Corollary of Theorem 6

A series $\sum_{n=1}^{\infty} a_{n}$ of nonnegative terms converges if and only if its partial sums are bounded from above.
$\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$ this is harmonic series and this series diverges.

Theorem 9 - The Integral Test

Let $\left\{a_{n}\right\}$ be a sequence of positive terms. Suppose that $a_{n}=f(n)$, where f is a continuous, positive, decreasing function of x for all $x \geq N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_{n}$ and the integral $\int_{N}^{\infty} f(x) d x$ both converge or both diverge.

The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\cdots$ converges if $p>1$, diverges if $p \leq 1$.

Bounds for the Remainder in the Integral Test

Suppose $\left\{a_{n}\right\}$ is a sequence of positive terms with $a_{k}=f(k)$, where f is a continuous positive decreasing function of x for all $x \geq n$, and that $\sum a_{n}$ converges to S. Then the remainder $R_{n}=S-s_{n}$ satisfies the inequalities

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

4) $\sum_{n=1}^{\infty} \frac{1}{n+4}$
$f(x)=\frac{1}{x+4}$ is positive, continuous, and decreasing for $x \geq 1$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x+4} d x & =\lim _{v \rightarrow \infty} \int_{1}^{v} \frac{1}{x+4} d x=\lim _{v \rightarrow \infty}[\ln |x+4|+c]_{1}^{v} \\
& =\lim _{v \rightarrow \infty}\{[\underbrace{\ln |v+4|}_{+\infty}+c]-[\ln |(1)+4|+c]\}=\infty
\end{aligned}
$$

Since $\int_{1}^{\infty} \frac{1}{x+4} d x$ diverges, $\sum_{n=1}^{\infty} \frac{1}{n+4}$ diverges
8) $\sum_{n=2}^{\infty} \frac{\ln \left(n^{2}\right)}{n}$
$f(x)=\frac{\ln \left(x^{2}\right)}{x}$ is positive and continuous for $x \geq 2$

$$
\frac{d P}{d x}=\frac{(x)\left[\frac{1}{x^{2}}(2 x)\right]-\left(\ln \left(x^{2}\right)\right)[1]}{(x)^{2}}=\frac{2-\ln \left(x^{2}\right)}{x^{2}}
$$

$\frac{d P}{d x}<0$ for $x>e$ so $f(x)$ is decreasing for $x \geqslant 3$

$$
\left.\begin{array}{l}
p=\ln \left(x^{2}\right) \quad \quad \int \frac{\ln \left(x^{2}\right)}{x} d x=\int p\left(2 d_{p}\right)=p+c=\ln \left(x^{2}\right)+c \\
d p=\frac{1}{x^{2}}(2 x) d x \Rightarrow 2 d p=\frac{1}{x} d x \\
\int_{3}^{\infty} \frac{\ln \left(x^{2}\right)}{x} d x
\end{array}\right)=\lim _{v \rightarrow \infty} \int_{3}^{v} \frac{\ln \left(x^{2}\right)}{x} d x=\lim _{v \rightarrow \infty}\left[\ln \left(x^{2}\right)+c\right]_{3}^{u} .
$$

since $\int_{3}^{\infty} \frac{\ln \left(x^{2}\right)}{x} d x$ diverges, $\sum_{n=2}^{\infty} \frac{\ln \left(n^{2}\right)}{n}=\frac{\ln \left((2)^{2}\right)}{(2)}+\underbrace{\infty}_{\text {diverges }} \frac{\ln \left(n^{2}\right)}{n}$ and $\sum_{n=2}^{\infty} \frac{\ln \left(n^{2}\right)}{n}$ diverges
10) $\sum_{n=2}^{\infty} \frac{n-4}{n^{2}-2 n+1}=\sum_{n=2}^{\infty} \frac{n-4}{(n-1)^{2}}$
$f(x)=\frac{x-4}{x^{2}-2 x+1}=\frac{x-4}{(x-1)^{2}}$ is continuous for $x \geq 2$ and $f(x)>0$ for $x>4$

$$
\frac{d \rho}{d x}=\frac{\left((x-1)^{2}\right)[1]-(x-4)\left[2(x-1)^{\prime}(11]\right.}{\left((x-1)^{2}\right)^{2}}=\frac{(x-1)\{(x-1)(1]-(x-4)[2]\}}{(x-1)^{4}}=\frac{x-1-2 x+8}{(x-1)^{3}}=\frac{7-x}{(x-1)^{3}}
$$

