Definitions

Given a sequence of numbers $\left\{a_{n}\right\}$, an expression of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

is an infinite series. The number a_{n} is the $\boldsymbol{n t h}$ term of the series. The sequence $\left\{s_{n}\right\}$ defined by

$$
\begin{gathered}
s_{1}=a_{1} \\
s_{1}=a_{1} \\
s_{2}=a_{1}+a_{2} \\
\vdots \\
s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} \\
\vdots
\end{gathered}
$$

is the sequence of partial sums of the series, the number s_{n} being the \boldsymbol{n} th partial sum. If the sequence of partial sums converges to a limit L, we say that the series converges and that its sum is L. In this case, we also write

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=\sum_{n=1}^{\infty} a_{n}=L
$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.

Geometric Series

Geometric series are series of the form

$$
a+a r+a r^{2}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1}
$$

In which a and r are fixed real numbers and $a \neq 0$. The series can also be written as $\sum_{n=0}^{\infty} a r^{n}$.

If $|r| \neq 1$, we can determine the convergence or divergence of the Geometric series in the following way:

$$
\begin{aligned}
s_{n} & =a+a r+a r^{2}+\cdots+a r^{n-1} \\
r s_{n} & =a r+a r^{2}+a r^{3}+\cdots+a r^{n} \\
s_{n}-r s_{n} & =a-a r^{n} \\
s_{n}(1-r) & =a\left(1-r^{n}\right) \\
s_{n} & =\frac{a\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

If $|r|<1$, then $r^{n} \rightarrow 0$ as $n \rightarrow \infty$, so $s_{n} \rightarrow \frac{a}{1-r}$ in this case.
On the other hand, if $|r|>1$, then $\left|r^{n}\right| \rightarrow \infty$ and the series diverge.

If $|r|<1$, the geometric series $a+a r+a r^{2}+\cdots+a r^{n-1}+\cdots$ converges to $\frac{a}{1-r}$:

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad|r|<1
$$

If $|r| \geq 1$, the series diverges.

Theorem 7

If $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$.
The nth-Term Test for Divergence
$\sum_{n=1}^{\infty} a_{n}$ diverges if $\lim _{n \rightarrow \infty} a_{n}$ fails to exist or is different from zero.

Theorem 8

If $\sum a_{n}=A$: and $\sum b_{n}=B$ are convergent series, then

1. Sum Rule:

$$
\begin{aligned}
& \sum\left(a_{n}+b_{n}\right)=\sum a_{n}+\sum b_{n}=A+B \\
& \sum\left(a_{n}-b_{n}\right)=\sum a_{n}-\sum b_{n}=A-B \\
& \sum k a_{n}=k \sum a_{n}=k A \quad \quad \text { (any number } k \text {) }
\end{aligned}
$$

2. Difference Rule:
3. Constant Multiple Rule: $\quad \sum k a_{n}=k \sum a_{n}=k A$
4. Every nonzero constant multiple of a divergent series diverges.
5. If $\sum a_{n}$ converges and $\sum b_{n}$ diverges, then $\sum\left(a_{n}+b_{n}\right)$ and $\sum\left(a_{n}-b_{n}\right)$ both diverge.

$$
\begin{aligned}
& \text { 2) } \frac{9}{100}+\frac{9}{100^{2}}+\frac{9}{100^{3}}+\cdots+\frac{9}{100^{n}} \\
& s_{n}=\frac{9}{100}(1)+\frac{9}{100}\left(\frac{1}{100}\right)+\frac{9}{100}\left(\frac{1}{100}\right)^{2}+\cdots+\frac{9}{100}\left(\frac{1}{100}\right)^{n-1} \\
& \Omega A_{n}=\left(\frac{1}{100}\right) A_{n}=\frac{9}{100}\left(\frac{1}{100}\right)+\frac{9}{100}\left(\frac{1}{100}\right)^{2}+\frac{9}{100}\left(\frac{1}{100}\right)^{3}+\cdots+\frac{9}{100}\left(\frac{1}{100}\right)^{n} \\
& \Delta_{n}-\Omega A_{n}=A_{n}-\left(\frac{1}{100}\right) A_{n}=\frac{9}{100}(1)-\frac{9}{100}\left(\frac{1}{100}\right)^{n} \\
& s_{\lambda}\left(1-\frac{1}{100}\right)=\frac{9}{100}\left(1-\left(\frac{1}{100}\right)^{n}\right) \\
& s_{n}=\frac{\frac{9}{100}\left(1-\left(\frac{1}{100}\right)^{n}\right)}{\left(1-\frac{1}{100}\right)} \\
& \lim _{n \rightarrow \infty} s_{n}=\lim _{x \rightarrow \infty} \frac{\frac{9}{100}\left(1-\left(\frac{1}{100}\right)^{n}\right)}{\left(1-\frac{1}{100}\right)}=\frac{\frac{9}{100}(1-0)}{1-\frac{1}{100}}=\frac{\frac{9}{100}}{\frac{99}{100}}=\frac{9}{99}=\frac{1}{11}
\end{aligned}
$$

