Theorem 15 - The Alternating Series Test

The series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4}+\cdots
$$

converges if the following conditions are satisfied:

1. The u_{n} 's are all positive.
2. The u_{n} 's are eventually nonincreasing: $u_{n} \geq u_{n+1}$ for all $n \geq N$, for some integer N.
3. $\quad u_{n} \rightarrow 0$.

Theorem 16 - The Alternating Series Estimation Theorem

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}$ satisfies the three conditions of Theorem 15 , then for $n \geq N$.

$$
s_{n}=u_{1}-u_{2}+u_{3}-u_{4}+\cdots+(-1)^{n+1} u_{n}
$$

approximates the sum L of the series with an error whose absolute value is less than u_{n+1}, the absolute value of the first unused term. Furthermore, the sum L lies between any two successive partial sums s_{n} and s_{n+1}, and the remainder, $L-s_{n}$, has the same sign as the first unused term.

Definition

A series that is convergent but not absolutely convergent is called conditionally convergent.

Summary of Tests to Determine Convergence or Divergence

1. The nth-Term Test for Divergence: Unless $a_{n} \rightarrow 0$, the series diverges.
2. Geometric Series: $\sum a r^{n}$ converges if $|r|<1$; otherwise diverges.
3. \boldsymbol{p}-series: $\sum \frac{1}{n^{p}}$ converges if $p>1$; otherwise diverges.
4. Series with nonnegative terms: Try the Integral Test or try comparing to a known series with the Direct Comparison Test or the Limit Comparison Test. Try the Ratio or Root Test.
5. Series with some negative terms: Does $\sum\left|a_{n}\right|$ converge by the Ratio or Root Test, or by another of the tests listed above? Remember, absolute convergence implies convergence.
$6 \quad$ Alternating series: $\sum a_{n}$ converges if the series satisfies the conditions of the Alternating Series Test.
4) $\sum_{n=2}^{\infty}(-1)^{n} \frac{4}{(\ln n)^{2}} \quad a_{n}=(-1)^{n} \frac{4}{(\ln n)^{2}} \quad u_{n}=\frac{4}{(\ln n)^{2}}>0$ for all $n \geq 2$
(1) for all $n \geq 2 \quad \mu_{n}=\frac{4}{\left(h_{n}\right)^{2}}>0$
(2) $n \geq 2 \Rightarrow n+1 \geq n \Rightarrow \ln (n+1) \geq \ln n \Rightarrow(\ln (n+1))^{2} \geq(\ln n)^{2}$

$$
\Rightarrow \frac{1}{(\ln (n+1))^{2}} \leq \frac{1}{(\ln n)^{2}} \Rightarrow \frac{4}{(\ln (n+1))^{2}} \leq \frac{\psi}{(\ln n)^{2}} \Rightarrow \mu_{n+1} \leq \mu_{n}
$$

(3) $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty} \frac{4}{(\ln n)^{2}}=0 \Rightarrow \lim _{n \rightarrow \infty} \mu_{n+1}=\lim _{n \rightarrow \infty} \frac{4}{(\ln (n+1))^{2}} \leq \lim _{n \rightarrow \infty} \mu_{n}=0$ by Alternating Series Lest, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{(\ln x)^{2}}$ converges

$$
\begin{aligned}
& \text { 8) } \sum_{n=1}^{\infty}(-1)^{n} \frac{10^{n}}{(n+1)!} \quad a_{n}=(-1)^{n} \frac{10^{n}}{(n+1)!} \quad\left|a_{n}\right|=\frac{10^{n}}{(n+1)!} \\
& \left|a_{n+1}\right|=\frac{10^{(n+1)}}{((n+1)+1)!}=\frac{10^{(n+1)}}{(n+2)!} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{10^{(n+1)}}{(n+2)!}}{\frac{10^{n}}{(n+1)!}}\right|=\lim _{n \rightarrow \infty}\left(\frac{10^{(n+1)}}{(n+2)!}\right)\left(\frac{(n+1)!}{10^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{\left(10^{n}\right)\left(10^{1}\right)}{(n+2)(n+1)!}\right)\left(\frac{(n+1)^{!}!}{10^{n}}\right)=\lim _{n \rightarrow \infty} \frac{10}{n+2}=0<1
\end{aligned}
$$