$\frac{d P}{d x}<0$ for $x<7$ and $l(x)$ in decreasing for $x \geq 8$.

$$
\begin{aligned}
\int \frac{x-4}{(x-1)^{2}} d x & =\int \frac{x-1-3}{(x-1)^{2}} d x=\int\left(\frac{x-1}{(x-1)^{2}}-\frac{3}{(x-1)^{2}}\right) d x=\int\left(\frac{1}{x-1}-\frac{3}{(x-1)^{2}}\right) d x \\
& =\ln |x-1|+\frac{3}{x-1}+C \\
\int_{8}^{\infty} \frac{x-4}{(x-1)^{2}} d x & =\lim _{v \rightarrow \infty} \int_{8}^{v} \frac{x-4}{(x-1)^{2}} d x=\lim _{v \rightarrow \infty}\left[\ln |x-1|+\frac{3}{x-1}+C\right]_{8}^{u} \\
& =\lim _{u \rightarrow \infty}\{[\underbrace{\ln |v-1|}_{+\infty}+\frac{3}{v-1}+C]-\left[\ln |(8)-1|+\frac{3}{(8)-1}+C\right]\}=+\infty
\end{aligned}
$$

since $\int_{8}^{\infty} \frac{x-4}{(x-1)^{2}} d x$ diverges,

$$
\begin{gathered}
\sum_{n=2}^{\infty} \frac{n-4}{n^{2}-2 n+1}=\left(\frac{(2)-4}{(2)^{2}-2(2)+1}\right)+\left(\frac{(3)-4}{\left((3)^{2}-2(3)+1\right.}\right)+\left(\frac{(4)-4}{(4)^{2}-2(4)+1}\right)+\left(\frac{(5)-4}{(5)^{2}-2(5)+1}\right) \\
+\left(\frac{(6)-4}{(6)^{2}-2(6)+1}\right)+\left(\frac{(7)-4}{\left((7)^{2}-2(7)+1\right.}\right)+\underbrace{\sum_{n=8}^{\infty} \frac{n-4}{n^{2}-2 n+1}}_{\text {diverges }}
\end{gathered}
$$

and $\sum_{n=2}^{\infty} \frac{n-4}{n^{2}-2 n+1}$ diverges
14)

$$
\begin{aligned}
\sum_{n=1}^{\infty} e^{-n}=\sum_{n=1}^{\infty} \frac{1}{e^{n}} & =\frac{1}{e^{1}}+\frac{1}{e^{2}}+\frac{1}{e^{3}}+\cdots+\frac{1}{e^{n}}+\cdots \\
& =\frac{1}{e}(1)+\frac{1}{e}\left(\frac{1}{e}\right)^{\prime}+\frac{1}{e}\left(\frac{1}{e}\right)^{2}+\cdots+\frac{1}{e}\left(\frac{1}{e}\right)^{n-1}+\cdots
\end{aligned}
$$

this is a geometric series with $a=\frac{1}{e}$ and $\Omega=\frac{1}{e}$ since $\left.|r|=\left|\frac{1}{e}\right| c \right\rvert\,$, the series converges
16) $\sum_{n=1}^{\infty} \frac{5}{n+1}$
use the integral test, $P(x)=\frac{5}{x+1}$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{5}{x+1} d x & =\lim _{v \rightarrow \infty} \int_{1}^{v} \frac{5}{x+1} d x=\lim _{v \rightarrow \infty}[5 \ln |x+1|+c]_{1}^{v} \\
& =\lim _{v \rightarrow \infty}\{[\underbrace{\ln |v+1|+c]-[5 \ln |(1)+1|+c]\}=+\infty}_{+\infty}
\end{aligned}
$$

since $\int_{1}^{\infty} \frac{5}{x+1} d x$ diverges, $\sum_{n=1}^{\infty} \frac{5}{n+1}$ diverges
18) $\sum_{n=1}^{\infty} \frac{-2}{n \sqrt{n}}=\sum_{n=1}^{\infty} \frac{-2}{n^{3 / 2}}=-2 \sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ this is a p-series

$$
=-2\left\{\frac{1}{(1)^{3 / 2}}+\frac{1}{(2)^{1 / 2}}+\frac{1}{(3)^{3 / 2}}+\cdots+\frac{1}{n^{3 / 2}}+\cdots\right\}
$$

