n+2)(x-1)}{n+1}\right|=\lim _{n \rightarrow \infty}|x-1|\left|\frac{2 n+2}{n+1}\right|=|x-1|\left|\lim _{n \rightarrow \infty} \frac{2 n+2}{n+1}\right| \\
& 1>|x-1|\left|\lim _{n \rightarrow \infty} \frac{\frac{2 n}{n}+\frac{2}{n}}{\frac{n}{n}+\frac{1}{n}}\right|=|x-1|\left|\lim _{n \rightarrow \infty} \frac{2+\frac{2}{n}}{1+\frac{1}{n}}\right|=|x-1|\left|\frac{2+0}{1+0}\right|=|x-1||2|=2|x-1| \\
& 2|x-1|<1 \quad \text { when } x=\frac{1}{2}, \sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(\left(\frac{1}{2}\right)-1\right)^{n}=\sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(\frac{-1}{2}\right)^{n} \\
& \quad|x-1|<\frac{1}{2} \\
& \frac{-1}{2}<x-1<\frac{1}{\infty} \quad=\sum_{n=0}^{\infty}(n+1)
\end{aligned}
$$

$$
\frac{-1}{2}<x-1<\frac{1}{2}
$$

$$
\frac{1}{2}<x<\frac{3}{2}
$$

which is a divergent series.

$$
2|x|<1
$$

when $x=\frac{3}{2}, \sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(\left(\frac{3}{2}\right)-1\right)^{n}=\sum_{n=0}^{\infty}(-2)^{n}(n+1)\left(\frac{1}{2}\right)^{n}$

$$
|x|<\frac{1}{2}
$$

$$
=\sum_{n=0}^{\infty}(-1)^{n}(n+1)
$$

which is an alternating series and is divergent because $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty}(n+1) \neq 0$
a) the radius is $\frac{1}{2}$
the interval of convergence is $\frac{1}{2}<x<\frac{3}{2}$
b) the interval of absolute convergence is $\frac{1}{2}<x<\frac{3}{2}$
c) there are no values for which the series converges conditionally
by the Integral Lest, $\sum_{n=2}^{\infty} \frac{1}{n \operatorname{li} x}$ diverge when $x=-1, \sum_{n=2}^{\infty} \frac{(-1)^{\prime}}{n \ln _{n}}$ which is an alternating series and is conditionally convergent
a) the radius is 1 the interval of convergence is $-1 \leq x<1$
b) the interval of absolute convergence is $1 /<x<1$
c) the series converges conditionally at $x=-1$
32)

$$
\begin{aligned}
& \text { 32) } \sum_{n=1}^{\infty} \frac{(3 x+1)^{n+1}}{2 n+2} \quad\left|a_{n}\right|=\mu_{n}=\frac{(3 x+1)^{n+1}}{2 n+2} \quad \mu_{n+1}=\frac{(3 x+1)^{(n+1)+1}}{2(n+1)+2} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{\frac{(3 x+1)^{(n+1)+1}}{2(n+1)+2}}{\frac{(3 x+1)}{2 n+2}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{(3 x+1)^{n+2}}{2 n+4}\right)\left(\frac{2 n+2}{(3 x+1)^{n+1}}\right)\right| \\
& 1>\lim _{n \rightarrow \infty}\left|\left(\frac{\left((3 x+1)^{n+1}\right)\left((3 x+1)^{\prime}\right)}{2 n+4}\right)\left(\frac{2 n+2}{(3 x+1)^{n+1}}\right)\right|=\lim _{n \rightarrow \infty}\left|\frac{(3 x+1)(2 n+2)}{2 n+4}\right| \\
& 1>|3 x+1|\left|\lim _{n \rightarrow \infty} \frac{2^{+\infty}}{2 n+2}\right|=|3 x+1|\left|\lim _{n \rightarrow \infty} \frac{2}{2}\right|=|3 x+1|\left|\frac{2}{2}\right|=|3 x+1||1|=|3 x+1|
\end{aligned}
$$