by the Ratio Jest, $\sum_{n=1}^{\infty}\left|a_{n}\right|=0<1$ converges
and by Absolute Convergence test $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1) \frac{10^{n}}{(n+1)!}$ converges absolutely
12) $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{n}\right) \quad a_{n}=(-1)^{n} \ln \left(1+\frac{1}{n}\right) \quad \mu_{n}=\ln \left(1+\frac{1}{n}\right)$
(1) for all $n \geq 1 \quad \mu_{n}=\ln \left(1+\frac{1}{x}\right) \geq 0$
(2) let $f(x)=\ln \left(1+\frac{1}{x}\right)=\ln \left(1+x^{-1}\right)$

$$
\frac{d l}{d x}=\frac{1}{\left(1+x^{-1}\right)}\left(-1 x^{-2}\right)=\frac{-1}{x^{2}\left(1+\frac{1}{x}\right)}=\frac{-1}{x^{2}\left(\frac{x+1}{x}\right)}=\frac{-1}{x(x+1)}
$$

for $x>0, \frac{d \varphi}{d x}=\frac{-1}{x(x+1)}<0$ which means that $\varphi(x)$ in decreasing

$$
\therefore \mu_{n} \geq \mu_{n+1}
$$

(3) $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)=\ln \left\{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)\right\}=\ln \{1\}=0$
by Alternating Series test, $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{n}\right)$ converges

$$
\begin{aligned}
& \text { 14) } \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\frac{3 \sqrt{n+1}}{\sqrt{n}+1} \quad a_{n}=(-1)^{n+1} \frac{3 \sqrt{n+1}}{\sqrt{n+1}} \quad\left|a_{n}\right|=\frac{3 \sqrt{n+1}}{\sqrt{n}+1}}{\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{3 \sqrt{n+1}}{\sqrt{n}+1}=\lim _{n \rightarrow \infty} \frac{3 \sqrt{n+1}}{\frac{\sqrt{n}+1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{3 \sqrt{\frac{n+1}{n}}}{\frac{\sqrt{n}}{\sqrt{n}}+\frac{1}{\sqrt{n}}}} \\
& =\lim _{n \rightarrow \infty} \frac{3 \sqrt{1+\frac{1}{n}}}{1+\frac{1}{\sqrt{n}}}=\frac{3 \sqrt{1+0}}{1+0}=3 \neq 0
\end{aligned}
$$

by nth -term Jest for Divergence, $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges so $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3 \sqrt{n+1}}{\sqrt{n}+1}$ diverges
20)

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n!}{2^{n}} \quad a_{n}=(-1)^{n+1} \frac{n!}{2^{n}} \quad\left|a_{n}\right|=\frac{n!}{2^{n}} \\
\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{n!}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{(1)(2)(3) \cdots(n-1)(n)}{\frac{(2)(2)(2)(2)(2)(2)}{n-\operatorname{tin}+n}}=+\infty \neq 0}{}=\text { far } n \geq 3, n!>2^{n}
\end{gathered}
$$

by nth-tem test far Slivergence, $\sum_{n=1}^{\infty}\left|a_{1}\right|$ diverges so $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n!}{2^{n}}$ diverges
22) $\sum_{n=1}^{\infty}(-1)^{2} \frac{\sin n}{n^{2}} \quad a_{n}=(-1)^{n} \frac{\sin n}{n^{2}} \quad\left|a_{n}\right|=\left|\frac{\sin n}{n^{2}}\right|=\frac{|\sin n|}{n^{2}}$ for $n \geq 1 \quad 0<\frac{|\sin n|}{n^{2}} \leq \frac{1}{n^{2}}$