Since $\varphi=\frac{3}{2}>1$, the series converges
20) $\sum_{n=1}^{\infty} \frac{-8}{n}=-8 \sum_{n=1}^{\infty} \frac{1}{n}=-8\left\{\frac{1}{(1)^{2}}+\frac{1}{(2)}+\frac{1}{(3)}+\cdots+\frac{1}{n^{\prime}}+\cdots\right\}$
this is a p-series
since $p=1 \leq 1$, the series diverges
22) $\sum_{n=2}^{\infty} \frac{\ln n}{\sqrt{n}}$
use the integral test, $l(x)=\frac{\ln x}{\sqrt{x}}$

$$
\begin{aligned}
& \int \frac{\ln x}{\sqrt{x}} d x=(\ln x)(2 \sqrt{x})-\int(2 \sqrt{x})\left(\frac{1}{x} d x\right) \\
& \mu_{1}=\ln x \quad v_{1}=\frac{1}{\sqrt{x}} d x \quad=2 \sqrt{x} \ln x-2 \int \frac{1}{\sqrt{x}} d x \\
& d u_{1}=\frac{1}{x} d x \quad v_{1}=2 \sqrt{x} \quad \\
&=2 \sqrt{x} \ln x-2[2 \sqrt{x}]+c \\
&=2 \sqrt{x} \ln x-4 \sqrt{x}+c=2 \sqrt{x}(\ln x-2)+c \\
& \begin{aligned}
\int_{2}^{\infty} \frac{\ln x}{\sqrt{x}} d x & =\lim _{u \rightarrow \infty} \int_{2}^{u} \frac{\ln x}{\sqrt{x}} d x=\lim _{U \rightarrow \infty}[2 \sqrt{x}(\ln x-2)+c]_{2}^{v} \\
= & \lim _{u \rightarrow \infty}\{[\underbrace{2 \sqrt{v}(\ln U-2)}_{+\infty}+C]-[2 \sqrt{(2)}(\ln (2)-2)+C]\}=+\infty
\end{aligned}
\end{aligned}
$$

since $\int_{2}^{\infty} \frac{\ln x}{\sqrt{x}} d x$ diverges, $\sum_{n=2}^{\infty} \frac{\ln x}{\sqrt{n}}$ diverges
24) $\sum_{n=1}^{\infty} \frac{5^{n}}{4^{n}+3}$
use the n th-term test for divergence $\lim _{n \rightarrow \infty} \frac{5^{+\infty}}{4^{n}+3} \leq \lim _{n \rightarrow \infty} \frac{(\ln 5) 5^{n}}{(\ln 4) 4^{n}}=\lim _{n \rightarrow \infty}\left(\frac{\ln 5}{\ln 4}\right)\left(\frac{5}{4}\right)^{n}=+\infty \neq 0 \quad$ because $\frac{5}{4}>1$ the series diverges
26) $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$
use the integral test, $l(x)=\frac{1}{2 x-1}=\frac{1}{2\left(x-\frac{1}{2}\right)}$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{2\left(x-\frac{1}{2}\right)} d x & =\lim _{v \rightarrow \infty} \int_{1}^{u} \frac{1}{2\left(x-\frac{1}{2}\right)} d x=\lim _{v \rightarrow \infty}\left[\frac{1}{2} \ln \left|x-\frac{1}{2}\right|+c\right]_{1}^{0} \\
& =\lim _{v \rightarrow \infty}\{[\frac{1}{2} \underbrace{\left.\left.\ln \left|0-\frac{1}{2}\right|+c\right]-\left[\frac{1}{2} \ln \left|(1)-\frac{1}{2}\right|+c\right]\right\}=+\infty}_{+\infty}
\end{aligned}
$$

since $\int_{1}^{\infty} \frac{1}{2 x-1} d x$ diverges, $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ diverges
30) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$
use the integral test, $l(x)=\frac{1}{\sqrt{x}(\sqrt{x}+1)}$

$$
\begin{aligned}
& p=\sqrt{x}+1 \quad \int \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x \\
& d p=\frac{1}{2 \sqrt{x}} d x \Rightarrow 2 d p=\frac{1}{\sqrt{x}}(2 d p)=2 \ln |p|+c \\
&=2 \ln |\sqrt{x}+1|+c \\
& \int_{1}^{\infty} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x=\lim _{v \rightarrow \infty} \int_{1}^{v} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x=\lim _{u \rightarrow \infty}[2 \ln |\sqrt{x}+1|+c]_{1}^{v} \\
&=\lim _{v \rightarrow \infty}\left\{\left[2 \frac{\ln |\sqrt{v}+1|+c]-[2 \ln |\sqrt{(a)}+1|+c]\}=+\infty}{+\infty}\right.\right.
\end{aligned}
$$