$|3 x+1|<1 \quad$ when $x=0, \sum_{n=1}^{\infty} \frac{(3(0)+1)^{n+1}}{2 n+2}=\sum_{n=1}^{\infty} \frac{1}{2 n+2}$ which is $-1<3 x+1<1$
$-2<3 x<0$ a divergent series
 $|3 x| c \mid$
$3|x| c \mid$
$|x|<\frac{1}{3}$$\quad$ an alternating
a) the radius is $\frac{1}{3}$
the interval of convergence is $\frac{-2}{3} \leq x<0$
b) the interval of absolute convergence is $\frac{-2}{3}<x<0$
c) the series comerges conditionally at $x=\frac{-2}{3}$
34) $\sum_{n=1}^{\infty} \frac{(3)(5)(7) \cdots(2 n+1)}{n^{2} 2^{n}} x^{n+1}$

$$
\left|a_{n}\right|=\mu_{n}=\frac{(3)(5)(7) \cdots(2 n+1)}{n^{2} 2^{n}} x^{n+1}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right| c \left\lvert\, \quad \mu_{n+1}=\frac{(3)(5)(7) \cdots(2(n+1)+1)}{(n+1)^{2} 2^{n+1}} x^{(n+1)+1}\right. \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{\frac{(3)(5)(7) \cdots(2(n+1)+1) x^{(n+1)+1}}{(n+1)^{2} 2^{n+1}}}{\frac{(3)(5)(7) \cdots(2 n+1) x^{n+1}}{n^{2} 2^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\left(\left.\frac{\left.(3)(5)(7) \cdots(2(n+1)+1) x^{(n+1)+1}\right)}{(n+1)^{2} 2^{n+1}} \right\rvert\, \frac{n^{2} 2^{n}}{(3)(5)(7) n(2 n+1)}\right)\right| \\
& 1>\lim _{n \rightarrow \infty}| | \frac{(3)(5)(7) \cdots(2 n+1)(2(n+1)+1)\left(x^{n}\right)\left(x^{n}\right)}{(n+1)^{2}\left(2^{n}\right)\left(2^{1}\right)}\left|\left(\frac{n^{2} 2^{n}}{(3)(5)(7) \cdots(2 n+1)}\right)\right|=\lim _{n \rightarrow \infty}\left|\frac{x(2 n+3) n^{2}}{2(n+1)^{2}}\right| \\
& 1>\lim _{n}|x|\left|\frac{2 n^{3}+3 n^{2}}{}\right|
\end{aligned}
$$

$$
\begin{aligned}
& 1>\lim _{n \rightarrow \infty}|x|\left|\frac{2 n^{3}+3 n^{2}}{2 n^{2}+4 n+2}\right|=|x|\left|\lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n^{2}}{2 n^{2}+4 n+2}\right| \\
& \lim _{1 n^{+\infty}} n^{3}+3 n^{2}
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \frac{2 n^{+\infty}+3 n^{2}}{2 n^{2}+4 n+2} \doteq \lim _{n \rightarrow \infty} \frac{6 n^{2}+6 n}{4 n+4} \leqslant \lim _{n \rightarrow \infty} \frac{12 n+6}{4}=+\infty$ so the only value that will satisfy the inequality is when $x=0$
When $x=0, \sum_{n=1}^{\infty} \frac{(3)(5)(7) \cdots(2 n+1)}{n^{2} 2^{n}}(0)^{n+1}=\sum_{n=1}^{\infty} 0=0$
a) the radius is 0
the series comerges only for $x=0$
b) the series absolutely converges only for $x=0$
c) there are no values for which the series converges conditionally.