6) $\frac{5}{1 \cdot 2}+\frac{5}{2 \cdot 3}+\frac{5}{3 \cdot 4}+\cdots+\frac{5}{n(n+1)}+\cdots \quad \frac{5}{n(n+1)}=\frac{5}{n}-\frac{5}{n+1}$

$$
\begin{aligned}
& s_{n}=\frac{5}{1(1+1)}+\frac{5}{2(2+1)}+\frac{5}{3(3+1)}+\cdots+\frac{5}{n(n+1)} \\
& s_{n}=\left(\frac{5}{1}-\frac{5}{(1+1)}\right)+\left(\frac{5}{2}-\frac{5}{(2+1)}\right)+\left(\frac{5}{3}-\frac{5}{(3+1)}\right)+\cdots+\left(\frac{5}{n}-\frac{5}{(n+1)}\right) \\
& s_{n}=\left(5-\frac{5}{2}\right)+\left(\frac{5}{2}-\frac{5}{3}\right)+\left(\frac{5}{3}-\frac{5}{4}\right)+\cdots+\left(\frac{5}{n}-\frac{5}{n+1}\right) \\
& s_{n}=5-\frac{5}{n+1} \\
& \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(5-\frac{5}{n+1}\right)=5-0=5
\end{aligned}
$$

8)

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{1}{4^{n}}=\frac{1}{4^{2}}+\frac{1}{4^{3}}+\frac{1}{4^{4}}+\frac{1}{4^{5}}+\frac{1}{4^{6}}+\frac{1}{4^{7}}+\frac{1}{4^{8}}+\frac{1}{4^{9}}+\cdots+\frac{1}{4^{n}}+\cdots \\
& A_{n}=\frac{1}{4^{2}}(1)+\frac{1}{4^{2}}\left(\frac{1}{4}\right)+\frac{1}{4^{2}}\left(\frac{1}{4}\right)^{2}+\frac{1}{4^{2}}\left(\frac{1}{4}\right)^{3}+\cdots+\frac{1}{4^{2}}\left(\frac{1}{4}\right)^{n-1} \\
& +1
\end{aligned}
$$

this is a geometric series with $a=\frac{1}{4^{2}}=\frac{1}{16}$ and $n=\frac{1}{4}$. since $\left|\frac{1}{4}\right|=|n / c|$ the sum is $\frac{a}{1-n}=\frac{\left(\frac{1}{16}\right)}{1-\left(\frac{1}{4}\right)}=\frac{\frac{1}{16}}{\frac{3}{4}}=\left(\frac{1}{16}\right)\left(\frac{4}{3}\right)=\frac{1}{12}$
10)

$$
\begin{aligned}
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}} & =(-1)^{0} \frac{5}{4^{0}}+(-1)^{1} \frac{5}{4^{1}}+(-1)^{2} \frac{5}{4^{2}}+(-1)^{3} \frac{5}{4^{3}}+(-1)^{4} \frac{5}{4^{4}}+(-1)^{5} \frac{5}{4^{5}}+(-1)^{6} \frac{5}{4^{6}}+(-1)^{7} \frac{5}{4^{7}}+\cdots \\
& =5(1)+5\left(\frac{-1}{4}\right)+5\left(\frac{-1}{4}\right)^{2}+5\left(\frac{-1}{4}\right)^{3}+5\left(\frac{-1}{4}\right)^{4}+5\left(\frac{-1}{4}\right)^{5}+(5)\left(\frac{-1}{4}\right)^{6}+(5)\left(\frac{-1}{4}\right)^{7}+\cdots
\end{aligned} \\
A_{n}=5(1)+5\left(\frac{-1}{4}\right)+5\left(\frac{-1}{4}\right)^{2}+\cdots+5\left(\frac{-1}{4}\right)^{n-1}
\end{aligned}
$$