Since $\int_{1}^{\infty} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x$ diverges, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$ diverges
32)

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(\ln 3)^{n}} & =\frac{1}{(\ln 3)^{1}}+\frac{1}{(\ln 3)^{2}}+\frac{1}{(\ln 3)^{3}}+\cdots+\frac{1}{(\ln 3)^{n}}+\cdots \\
& =\frac{1}{\ln 3}(1)+\frac{1}{\ln 3}\left(\frac{1}{\ln 3}\right)^{1}+\frac{1}{\ln 3}\left(\frac{1}{\ln 3}\right)^{2}+\cdots+\frac{1}{\ln 3}\left(\frac{1}{\ln 3}\right)^{n+1}+\cdots
\end{aligned}
$$

this is a geometric series with $a=\frac{1}{\ln 3}$ and $n=\frac{1}{\ln 3}$ since $|\Omega|=\left|\frac{1}{\sin 3}\right|<1$, the series converges
34) $\sum_{n=1}^{\infty} \frac{1}{n\left(1+\ln ^{2} n\right)}$
use the integral test, $l(x)=\frac{1}{x\left(1+\ln ^{2} x\right)}=\frac{1}{\left(1+(\ln x)^{2}\right) x}$

$$
\begin{aligned}
& p=\ln x \quad \int \frac{1}{\left(1+(\ln x)^{2}\right) x} d x=\int \frac{1}{1+p^{2}} d p=\int \frac{1}{(1)^{2}+p^{2}} d p \\
& =\frac{1}{1 p}=\frac{1}{x} d x \quad \tan ^{-1}\left(\frac{p}{1}\right)+c=\tan ^{-1}(\ln x)+c \\
& \begin{aligned}
\int_{1}^{\infty} \frac{1}{\left(1+(\ln x)^{2}\right) x} d x & =\lim _{v \rightarrow \infty} \int_{1}^{v} \frac{1}{\left(1+(\ln x)^{2}\right) x} d x=\lim _{v \rightarrow \infty}\left[\tan ^{-1}(\ln x)+c\right]_{1}^{v} \\
& =\lim _{v \rightarrow \infty}\left\{\left[\tan ^{-1}(\ln v)+c\right]-\left[\tan ^{-1}(\ln (1))+c\right]\right\} \\
& =\left[\tan ^{-1}(+\infty)\right]-\left[\tan ^{-1}(0)\right]=\left[\frac{\pi}{2}\right]-[0]=\frac{\pi}{2}
\end{aligned}
\end{aligned}
$$

the series converges
36) $\sum_{n=1}^{\infty} n \tan \frac{1}{n}$
use the nth -term test for divergence

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}(+\infty)(0) \\
& n \tan \left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\tan ^{0}\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} \leftrightharpoons \lim _{n \rightarrow \infty} \frac{\sec ^{2}\left(\frac{1}{n}\right)\left(\frac{1}{n^{2}}\right)}{\left(\frac{-1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \sec ^{2}\left(\frac{1}{n}\right) \\
&=\sec ^{2}(0)=(1)^{2}=1 \neq 0
\end{aligned}
$$

the series diverges
38) $\sum_{i=1}^{\infty} \frac{2}{1+e^{x}}$
use the integral test, $P(x)=\frac{2}{1+e^{x}}$