$$
\begin{aligned}
& \text { 36) } \sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})(x-3)^{n}=\sum_{n=1}^{\infty}\left(\frac{\left.(\sqrt{n+1}-\sqrt{n})(x-3)^{n}\right)\left(\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)}{1}=\sum_{n=1}^{\infty} \frac{\{(n+1)-n\}(x-3)^{n}}{\sqrt{n+1}+\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{\sqrt{n+1}+\sqrt{n}}\right. \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \quad\left|a_{n}\right|=\mu_{n}=\frac{(x-3)^{n}}{\sqrt{n+1}+\sqrt{n}} \quad \mu_{n+1}=\frac{(x-3)^{n+1}}{\sqrt{(n+1)+1}+\sqrt{n+1}} \\
& 1>\lim _{n \rightarrow \infty} \left\lvert\, \frac{\frac{(x-3)^{n+1}}{\sqrt{(n+1)+1}+\sqrt{n+1}}}{\frac{(x-3)^{2}}{\sqrt{n+1}+\sqrt{n}}\left|=\lim _{n \rightarrow \infty}\right|\left(\frac{(x-3)^{n+1}}{\sqrt{n+2}+\sqrt{n+1}}\right)\left|\left(\frac{\sqrt{n+1}+\sqrt{n}}{(x-3)^{n}}\right)\right|}\right. \\
& \left.1>\lim _{n \rightarrow \infty}\left|\left(\frac{\left((x-3)^{n}\right)\left((x-3)^{\prime}\right)}{\sqrt{n+2}+\sqrt{n+1}}\right)\right|\left(\frac{\sqrt{n+1}+\sqrt{n})}{(x-3)^{n}}\right)\left|=\lim _{n \rightarrow \infty}\right| \frac{(x-3)(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+2}+\sqrt{n+1}} \right\rvert\, \\
& 1>\lim _{n \rightarrow \infty}|x-3|\left|\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+2}+\sqrt{n+1}}\right|=|x-3| \lim _{n \rightarrow \infty} \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+2}+\sqrt{n+1}}|=|x-3|| 1|=|x-3| \\
& \lim _{n \rightarrow \infty} \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+2}+\sqrt{n+1}}=\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n+1}}{\sqrt{n}}+\frac{\sqrt{n}}{\sqrt{n}}}{\frac{\sqrt{n+2}}{\sqrt{n}}+\frac{\sqrt{n+1}}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{n}{n}+\frac{1}{n}}+\sqrt{\frac{n}{n}}}{\sqrt{\frac{n}{n}+\frac{2}{n}}+\sqrt{\frac{x}{n}+\frac{1}{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{1+\frac{1}{n}}+\sqrt{1} \sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}}{} \\
& =\frac{\sqrt{1+0}+\sqrt{1}}{\sqrt{1+0}+\sqrt{1+0}}=\frac{1+1}{1+1}=\frac{2}{2}=1
\end{aligned}
$$

$$
|x-3|<1
$$

$$
-1<x-3<1
$$

$$
2<x<4
$$

a) the radius is 1

$$
\text { when } x=4, \sum_{n=1}^{\infty} \frac{((4)-3)^{n}}{\sqrt{n+1}+\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(1)^{n}}{\sqrt{n+1}+\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}
$$

which is a divergent series. Use $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}}$ which

$$
|x|<\mid
$$ diverges and compare with either Llinect on Limit lest when $x=2, \sum_{n=1}^{\infty} \frac{((2)-3)^{n}}{\sqrt{n+1}+\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}+\sqrt{n}}$ which is an alternating series and is conditionally convergent the interval of convergence is $2 \leq x<\psi$

b) the interval of absolute convergence is $2<x<4$
c) the series converges conditionally at $x=2$
38) $\sum_{n=1}^{\infty}\left(\frac{(2)(4)(6) \cdots(2 n)}{(2)(5)(8) \cdots(3 n-1))}\right)^{2} x^{n} \quad\left|a_{n}\right|=\mu_{n}=\left(\frac{(2)(4)(6) \cdots(2 n)}{(2)(5)(8) \cdots(3 n-1)}\right)^{2} x^{n}$
$\frac{4}{9}|x|<1 \Rightarrow|x|<\frac{9}{4}$ the Radius is $R=\frac{9}{4}$
40) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{x^{2}} x^{n}$ \{Ho int: Apply the Root Yest\}
$\frac{1}{e}|x|<1 \Rightarrow|x|<e$ the Radius is $R=e$

$$
\begin{aligned}
& \text { 42) } \sum_{n=0}^{\infty}\left(e^{x}-4\right)^{n} \quad\left|a_{n}\right|=\mu_{n}=\left(e^{x}-4\right)^{n} \quad \mu_{n+1}=\left(e^{x}-4\right)^{n+1} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{\left(e^{x}-4\right)^{n+1}}{\left(e^{x}-4\right)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(\left(e^{x}-4\right)^{n}\right)\left(\left(e^{x}-4\right)^{\prime}\right)}{\left(e^{x}-4\right)^{n}}\right|=\lim _{n \rightarrow \infty}\left|e^{x}-4\right|=\left|e^{x}-4\right|
\end{aligned}
$$

$\left|e^{x}-4\right|<1 \quad$ when $x=\ln 3, \sum_{n=0}^{\infty}\left(e^{(\ln 3)}-4\right)^{n}=\sum_{n=0}^{\infty}(3-4)^{n}=\sum_{n=0}^{\infty}(-1)^{n}$
$-1<e^{x}-4<1 \quad$ which is divergent series
$3<e^{x}<5$
$\ln ^{3}<x<\ln 5$
when $x=\ln 5, \sum_{n=0}^{\infty}\left(e^{(\ln 5)}-4\right)^{n}=\sum_{n=0}^{\infty}(5-4)^{n}=\sum_{n=0}^{\infty}$
which is divergent series