$$
0<\sum_{n=1}^{\infty} \frac{|\sin n|}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a φ-series and it converges because $\varphi=2>1$ Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges and $0<\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{|\sin n|}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by the Llirect Comparison Lest $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}$ converges absolutely
24) $\sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{n+5^{n}} \quad a_{n}=\frac{(-2)^{n+1}}{n+5^{n}} \quad\left|a_{n}\right|=\frac{2^{n+1}}{n+5^{n}}$
for $n \geq 1 \quad 0<\frac{2^{n+1}}{n+5^{n}}<\frac{2^{n+1}}{5^{n}}=\frac{\left(2^{n}\right)\left(2^{n}\right)}{5^{n}}=2\left(\frac{2}{5}\right)^{n}$

$$
0<\sum_{n=1}^{\infty} \frac{2^{n+1}}{n+5^{n}}<\sum_{n=1}^{\infty} 2\left(\frac{2}{5}\right)^{n}
$$

$\sum_{n=1}^{\infty} 2\left(\frac{2}{5}\right)^{n}=\sum_{n=1}^{\infty} \frac{4}{5}\left(\frac{2}{5}\right)^{n-1}$ is a geometric series with $a=\frac{4}{5}$ and $\Omega=\frac{2}{5}$
this series converge because $|n|=\left|\frac{2}{5}\right|<1$ since $\sum_{n=1}^{\infty} 2\left(\frac{2}{5}\right)^{n}$ converges and $0<\sum_{n=1}^{\infty} \frac{2^{n+1}}{n+5^{n}}<\sum_{n=1}^{\infty} 2\left(\frac{2}{5}\right)^{n}$ by the Llirect Comparison test $\sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{n+5^{n}}$ converges absolutely

$$
\begin{aligned}
& \text { 26) } \sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt[n]{10}) \quad a_{n}=(-1)^{n+1}(\sqrt[n]{10}) \quad\left|a_{n}\right|=\sqrt[n]{10}=10^{\frac{1}{n}} \\
& \lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} 10^{\frac{1}{n}}=10^{0}=1 \neq 0
\end{aligned}
$$

by n th-Serm test for Llivergence, $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges $s o \sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt[n]{10})$ diverges
28) $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{n \ln n} \quad a_{n}=(-1)^{n+1} \frac{1}{n \ln n} \quad\left|a_{n}\right|=\frac{1}{n \ln n}=\mu_{n}$
(1) for $n \geq 2 \quad \mu_{n}=\frac{1}{n \ln n}>0$
(2) for $x \geq 2$

$$
\begin{aligned}
l(x)=\frac{1}{x \ln x} \quad \frac{d y}{d x} & =\frac{(x \ln x)[0]-(1)\left[(x)\left[\frac{1}{x}\right]+(\ln x)(1)\right]}{(x \ln x)^{2}} \\
& =\frac{-\{1+\ln x\}}{(x \ln x)^{2}}<0
\end{aligned}
$$

which implies $\varphi(x)$ is decreasing this means $\mu_{n}>\mu_{n+1}>0$ for $n \geq 2$
(3) $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty} \frac{1}{n \ln x}=0$
by Alternating Aeries Lest, $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{n \ln x}$ converges
but $\int \frac{1}{x \ln x} d x=\int \frac{1}{p} d p=\ln |p|+c$

$$
\begin{aligned}
& \quad \begin{array}{l}
p=\ln x \\
d p=\frac{1}{x} d x
\end{array}=\ln |\ln x|+c \\
& \int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{u \rightarrow \infty} \int_{2}^{0} \frac{1}{x \ln x} d x=\lim _{u \rightarrow \infty}[\ln |\ln x|+c]_{2}^{0} \\
& =\lim _{u \rightarrow \infty}\{[\underbrace{\ln |\ln v|}_{+\infty}+c]-[\ln |\ln (2)|+c]\}=+\infty
\end{aligned}
$$