$$
\begin{aligned}
& p=e^{x} \Rightarrow \ln p=x \\
& \frac{1}{p} d \rho=d x \\
& \frac{2}{(\rho)^{\prime}(\rho+1)^{\prime}}=\frac{A}{(\rho)^{\prime}}+\frac{B}{(\rho+1)^{\prime}} \\
& z=A(p+1)+B(p) \\
& \begin{array}{cc}
\text { constant } \\
2=A
\end{array} \\
& \int \frac{2}{1+e^{e}} d x=\int \frac{2}{1+\phi}\left(\frac{1}{p} d \rho\right) \\
& =\int \frac{2}{p(p+1)} d p \\
& =\int\left(\frac{(2)}{(p)^{\prime}}+\frac{(-2)}{(p+1)^{\prime}}\right) d p \\
& =2 \ln |p|-2 \ln |p+1|+c \\
& =2 \ln \left|e^{x}\right|-2 \ln \left|e^{x}+1\right|+c \\
& =2 \ln \left(\frac{e^{x}}{e^{x}+1}\right)+C \\
& \int_{1}^{\infty} \frac{2}{1+e^{x}} d x=\lim _{v \rightarrow \infty} \int_{1}^{0} \frac{2}{1+e^{x}} d x=\lim _{v \rightarrow \infty}\left[2 \ln \left(\frac{e^{x}}{e^{x}+1}\right)+c\right]_{1}^{0} \\
& =\lim _{u \rightarrow \infty}\left\{\left[2 \ln \left(\frac{e^{v}}{e^{v}+1}\right)+c\right]-\left[2 \ln \left(\frac{e^{(c)}}{e^{(x)}+1}\right)+c\right]\right\} \\
& =[0]-\left[2 \ln \left(\frac{e}{e+1}\right)\right]=-2 \ln \left(\frac{e}{e+1}\right)
\end{aligned}
$$

because $\lim _{v \rightarrow \infty}\left\{2 \ln \left(\frac{e^{v}}{e^{v+1}}\right)\right\}=2 \ln \left\{\lim _{v \rightarrow \infty}\left(\frac{e^{+}}{e^{+\infty}+\infty}\right)\right\}=2 \ln \left\{\lim _{u \rightarrow \infty} \frac{e^{v}}{e^{v}}\right\}$

$$
=2 \ln \left\{\lim _{u \rightarrow \infty} 1\right\}=2 \ln \{1\}=2(0)=0
$$

the series converges
42) $\sum_{n=3}^{\infty} \frac{7}{\sqrt{n+1} \ln \sqrt{n+1}}$
use the integral test, $f(x)=\frac{7}{\sqrt{x+1} \ln \sqrt{x+1}}$
$\int \frac{7}{\sqrt{x+1} \ln \sqrt{x+1}} d x$ is not an easy integral, so we should use the Llirect Comparison Test (of integrals)
note that $\ln y<y$
4

$$
\ln \sqrt{x+1}<\sqrt{x+1}
$$

$$
\int_{3}^{\infty} \frac{7}{x+1} d x=\lim _{v \rightarrow \infty} \int_{3}^{0} \frac{7}{x+1} d x
$$

$\sqrt{x+1} \ln \sqrt{x+1}<(\sqrt{x+1})(\sqrt{x+1})=(x+1)$

$$
=\lim _{u \rightarrow \infty}[7 \ln |x+1|+c]_{3}^{u}
$$

\Downarrow

$$
\frac{1}{x+1}<\frac{1}{\sqrt{x+1} \ln \sqrt{x+1}}
$$

$$
=\lim _{v \rightarrow \infty}\{[\underbrace{7 \ln |v+1|}_{+\infty}+c]-[7 \ln |(3)+1|+c]\}
$$

\downarrow

$$
=+\infty
$$

$$
\int_{3}^{\infty} \frac{1}{x+1} d x<\int_{3}^{\infty} \frac{1}{\sqrt{x+1} \ln \sqrt{x+1}} d x
$$

$$
\int_{3}^{\infty} \frac{7}{x+1} d x<\int_{3}^{\infty} \frac{7}{\sqrt{x+1} \ln \sqrt{x+1}} d x
$$

by the Llirect Comparison Lest,

$$
+\infty=\int_{3}^{\infty} \frac{7}{x+1} d x<\int_{3}^{\infty} \frac{7}{\sqrt{x+1} \ln \sqrt{x+1}} d x=\infty
$$

Since $\int_{3}^{\infty} \frac{7}{\sqrt{x+1} \ln \sqrt{x+1}} d x$ diverges, $\sum_{n=3}^{\infty} \frac{7}{\sqrt{n+1} \ln \sqrt{n+1}}$ diverges
44) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
use the integral test, $l(x)=\frac{x}{x^{2}+1}$

$$
\begin{aligned}
& p=x^{2}+1 \quad \int \frac{x}{x^{2}+1} d x=\int \frac{1}{p}\left(\frac{1}{2} d_{p}\right)=\frac{1}{2} \ln |p|+c \\
& d p=2 x d x \Rightarrow \frac{1}{2} d p=x d x \\
& =\frac{1}{2} \ln \left|x^{2}+1\right|+c \\
& \int_{1}^{\infty} \frac{x}{x^{2}+1} d x=\lim _{u \rightarrow \infty} \int_{1}^{v} \frac{x}{x^{2}+1} d x=\lim _{v \rightarrow \infty}\left[\frac{1}{2} \ln \left|x^{2}+1\right|+c\right]_{1}^{v} \\
& =\lim _{v \rightarrow \infty}\{[\frac{1}{2} \underbrace{\ln \left|v^{2}+1\right|}_{+\infty}+c]-\left[\frac{1}{2} \ln \left|(1)^{2}+1\right|+c\right]\}=+\infty
\end{aligned}
$$