this is a geometric series with $a=5$ and $n=\frac{-1}{4}$.
since $\left|\frac{-1}{4}\right|=\mid n /<1$. The sum is $\frac{a}{1-n}=\frac{(5)}{1-\left(-\frac{1}{4}\right)}=\frac{5}{\frac{5}{4}}=\left(\frac{5}{1}\right)\left(\frac{4}{5}\right)=4$
12) $\sum_{x=0}^{\infty}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}-\frac{1}{3^{n}}\right)=\left(\frac{5}{2^{0}}-\frac{1}{3^{0}}\right)+\left(\frac{5}{2^{6}}-\frac{1}{3^{4}}\right)+\left(\frac{5}{2^{2}}-\frac{1}{3^{2}}\right)+\left(\frac{5}{2^{3}}-\frac{1}{3^{3}}\right)+\left(\frac{5}{2^{4}}-\frac{1}{3^{4}}\right)+\left(\frac{5}{2^{5}}-\frac{1}{3^{5}}\right) \\
&+\left(\frac{5}{2^{6}}-\frac{1}{3^{6}}\right)+\left(\frac{5}{2^{7}}-\frac{1}{3^{7}}\right)+\cdots \\
&= \underbrace{\frac{5}{2^{0}}+\frac{5}{2^{1}}+\frac{5}{2^{2}}+\frac{5}{2^{3}}+\frac{5}{2^{4}}+\frac{5}{2^{5}}+\frac{5}{2^{6}}+\frac{5}{2^{7}}+\cdots}_{x_{n}}-\underbrace{\left(\frac{1}{3^{0}}+\frac{1}{3^{1}}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}+\cdots\right)}_{A_{n}} \\
& A_{n}=5(1)+5\left(\frac{1}{2^{2}}\right)+5\left(\frac{1}{2}\right)^{2}+\cdots+5\left(\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

this is a geometric series with $a=5$ and $n=\frac{1}{2}$ since $\left.\left|\frac{1}{2}\right|=|n| c \right\rvert\,$ the sum in $\frac{a}{1-n}=\frac{(5)}{1-\left(\frac{1}{2}\right)}=\frac{5}{\frac{1}{2}}=10$
12) continued

$$
t_{n}=(1)+\left(\frac{1}{3}\right)^{1}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{n-1}
$$

this is a geometric series with $a=1$ and $n=\frac{1}{3}$
Since $\left(\frac{1}{3}|=|n| c|\right.$ the sum is $\frac{a}{1-n}=\frac{(1)}{1-\left(\frac{1}{3}\right)}=\frac{1}{\frac{2}{3}}=\frac{3}{2}$ the original series is a difference of 2 geometric series that converges; therefore, the sum is $(10)-\left(\frac{3}{2}\right)=\frac{23}{2}$
14)

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\frac{2^{n+1}}{5^{n}}\right)=\frac{2^{0+1}}{5^{0}}+\frac{2^{1+1}}{5^{1}}+\frac{2^{2+1}}{5^{2}}+\frac{2^{3+1}}{5^{3}}+\frac{2^{4+1}}{5^{4}}+\frac{2^{5+1}}{5^{5}}+\frac{2^{6+1}}{5^{6}}+\frac{2^{7+1}}{5^{7}} \\
& s_{n}=2(1)+2\left(\frac{2}{5}\right)^{1}+2\left(\frac{2}{5}\right)^{2}+\cdots+2\left(\frac{2}{5}\right)^{n-1}
\end{aligned}
$$