$\int_{2}^{\infty} \frac{1}{x \ln x} d x$ diverges. By Integral test $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \mu_{n}$ diverges.
Therefore $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n \ln n}$ converges conditionally
30) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n-\ln x} \quad a_{n}=(-1)^{n} \frac{\ln n}{n-\ln n}\left|a_{n}\right|=\frac{\ln n}{n-\ln n}=\mu_{n}$
(1) for $n>e \mu_{n}=\frac{\ln n}{n-\ln n}>0$
(2) for $x>e \quad l(x)=\frac{\ln x}{x-\ln x}$

$$
\frac{d \varphi}{d x}=\frac{(x-\ln x)\left[\frac{1}{x}\right]-(\ln x)\left[1-\frac{1}{x}\right]}{(x-\ln x)^{2}}=\frac{\left(1-\frac{\ln x}{x}\right)-\left(\ln x-\frac{\ln x}{x}\right)}{(x-\ln x)^{2}}
$$

$=\frac{1-\ln x}{(x-\ln x)^{2}}<0$ which implies $f(x)$ is deceasing this means $\mu_{n}>\mu_{n+1}>0$ for $n>e$
(3)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mu_{n} & =\lim _{n \rightarrow \infty} \frac{+\infty}{\frac{\ln ^{n} n}{n-\ln n}} \leqslant \lim _{n \rightarrow \infty} \frac{\frac{1}{x}}{1-\frac{1}{x}}=\lim _{n \rightarrow \infty}\left(\frac{\frac{1}{x}}{1-\frac{1}{x}}\right)\left(\frac{x}{\frac{1}{x}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{x-1}=0
\end{aligned}
$$

by Alternating series Jest, $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln x}{x-\ln x}$ converges but for $n \geq 1, \sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series and it diverges

$$
\begin{aligned}
& n-\ln n<n \\
& \frac{1}{n-\ln n}>\frac{1}{n} \\
& \quad \frac{\ln n}{n-\ln n}>\frac{1}{n} \\
& \sum_{n=1}^{\infty} \frac{\ln n}{n-\ln n}>\sum_{n=1}^{\infty} \frac{1}{n}
\end{aligned}
$$

by Direct comparison Lest, $\sum_{n=1}^{\infty} \frac{\ln n}{n-\ln n}=\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges
Therefore $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n-\ln x}$ converges conditionaly
32)

$$
\sum_{n=1}^{\infty}(-5)^{-n} \quad a_{n}=(-5)^{-n} \quad\left|a_{n}\right|=5^{-n}=\frac{1}{5^{n}}=\left(\frac{1}{5}\right)^{n}
$$

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^{n}=\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)\left(\frac{1}{5}\right)^{n-1} \text { is a geometric series }
$$ with $a=\frac{1}{5}$ and $\Omega=\frac{1}{5}$. It converges because $|n|=\left|\frac{1}{5}\right|<1$ since $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-5)^{-n}$ converges absolutely

$$
\text { 34) } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1} \quad a_{n}=\frac{(-1)^{n-1}}{n^{2}+2 n+1} \quad\left|a_{n}\right|=\frac{1}{n^{2}+2 n+1}
$$

$$
\text { for } n=1
$$

$$
\begin{gathered}
n^{2}+2 n+1>n^{2} \\
4
\end{gathered}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { is a } p \text {-series and }
$$

it converges because $p=2>1$

$$
0<\frac{1}{n^{2}+2 n+1}<\frac{1}{n^{2}}
$$

$$
0<\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n+1}<\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Since $0<\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n+1}<\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by Slirect Comparison test $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n+1}$ comorges
Therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}$ converges absolutely
36)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\cos n x}{n} \quad \text { |a } n \geq 1 \sum_{n=1}^{\infty} \frac{\cos (n x)}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \\
& a_{n}=\frac{(-1)^{n}}{n} \quad\left|a_{n}\right|=\frac{1}{n}=\mu_{n}
\end{aligned}
$$

