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Corollary of Theorem 6 

A series  of nonnegative terms converges if and only if its partial sums are bounded from above. 
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Theorem 9 - The Integral Test 
Let {  be a sequence of positive terms.  Suppose that }na ( )na f n= , where f  is a continuous, positive, 

decreasing function of x  for all x N≥  (  a positive integer).  Then the series N n
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The p-series 
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Bounds for the Remainder in the Integral Test 
Suppose {  is a sequence of positive terms with }na ( )ka f k= , where f  is a continuous positive decreasing 
function of x  for all x n≥ , and that  converges to .  Then the remainder na∑ S n nR S s= −  satisfies the 
inequalities 
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