this is a geometric series with $a=2$ and $n=\frac{2}{5}$
since $\left.\left|\frac{2}{5}\right|=|\Omega| c \right\rvert\,$ the sum is $\frac{a}{1-2}=\frac{(2)}{1-\left(\frac{2}{5}\right)}=\frac{2}{\frac{3}{5}}=\frac{10}{3}$
16) $1+(-3)+(-3)^{2}+(-3)^{3}+(-3)^{4}+\cdots$
this series is geometric with $a=1$ and $s=-3$
since $|-3|=|n|>1$ the series diverge
(18) $\overline{\left(\frac{-2}{3}\right)^{2}}+\overline{\left(\frac{-2}{3}\right)^{3}}+\overline{\left(\frac{-2}{3}\right)^{4}+\left(\frac{-2}{3}\right)^{5}+\left(\frac{-2}{3}\right)^{6}}+\cdots$

$$
\left(\frac{-2}{3}\right)^{2}(1)+\left(\frac{-2}{3}\right)^{2}\left(\frac{-2}{3}\right)+\left(\frac{-2}{3}\right)^{2}\left(\frac{-2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{2}\left(\frac{-2}{3}\right)^{3}+\cdots+\left(\frac{-2}{3}\right)^{2}\left(\frac{-2}{3}\right)^{n-1}+\cdots
$$

thin series is geometric with $a=\left(\frac{-2}{3}\right)^{2}=\frac{4}{9}$ and $n=\frac{-2}{3}$ since $\left|\frac{-2}{3}\right|=|n|<\mid$ the series converges to $\frac{a}{1-n}=\frac{\left(\frac{4}{9}\right)}{1-\left(\frac{-2}{2}\right)}=\frac{\frac{4}{9}}{3}=\frac{4}{15}$
20)

$$
\begin{aligned}
& \left(\frac{1}{3}\right)^{-2}-\left(\frac{1}{3}\right)^{-1}+(1)-\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)^{2}-\cdots \\
& \left(\frac{1}{3}\right)^{-2}(1)+\left(\frac{1}{3}\right)^{-2}\left(\frac{-1}{3}\right)^{-}+\left(\frac{1}{3}\right)^{-2}\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{-2}\left(\frac{-1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{-2}\left(\frac{-1}{3}\right)^{4}+\cdots+\left(\frac{1}{3}\right)^{-2}\left(\frac{-1}{3}\right)^{n-1}+\cdots
\end{aligned}
$$

this series is geometric with $a=\left(\frac{1}{3}\right)^{-2}$ and $s=\frac{-1}{3}$
since $\left.\left|\frac{-1}{3}\right|=\ln \right\rvert\,<1$ the series converges to $\frac{a}{1-n}=\frac{\left(\frac{1}{3}\right)^{-2}}{1-\left(-\frac{1}{3} 3\right.}=\frac{9}{\frac{4}{3}}=\frac{27}{4}$
22) $\frac{9}{4}-\frac{27}{8}+\frac{81}{16}-\frac{243}{32}+\frac{729}{64}-\cdots$

$$
\frac{9}{4}(1)+\frac{9}{4}\left(\frac{-3}{2}\right)+\frac{9}{4}\left(\frac{-3}{2}\right)^{2}+\frac{9}{4}\left(\frac{-3}{2}\right)^{3}+\frac{9}{4}\left(\frac{-3}{2}\right)^{4}+\cdots+\frac{9}{4}\left(\frac{-3}{2}\right)^{n-1}+\cdots
$$

this series is geometric with $a=\frac{9}{4}$ and $n=\frac{-3}{2}$
since $\left(\frac{-3}{2}|=|n|>|\right.$ the series diverge
24) $0 . \overline{234}=0.234234234 \ldots$

$$
\begin{aligned}
0, \overline{234} & =\sum_{n=0}^{\infty} \frac{234}{1000}\left(\frac{1}{1000}\right)^{n} \quad a=\frac{234}{1000} \quad r=\frac{1}{1000} \\
& \left.=\frac{a}{1-2}=\frac{\left(\frac{234}{1000}\right)}{1-\left(\frac{1}{1000}\right.}\right)=\frac{234}{\frac{9000}{\frac{9000}{0}}}=\frac{234}{999}
\end{aligned}
$$