(1) for $n \geq 1 \quad \mu_{n}=\frac{1}{n}>0$
(2) and $\mu_{n}=\frac{1}{n}>\mu_{n+1}=\frac{1}{n+1}>0$
(3) $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
by Alternating series test, $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series and it diverges because $\rho=1 \leq 1$
Therefore, $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n}$ converges conditionally

$$
\begin{aligned}
& \text { 38) } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n!)^{2}}{(2 n)!} \quad a_{n}=\frac{(-1)^{n+1}(n!)^{2}}{(2 n)!} \quad\left|a_{n}\right|=\frac{(n!)^{2}}{(2 n)!} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{((n+1)!)^{2}}{(2(n+1)!}}{\frac{(n))^{2}}{(2 n)!}}\right|=\lim _{n \rightarrow \infty}\left(\frac{((n+1)!)^{2}}{(2 n+2)!}\right)\left(\frac{\left(2_{n}\right)!}{(n!)^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}(n!)^{2}}{(2 n+2)(2 n+1)(2 n)!}\right)\left(\frac{(2 n)!!}{\left.(n!)^{2}\right)}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+2)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{\left(n_{n}+26+2\right.}\right.
\end{aligned}
$$

by Ratio test $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\left(n_{n}!\right)^{n}}{(2 n)!}$ converges absolutely
40) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{2} 3^{n}}{(2 n+1)!} \quad a_{n}=(-1)^{n} \frac{(n!)^{2} 3^{n}}{(2 n+1)!} \quad\left|a_{n}\right|=\frac{(n!)^{2} 3^{n}}{(2 n+1)!}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{((n+1)!)^{2} 3^{n+1}}{(2(n+1)+1)!}}{\frac{(n!)^{2} 3^{n}}{(2 n+1)!}}\right|=\lim _{n \rightarrow \infty}\left(\frac{((n+1)!)^{2} 3^{n+1}}{(2 n+3)!}\right)\left(\frac{(2 n+1)!}{(n!)^{2} 3^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{((n+1) n!)^{2}\left(3^{n}\right)\left(3^{1}\right)}{(2 n+3)(2 n+2)(2 n+1)!}\right)\left(\frac{(2 n+1)!}{(n!)^{2} 3^{n}}\right)=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}(3)}{(2 n+3)(2 n+2)} \\
& =\lim _{n \rightarrow \infty} \frac{3 n^{2}+6 n+3}{4 n^{2}+10 n+6}=\lim _{n \rightarrow \infty} \frac{\frac{3 n^{2}}{n^{2}}+\frac{6 n}{n^{2}}+\frac{3}{n^{2}}}{\frac{4 n^{2}}{n^{2}}+\frac{10 n}{n^{2}}+\frac{6}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{3+\frac{6}{n}+\frac{3}{n^{2}}}{4+\frac{10}{n}+\frac{6}{n^{2}}} \\
& =\frac{3+0+0}{4+0+0}=\frac{3}{4}<1
\end{aligned}
$$

by the Ratio Lest, $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{2} 3^{n}}{(2 n+1)!}$ converges absolutely

$$
\begin{aligned}
& \text { 42) } \sum_{n=1}^{\infty}(-1)^{n}\left(\sqrt{x^{2}+n}-n\right) \quad a_{n}=(-1)^{n}\left(\sqrt{n^{2}+x}-n\right) \quad\left|a_{n}\right|=\left(\sqrt{n^{2}+x}-x\right) \\
& \lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)=\lim _{n \rightarrow \infty}\left(\frac{\sqrt{n^{2}+n}-r}{1}\right)\left(\frac{\sqrt{n^{2}+x}+n}{\sqrt{n^{2}+x}+x}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\left(x^{2}+x\right)-\left(n^{2}\right)}{\sqrt{x^{2}+x}+x}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+n}+x}=\lim _{x \rightarrow \infty} \frac{\frac{x}{\sqrt{n^{2}}}}{\frac{\sqrt{x^{2}+x}+n}{\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{n}{x}}{\frac{\sqrt{n^{2}+x}}{\sqrt{n^{2}}}+\frac{n}{\sqrt{n^{2}}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}}{x^{2}}+\frac{n}{x^{2}}}+\frac{n}{x}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{2} \neq 0
\end{aligned}
$$