since $\int_{1}^{\infty} \frac{x}{x^{2}+1} d x$ diverges, $\sum_{n=1}^{\infty} \frac{x}{x^{2}+1}$ diverges
46) $\sum_{n=1}^{\infty} \operatorname{sech}^{2} n$
use the integral test, $f(x)=\operatorname{sech}^{2} x$

$$
\begin{aligned}
& \int_{1}^{\infty} \operatorname{sech}^{2} x d x=\lim _{v \rightarrow \infty} \int_{1}^{v} \operatorname{sech}^{2} x d x=\lim _{v \rightarrow \infty}[\tanh x+c]_{1}^{v} \\
& =\lim _{v \rightarrow \infty}\left\{\left[\frac{\tanh U}{+1}+c\right]-[\tanh (1)+c]\right\}=[1]-[\tanh 1]=1-\tanh 1
\end{aligned}
$$

the shies converges
48) $\sum_{n=3}^{\infty}\left(\frac{1}{n-1}-\frac{2 a}{n+1}\right)$
use the integral test to get started $l(x)=\frac{1}{x-1}-\frac{z_{a}}{x+1}$

$$
\begin{aligned}
& \int_{3}^{\infty}\left(\frac{1}{x-1}-\frac{2 a}{x+1}\right) d x=\lim _{u \rightarrow \infty} \int_{3}^{0}\left(\frac{1}{x-1}-\frac{2 a}{x+1}\right) d x=\lim _{v \rightarrow \infty}[\ln |x-1|-2 a \ln |x+1|+c]_{3}^{0} \\
& =\lim _{u \rightarrow \infty}\left[\ln |x-1|-\ln \left|(x+1)^{2} a\right|+c\right]_{3}^{0}=\lim _{v \rightarrow \infty}\left[\ln \left|\frac{x-1}{(x+1)^{2}}\right|+c\right]_{3}^{0} \\
& =\lim _{u \rightarrow \infty}\left\{\left[\ln \left|\frac{v-1}{(u+1)^{2 a}}\right|+C\right]-\left[\ln \left|\frac{(3)-1}{((3)+1)^{2 a}}\right|+C\right]\right\} \\
& =\lim _{u \rightarrow \infty}\left[\ln \left|\frac{u-1}{(u+1)^{2 a}}\right|\right]-\left[\ln \left|\frac{(2)}{(4)^{2 a}}\right|\right] \\
& \lim _{v \rightarrow \infty} \frac{\dot{v}^{+\infty}}{(v+1} \leq \lim _{v \rightarrow \infty} \frac{1}{v_{1+\infty}} \frac{1}{2 a(v+1)^{2 a+1}} \quad \text { if } a=\frac{1}{2} \text {, then } \lim _{v \rightarrow \infty} \frac{1}{2(v+1)^{2 a}} \\
& 2 a-1=0 \\
& =\lim _{u \rightarrow \infty} \frac{1}{\left.2(a+)^{2(t)}\right)}=\lim _{u \rightarrow \infty} \frac{1}{2(a+1)} \\
& =0 \\
& a=\frac{1}{2} \\
& \text { so } \int_{3}^{\infty}\left(\frac{1}{x-1}-\frac{2 a}{x+1}\right) d x=[0]-\left[\ln \left|\frac{2}{4^{4(x)}}\right|\right] \\
& =-\ln \left(\frac{2}{4}\right)=-\ln \left(\frac{1}{2}\right)=-\{\ln (1)-\ln (2)\} \\
& =\ln 2 \text { the series converges. }
\end{aligned}
$$

if $a<\frac{1}{2}$, then $\lim _{v \rightarrow \infty} \frac{1}{2_{a(v+1)^{2 a-1}}}=+\infty$ and the series diverges. if $a>\frac{1}{2}$, the terms of the series eventually become reesative and the Integral Lest does not apply. From that point on, however, the series behaves like a negative multiple of the harmonic series, and so the series diverge.