26) $\overline{0} . \bar{J}=0$. dod..., where $^{\text {dis a }}$ digit

$$
\begin{aligned}
& 0 . \bar{j}=\sum_{i=0}^{\infty} \frac{d}{10}\left(\frac{1}{10}\right)^{n} \quad a=\frac{d}{10} \quad r=\frac{1}{10} \\
& =\frac{\alpha}{1-2}=\frac{\left(\frac{\delta}{0}\right)}{1-\left(\frac{1}{0}\right)}=\frac{\frac{\partial}{9}}{\frac{9}{10}}=\frac{\alpha}{9}
\end{aligned}
$$

30) $3 . \overline{142857}=3.142857142857 \ldots$

$$
\begin{aligned}
3 . \overline{142857} & =3+0 . \overline{142857}=3+\sum_{n=0}^{\infty}\left(\frac{142857}{1000000}\right)\left(\frac{1}{1000000}\right)^{n} \quad a=\frac{142857}{1000000}, r=\frac{1}{1000000} \\
& =3+\frac{a}{1-2}=3+\frac{\left(\frac{142857}{100000}\right)}{1-\left(\frac{1}{1000000}\right)}=3+\frac{\frac{142857}{\frac{1900000}{994999}}=3+\frac{142857}{999999}}{1000000} \\
& =\frac{2999997}{999499}+\frac{142857}{999499}=\frac{3142854}{999999}=\frac{116402}{37,037}
\end{aligned}
$$

32) $\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)(n+3)}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n(n+1)}{(n+2)(n+3)}=\lim _{n \rightarrow \infty} \frac{n^{+\infty}+n}{n^{2}+5 n+6} \stackrel{\lim _{n \rightarrow \infty}}{ } \frac{2 n+1}{2 n+\infty} \leq \lim _{n \rightarrow \infty} \frac{2}{2}= \\
& =\lim _{n \rightarrow \infty} 1=1 \neq 0
\end{aligned}
$$

since $\lim _{n \rightarrow \infty} \frac{n(n+1)}{(n+2)(n+3)} \neq 0$, the series diverge
34) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+3}$

$$
\lim _{n \rightarrow \infty} \frac{+\infty}{\substack{n \\ n^{2}+3}}=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

since $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+3}=0$, the test is inconclusive
36) $\sum_{n=0}^{\infty} \frac{e^{n}}{e^{n+n}}$

$$
\lim _{n \rightarrow \infty} \frac{e^{+\infty}}{e^{x+\infty}+x} \stackrel{L}{x \rightarrow \infty}=\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+1} \leq \lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n}}=\lim _{n \rightarrow \infty} 1=1
$$

since $\lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n+r}} \neq 0$, the series diverge
38) $\sum_{n=0}^{\infty} \cos n \pi$

$$
\lim _{x \rightarrow \infty} \cos n \pi \quad D . N . E .
$$

since $\lim _{n \rightarrow \infty} \cos n \tilde{\pi}$ doesnotexist, the series diverge
40) $\sum_{n=1}^{\infty}\left(\frac{3}{n^{2}}-\frac{3}{(n+1)^{2}}\right)$

$$
\begin{aligned}
& L_{n}=\left(\frac{3}{1^{2}}-\frac{3}{(1+1)^{2}}\right)+\left(\frac{3}{2^{2}}-\frac{3}{(2+1)^{2}}\right)+\left(\frac{3}{3^{2}}-\frac{3}{(3+1)^{2}}\right)+\cdots+\left(\frac{3}{n^{2}}-\frac{3}{(n+1)^{2}}\right) \\
&=\left(\frac{3}{1^{2}}-\frac{3}{2^{2}}\right)+\left(\frac{3}{2^{2}}-\frac{3}{3^{2}}\right)+\left(\frac{3}{3^{2}}-\frac{3}{4^{2}}\right)+\cdots+\left(\frac{3}{n^{2}}-\frac{3}{(n+1)^{2}}\right)=3-\frac{3}{(n+1)^{2}} \\
& \lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}\left(3-\frac{3}{(n+1)^{2}}\right)=3-0=3
\end{aligned}
$$

the series converges to 3 .
42)