by the n th-Lerm Lest for Llivergence, $\sum_{n=1}^{\infty}(-1)^{n}\left(\sqrt{n^{2}+\pi}-n\right)$ diverges
44) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}+\sqrt{n+1}} \quad a_{n}=\frac{(-1)^{n}}{\sqrt{n}+\sqrt{n+1}} \quad\left|a_{n}\right|=\frac{1}{\sqrt{n}+\sqrt{n+1}}=\mu_{n}$
(1) for $n \geq 1 \quad \mu_{n}=\frac{1}{\sqrt{n}+\sqrt{n+1}}>0$
(2) and $\mu_{n}=\frac{1}{\sqrt{n}+\sqrt{n+1}}>\mu_{n+1}=\frac{1}{\sqrt{n+1}+\sqrt{n+2}}>0$
(3) $\lim _{n \rightarrow \infty} \mu_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}=0$
by Alternating decries Lest, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}+\sqrt{n+1}}$ converges but for $n \geq 1 \sqrt{n}+\sqrt{n+1}>\sqrt{n} \Rightarrow \frac{1}{\sqrt{n}+\sqrt{n+1}}<\frac{1}{\sqrt{n}}$

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}<\sum_{n=1}^{\infty} \frac{1}{\sqrt{n-1}}=\sum_{n=1}^{\infty} \frac{1}{\operatorname{len}_{n-1}^{n} \mid}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ is a p-series and it diverges because $\sum_{n=\frac{1}{2} \leq 1}^{n+1}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|b_{n-}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n}+\sqrt{n+1}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\left(\frac{\sqrt{n}}{1}\right)=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n}+\sqrt{n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\frac{\sqrt{n}}{\sqrt{n}}+\frac{\sqrt{n+1}}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{\frac{n}{n}+\frac{1}{n}}}=\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{1+\frac{1}{n}}}=\frac{1}{1+\sqrt{1+0}}=\frac{1}{2} \neq 0
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n}\right|}=\frac{1}{2} \neq 0$ and $\sum_{n=1}^{\infty}\left|b_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges by Limit Comparison Lest, $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+\sqrt{n+1}}}$ diverges Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}+\sqrt{n+1}}$ converges conditionaly
46) $\sum_{n=1}^{\infty}(-1)^{n} \cosh n=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sinh n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\left(\frac{e^{n}-e^{-n}}{2}\right)}=\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2}{e^{n}-e^{-n}}\right)$

$$
a_{n}=(-1)^{n}\left(\frac{2}{e^{n}-e^{n}}\right) \quad\left|a_{n}\right|=\frac{2}{e^{n}-e^{-n}}
$$

for $n \geq 1 \quad e^{n}-e^{-n}<e^{n} \Rightarrow \frac{1}{e^{n}-e^{-x}}>\frac{1}{e^{n}} \Rightarrow \frac{2}{e^{n} \cdot e^{-n}}>\frac{2}{e^{n}}$

$$
\sum_{n=1}^{\infty} \frac{2}{\left.e^{\frac{e^{n}}{\mid \alpha-e^{-n}}}>\sum_{n=1}^{\infty} \frac{2}{e^{n}} \right\rvert\, \frac{e^{n} \mid}{|+n|}}
$$

$\sum_{n=1}^{\infty} \frac{2}{e^{n}}=\sum_{n=1}^{\infty} \frac{2}{e}\left(\frac{1}{e}\right)^{n-1}$ this is a geometric series with $a=\frac{2}{e}$ and $\Omega=\frac{1}{e}$
and this is convergent because $|\Omega|=\left|\frac{1}{e}\right|<1$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|b_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{2}{e^{n}-e^{-x}}}{\frac{2}{e^{x}}}=\lim _{n \rightarrow \infty}\left(\frac{2}{e^{n}-e^{-x}}\right)\left(\frac{e^{n}}{2}\right)=\lim _{n \rightarrow \infty} \frac{e^{x}}{e^{n}-e^{-x}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{\left.\frac{e^{n}}{\left(\frac{1}{x}\right.}\right)\left(\frac{1}{1}-\frac{1}{e^{n}}\right.}{\frac{e^{n}}{\frac{1}{e^{n}}}}\right)^{2}=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{1}{e^{2 n}}}=\frac{1}{1-0}=1 \neq 0
\end{aligned}
$$