$$
\sum_{n=0}^{\infty}\left(e^{x}-4\right)^{n}=\left(e^{x}-4\right)^{0}+\left(e^{x}-4\right)^{\prime}+\left(e^{x}-4\right)^{2}+\cdots
$$

when $\ln 3<x<\ln 5$, this is a convergent geometric series with $a=1$ and $n=\left(e^{x}-4\right)$ and the sum is

$$
\frac{a}{1-n}=\frac{(1)}{1-\left(e^{x}-4\right)}=\frac{1}{5-e^{x}}
$$

$$
\text { 44) } \sum_{n=0}^{\infty} \frac{(x+1)^{2 n}}{q^{n}} \quad\left|a_{n}\right|=\mu_{n}=\frac{(x+1)^{2 n}}{q^{2}} \quad \mu_{n+1}=\frac{(x+1)^{2(n+1)}}{9^{n+1}}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
1> & \left.\lim _{n \rightarrow \infty}\left|\frac{\frac{(x+1)^{2(x+1)}}{9^{n+1}}}{\frac{(x+1)^{2 n}}{q^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{(x+1)^{2 n+2}}{9^{n+1}}\right)\left(\frac{q^{2}}{(x+1)^{2 n}}\right)\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{\left.(x+1)^{2 n}\right)}{\left(q^{n}\right)\left(q^{\prime}\right)}\right)\right|\left(\frac{\left.(x+1)^{2}\right)}{(x+1)^{2 n}}\right) \right\rvert\,
\end{aligned}
$$

44) continued

$$
\begin{aligned}
& 1>\lim _{n \rightarrow \infty}\left|\frac{(x+1)^{2}}{9}\right|=\left|\frac{(x+1)^{2}}{9}\right|=\frac{\left|(x+1)^{2}\right|}{9} \\
& \frac{\left|(x+1)^{2}\right|}{9}<1 \quad \text { when } x=2, \sum_{n=0}^{\infty} \frac{(62)+1)^{2 n}}{9^{n}}=\sum_{n=0}^{\infty} \frac{(3)^{2 n}}{9^{n}}=\sum_{n=0}^{\infty} \frac{\left(3^{2}\right)^{n}}{9^{n}}=\sum_{n=0}^{\infty} \frac{9^{n}}{9^{n}} \\
& \left|(x+1)^{2}\right|<9 \\
& |x+1|<3 \\
& =\sum_{n=0}^{\infty} 1 \text { which is a } \\
& \text { divergent series } \\
& \text { when } x=-4, \sum_{n=0}^{\infty} \frac{(-4)+1)^{2 n}}{9^{n}}=\sum_{n=0}^{\infty} \frac{(-3)^{2 n}}{9^{n}}=\sum_{n=0}^{\infty} \frac{\left((-3)^{2}\right)^{n}}{9^{n}}=\sum_{n=0}^{\infty} \frac{9^{n}}{9^{n}} \\
& =\sum_{n=0}^{\infty} 1 \text { which is a } \\
& \text { divergent series } \\
& \sum_{n=0}^{\infty} \frac{(x+1)^{2 n}}{9^{n}}=\sum_{n=0}^{\infty} \frac{\left((x+1)^{2}\right)^{n}}{\left(3^{2}\right)^{n}}=\sum_{n=0}^{\infty}\left(\frac{(x+1)^{2}}{3^{2}}\right)^{n}=\sum_{n=0}^{\infty}\left(\left(\frac{x+1}{3}\right)^{2}\right)^{n} \\
& =\left(\left(\frac{x+1}{3}\right)^{2}\right)^{0}+\left(\left(\frac{x+1}{3}\right)^{2}\right)^{1}+\left(\left(\frac{x+1}{3}\right)^{2}\right)^{2}+\cdots \cdot
\end{aligned}
$$

when $-4<x<2$, this is a convergent geometric series with $a=1$ and $\Omega=\left(\frac{x+1}{3}\right)^{2}$ and the sum is

$$
\left.\begin{array}{rl}
\frac{a}{1-\Omega} & =\frac{(1)}{1-\left(\frac{x+1}{3}\right)^{2}}=\frac{1}{1-\frac{(x+1)^{2}}{9}}=\left(\frac{\frac{1}{1}}{\frac{1}{1}-\frac{(x+1)^{2}}{9}}\right)\left(\frac{9}{9}\right. \\
\frac{9}{1}
\end{array}\right)=\frac{9}{9-(x+1)^{2}}
$$