$$
\text { 42) } \begin{aligned}
& \sum_{n=1}^{\infty}(\tan (n)-\tan (n-1)) \\
1_{n} & =(\tan (1)-\tan (1-1))+(\tan (2)-\tan (2-1))+\cdots+(\tan (n)-\tan (n-1)) \\
& =(\tan (1)-\tan (0))+(\tan (2)-\tan (1))+\cdots+(\tan (n)-\tan (n-1)) \\
& =\tan (n)-\tan (0)=\tan (n)-0=\tan (n)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \tan (n)$ D.N.E. so the series diverge
44) $\sum_{n=1}^{\infty}(\sqrt{n+4}-\sqrt{n+3})$

$$
\begin{aligned}
s_{n} & =(\sqrt{1+4}-\sqrt{1+3})+(\sqrt{2+4}-\sqrt{2+3})+(\sqrt{3+4}-\sqrt{3+3})+\cdots+(\sqrt{n+4}-\sqrt{n+3}) \\
& =(\sqrt{5}-\sqrt{4})+(\sqrt{6}-\sqrt{5})+(\sqrt{7}-\sqrt{6})+\cdots+(\sqrt{n+4}-\sqrt{n+3}) \\
& =\sqrt{n+4}-\sqrt{4}=\sqrt{n+4}-2
\end{aligned}
$$

$\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}(\sqrt{n+4}-2)=+\infty$ so the series diverge

$$
\begin{aligned}
& \text { 46) } \sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}=\sum_{n=1}^{\infty} \overline{\left(\frac{(3)}{(2 n-1)^{\prime}}+\frac{(-3)}{(2 n+1)^{\prime}}\right)} \\
& \frac{6}{(2 n-1)^{\prime}(2 n+1)^{\prime}}=\frac{A}{(2 n-1)^{\prime}}+\frac{B}{(2 n+1)^{\prime}}=\sum_{n=1}^{\infty}\left(\frac{3}{2 n-1}-\frac{3}{2 n+1}\right) \\
& 6=A(2 n+1)+B(2 n-1)
\end{aligned}
$$

constant term

$$
6=A-B
$$

$$
\sigma=A+A
$$

$$
A=3
$$

$$
\begin{aligned}
& n-\text { term } \\
& 0=2 A+2 B \\
& 2 A=-2 B \\
& A=-B \\
& B=-A=-3
\end{aligned}
$$

46) continued

$$
\begin{aligned}
& 1_{n}=\left(\frac{3}{2(1)-1}-\frac{3}{2(1)+1}\right)+\left(\frac{3}{2(2)-1}-\frac{3}{2(2)+1}\right)+\left(\frac{3}{2(3)-1}-\frac{3}{2(3)+1}\right)+\cdots+\left(\frac{3}{2 n-1}-\frac{3}{2 n+1}\right) \\
&=\left(\frac{3}{1}-\frac{3}{3}\right)+\left(\frac{3}{3}-\frac{3}{5}\right)+\left(\frac{3}{5}-\frac{3}{7}\right)+\cdots+\left(\frac{3}{2 n-1}-\frac{3}{2 n+1}\right) \\
&=3-\frac{3}{2 n+1} \\
& \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(3-\frac{3}{2 n+1}\right)=3-0=3
\end{aligned}
$$

48) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}=\sum_{n=1}^{\infty}\left(\frac{(0)}{(n)^{1}}+\frac{(1)}{(n)^{2}}+\frac{(0)}{(n+1)^{1}}+\frac{(-1)}{(n+1)^{2}}\right)$

$$
\begin{aligned}
& \frac{2 n+1}{n^{2}(n+1)^{2}}=\frac{A}{(n)^{1}}+\frac{B}{(n)^{2}}+\frac{C}{(n+1)^{1}}+\frac{D}{(n+1)^{2}}=\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right) \\
& 2 n+1=A\left((n)(n+1)^{2}\right)+B\left((n+1)^{2}\right)+C\left(n^{2}(n+1)\right)+D\left(n^{2}\right) \\
& 2 n+1=A\left(n^{3}+2 n^{2}+n\right)+B\left(n^{2}+2 n+1\right)+C\left(n^{3}+n^{2}\right)+D\left(n^{2}\right)
\end{aligned}
$$