since $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|b_{n}\right|}=1 \neq 0$ and $\sum_{n=1}^{\infty}\left|b_{n}\right|=\sum_{n=1}^{\infty} \frac{2}{e^{n}}$ converges by Limit Comparison test, $\sum_{n=1}^{\infty}\left(a_{n}\right)=\sum_{n=1}^{\infty} \frac{2}{e^{n}-e^{-n}}$ converges

Therefore, $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2}{e^{n}-e^{-n}}\right)=\sum_{n=1}^{\infty}(-1)^{n} \operatorname{csch}_{n}$
comerges absolutely
48)

$$
\begin{aligned}
& 1+\frac{1}{4}-\frac{1}{9}-\frac{1}{16}+\frac{1}{25}+\frac{1}{36}-\frac{1}{49}-\frac{1}{64}+\cdots=\sum_{n=1}^{\infty} a_{n} \\
& 1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\frac{1}{64}+\cdots=\sum_{n=1}^{\infty}\left(a_{n}\right)
\end{aligned}
$$

$\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ this is p-series
and it converges because $\varphi=2>1$ \{absolute $\begin{array}{r}\text { comergence }\end{array}$ comergence\} $\sum_{n=1}^{\infty} a_{n}$ comerges because absolute convergence implies convergence.
50) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{10^{n}}$

5 th term will be when $n=5$

$$
\begin{gathered}
\mid \text { enow }\left|<\left|(-1)^{(5)+1} \frac{1}{10^{(5)}}\right|=\left|(-1)^{6} \frac{1}{100000}\right|\right. \\
=\frac{1}{100000}=0.00001
\end{gathered}
$$

52) $\frac{1}{1+t}=\sum_{n=0}^{\infty}(-1)^{n} t^{n}, 0<t<1$

5 th term will be when $n=4$
leno $\left|<\left|(-1)^{(4)} t^{(4)}\right|=t^{4}<1\right.$
because $0<t<1$
64) $\sum_{n=2}^{\infty} \frac{3}{10+n^{4 / 3}}$
for $x \geq 2 \quad 10+x^{4 / 3}>x^{\frac{4}{3}} \Rightarrow \frac{1}{10+n^{4 / 3}}<\frac{1}{n^{4 / 3}}$

$$
\Rightarrow \frac{3}{10+n^{4 / 3}}<\frac{3}{n^{4 / 3}} \Rightarrow 0<\sum_{n=2}^{\infty} \frac{3}{10+n^{4 / 3}}<\sum_{n=2}^{\infty} \frac{3}{n^{4 / 3}}
$$

$\sum_{n=2}^{\infty} \frac{3}{n^{4 / 3}}$ is a past of p-series that converges because $\rho=\frac{4}{3}>1$ so $\sum_{n=2}^{\infty} \frac{3}{n^{4 / 3}}$ converges since $0<\sum_{n=2}^{\infty} \frac{3}{10+n^{4 / 3}}<\sum_{n=2}^{\infty} \frac{3}{n^{4 / 3}}$ and $\sum_{n=2}^{\infty} \frac{3}{n^{4 / 3}}$ converges by Direct Comparison Lest, $\sum_{n=2}^{\infty} \frac{3}{10+n^{4 / 3}}$ converges