46) $\sum_{n=0}^{\infty}(\ln x)^{n}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{(\ln x)^{n+1}}{(\ln x)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left((\ln x)^{n}\right)\left((\ln x)^{\prime}\right)}{(\ln x)^{n}}\right|=\lim _{n \rightarrow \infty}|\ln x|=|\ln x|
\end{aligned}
$$

$|\ln x|<1 \quad$ when $x=e, \sum_{n=0}^{\infty}(\ln (e))^{n}=\sum_{n=0}^{\infty}(1)^{n}$ which is a $-1<\ln x<1$ divergent series
$e^{-1}=\frac{1}{e}<x<e \quad$ when $x=e^{-1}, \sum_{n=0}^{\infty}\left(\ln \left(e^{-1}\right)\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n}$ which is a divergent series

$$
\sum_{n=0}^{\infty}(\ln x)^{n}=(\ln x)^{0}+(\ln x)^{\prime}+(\ln x)^{2}+\cdots
$$

when $\frac{1}{e}<x<e$, this is a convergent geometric series with $a=1$ and $\Omega=\ln x$ and the sum is

$$
\frac{a}{1-\Omega}=\frac{(1)}{1-(\ln x)}=\frac{1}{1-\ln x}
$$

$$
\begin{aligned}
& 48) \sum_{n=0}^{\infty}\left(\frac{x^{2}-1}{2}\right)^{n} \quad\left|a_{n}\right|=\mu_{n}=\left(\frac{x^{2}-1}{2}\right)^{n} \quad \mu_{n+1}=\left(\frac{x^{2}-1}{2}\right)^{n+1} \\
& \lim _{n \rightarrow \infty}\left|\frac{\mu_{n+1}}{\mu_{n}}\right|<1 \\
& 1>\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{x^{2}-1}{2}\right)^{n+1}}{\left(\frac{x^{2}-1}{2}\right)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{x^{2}-1}{2}\right)^{n+1}\left(\frac{2}{x^{2}-1}\right)^{n}\right|=\lim _{n \rightarrow \infty}\left|\left(\left(\frac{x^{2}-1}{2}\right)^{n}\right)\left(\left(\frac{x^{2}-1}{2}\right)^{1}\right)\left(\frac{2}{x^{2}-1}\right)^{n}\right| \\
& \left|>\lim _{n \rightarrow \infty}\right| \frac{x^{2}-1}{2}\left|=\left|\frac{x^{2}-1}{2}\right|=\frac{\left|x^{2}-1\right|}{2}\right.
\end{aligned}
$$

48) continued

$$
\begin{aligned}
& \frac{\left|x^{2}-1\right|}{2}<1 \\
& x^{2}-3<0 \\
& (x+\sqrt{3})(x-\sqrt{3})<0 \\
& \left|x^{2}-1\right|<2 \\
& \begin{array}{l|l}
x+\sqrt{3}=0 & x-\sqrt{3}=0 \\
x=-\sqrt{3} & x=\sqrt{3}
\end{array} \\
& \left(x^{2}-1\right)<2 \\
& x^{2}-1<2 \\
& -\sqrt{3}<x<\sqrt{3}
\end{aligned}
$$

when $x=-\sqrt{3}, \sum_{n=0}^{\infty}\left(\frac{(-\sqrt{3})^{2}-1}{2}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{3-1}{2}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{2}{2}\right)^{n}=\sum_{n=0}^{\infty}(1)^{n}$ which is a divergent series.
When $x=\sqrt{3}, \sum_{n=0}^{\infty}\left(\frac{(\sqrt{3})^{2}-1}{2}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{3-1}{2}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{2}{2}\right)^{n}=\sum_{n=0}^{\infty}(1)^{n}$
which is a divergent series

$$
\sum_{n=0}^{\infty}\left(\frac{x^{2}-1}{2}\right)^{n}=\left(\frac{x^{2}-1}{2}\right)^{0}+\left(\frac{x^{2}-1}{2}\right)^{1}+\left(\frac{x^{2}-1}{2}\right)^{2}+\cdots
$$

when $-\sqrt{3}<x<\sqrt{3}$, this is a convergent geometric series with $a=1$ and $\Omega=\frac{x^{2}-1}{2}$ and the sum is

$$
\frac{a}{1-n}=\frac{(1)}{1-\left(\frac{x^{2}-1}{2}\right)}=\left(\frac{\frac{1}{1}}{\frac{1}{1}-\frac{x^{2}-1}{2}}\right)\left(\frac{\frac{2}{1}}{\frac{2}{1}}\right)=\frac{2}{2-\left(x^{2}-1\right)}=\frac{2}{3-x^{2}}
$$