$$
\text { 68) } \sum_{n=0}^{\infty} \frac{n+1}{(n+2)!}\left(\frac{3}{2}\right)^{n} \quad a_{n}=\frac{n+1}{(n+2)!}\left(\frac{3}{2}\right)^{n} \quad\left|a_{n}\right|=\frac{n+1}{(n+2)!}\left(\frac{3}{2}\right)^{n}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)+1}{((n+1)+2)!}\left(\frac{3}{2}\right)^{n+1}}{\frac{n+1}{(n+2)!}\left(\frac{3}{2}\right)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+2}{(n+3)!}\left(\frac{3}{2}\right)^{n+1}\right)\left(\frac{(n+2)!}{n+1}\left(\frac{2}{3}\right)^{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{n+2}{(n+3)(n+2)!}\left(\frac{3}{2}\right)^{n}\left(\frac{3}{2}\right)^{1}\right)\left(\frac{(n+2)!}{n+1}\left(\frac{2}{3}\right)^{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{n+2}{(n+3)(n+1)}\right)\left(\frac{3}{2}\right)^{n} \\
& =\lim _{n \rightarrow \infty} \frac{3 n+6}{2 n^{2}+8 n+6} \leq \lim _{n \rightarrow \infty} \frac{3}{4 n+8}=0<1
\end{aligned}
$$

by Ratio Lest, $\sum_{n=0}^{\infty} \frac{n+1}{(n+2)!}\left(\frac{3}{2}\right)^{n}$ converges
76)

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\frac{\ln n}{n}\right)^{3} \quad a_{n}=\left(\frac{\ln n}{n}\right)^{3} \\
& \text { for } n \geq 2 \quad \ln n>1 \Rightarrow \frac{\ln n}{n}>\frac{1}{n} \Rightarrow\left(\frac{\ln x}{n}\right)^{3}>\frac{1}{n^{3}} \\
& \\
& \sum_{n=2}^{\infty}\left(\frac{\ln x}{n}\right)^{3}>\sum_{n=2}^{\infty} \frac{1}{n^{3}}
\end{aligned}
$$

$\sum_{n=2}^{\infty} \frac{1}{n^{3}}$ is a p-series; because $p=3>1$, it converges.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}=\frac{1}{n^{3}}}{l_{n}}=\lim _{n \rightarrow \infty} \frac{(\ln n)^{3}}{\frac{1}{n^{3}}}=\lim _{n \rightarrow \infty}\left(\frac{\ln n}{n}\right)^{3}\left(\frac{n^{3}}{1}\right)=\lim _{n \rightarrow \infty}(\ln n)^{3}=+\infty
$$

since $\sum_{n=2}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges and $\lim _{n \rightarrow \infty} \frac{a_{n}}{l_{n}}=+\infty$ the Limit Comparison Lest is inconclusive so we seed to use a different $\sum_{n=2}^{\infty} b_{n}$
let $\sum_{n=2}^{\infty} b_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ which is a convergent P-series

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{l_{n}}=\lim _{n \rightarrow \infty} \frac{\left(\frac{\ln _{n} n}{n}\right)^{3}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty}\left(\frac{\ln n}{n}\right)^{3}\left(\frac{n^{2}}{1}\right)=\lim _{n \rightarrow \infty} \frac{(\ln n)^{3}}{n_{1}^{n}} \\
& \triangleq \lim _{n \rightarrow \infty} \frac{3(\ln n)^{2}\left(\frac{1}{n}\right)}{1}=\lim _{n \rightarrow \infty} \frac{3\left(\ln _{n} n\right)^{2}}{+\infty} \leqslant \lim _{n \rightarrow \infty} \frac{6(\ln n)\left(\frac{1}{n}\right)}{1}=\lim _{n \rightarrow \infty} \frac{6\left(\ln _{n}\right)}{1+\infty^{+}} \\
& \leq \lim _{n \rightarrow \infty} \frac{6\left(\frac{1}{n}\right)}{1}=\lim _{n \rightarrow \infty} \frac{6}{n}=0
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{a_{k}}{l_{n}}=0$ and $\sum_{n=2}^{\infty} b_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ comerges by Limit Comparison test, $\sum_{n=2}^{\infty}\left(\frac{h_{n}}{n}\right)^{3}$ converges