constant term n-ten

$$
n^{2} \text {-ten }
$$

$$
1=B
$$

$$
2=A+2 B
$$

$$
0=2 A+B+C+D
$$

$$
n^{3} \text {-ten }
$$

$$
2=A+2(1)
$$

$$
0=A+C
$$

$$
A=0 \quad D=-1
$$

$$
0=2(0)+(1)+(0)+D
$$

$$
c=0
$$

$$
\begin{aligned}
& A_{n}=\left(\frac{1}{1^{2}}-\frac{1}{(1+1)^{2}}\right)+\left(\frac{1}{2^{2}}-\frac{1}{(2+1)^{2}}\right)+\left(\frac{1}{3^{2}}-\frac{1}{(3+1)^{2}}\right)+\cdots+\left(\frac{1}{x^{2}}-\frac{1}{(n+1)^{2}}\right) \\
&=\left(1-\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)+\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)+\cdots+\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)=1-\frac{1}{(n+1)^{2}} \\
& \lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{(n+1)^{2}}\right)=1-0=1
\end{aligned}
$$

50) $\sum_{n=1}^{\infty}\left(\frac{1}{2^{\frac{1}{n}}}-\frac{1}{2^{\frac{亠 1}{n+1}}}\right)$

$$
\begin{aligned}
& A_{n}=\left(\frac{1}{2^{\frac{1}{4}}}-\frac{1}{2^{\frac{1}{1+1}}}\right)+\left(\frac{1}{2^{\frac{1}{2}}}-\frac{1}{2^{\frac{1}{2+1}}}\right)+\left(\frac{1}{2^{\frac{1}{3}}}-\frac{1}{2^{\frac{1}{3+1}}}\right)+\cdots+\left(\frac{1}{2^{\frac{1}{n}}}-\frac{1}{2^{\frac{1}{m i n}}}\right) \\
&=\left(\frac{1}{2^{2}}+\frac{1}{2^{\frac{1}{2}}}\right)+\left(\frac{1}{2^{\frac{1}{2}}}-\frac{1}{2^{\frac{1}{3}}}\right)+\left(\frac{1}{2^{\frac{1}{3}}}-\frac{1}{2^{\frac{1}{4}}}\right)+\cdots+\left(\frac{1}{2^{\frac{1}{2}}}-\frac{1}{2^{\frac{1}{n+1}}}\right) \\
&=\frac{1}{2}-\frac{1}{2^{\frac{1}{n+1}}} \\
& \lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{2^{\frac{1}{n+1}}}\right)=\frac{1}{2}-\frac{1}{2^{0}}=\frac{1}{2}-\frac{1}{1}=\frac{-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 52) } \sum_{n=1}^{\infty}\left(\tan ^{-1}(n)-\tan ^{-1}(n+1)\right) \\
& A_{n}=\left(\tan ^{-1}(1)-\tan ^{-1}(1+1)\right)+\left(\tan ^{-1}(2)-\tan ^{-1}(2+1)\right)+\cdots+\left(\tan ^{-1}(n)-\tan ^{-1}(n+1)\right) \\
& =\left(\tan ^{-1}(1)-\tan ^{-1}(2)\right)+\left(\tan ^{-1}(2)-\tan ^{-1}(3)\right)+\cdots+\left(\tan ^{-1}(n)-\tan ^{-1}(n+1)\right) \\
& =\tan ^{-1}(1)-\tan ^{-1}(n+1)=\frac{\pi}{4}-\tan ^{-1}(n+1) \\
& \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{\pi}{4}-\tan ^{-1}(n+1)\right)=\frac{\pi}{4}-\left(\frac{\pi}{2}\right)=\frac{\pi}{4}
\end{aligned}
$$

54)

$$
\begin{aligned}
\sum_{n=0}^{\infty}(\sqrt{2})^{n} & =(\sqrt{2})^{0}+(\sqrt{2})^{1}+(\sqrt{2})^{2}+\cdots+(\sqrt{2})^{n}+\cdots \\
& =1+(\sqrt{2})+(\sqrt{2})^{2}+\cdots+(\sqrt{2})^{n}
\end{aligned}
$$

this is a geometric series with $a=1$ and $\Omega=\sqrt{2}$ Since $|\sqrt{2}|=|n|>1$, the series diverges
56)

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n+1} & =(-1)^{1+1}(1)+(-1)^{2+1}(2)+(-1)^{3+1}(3)+(-1)^{4+1}(4)+\cdots+(-1)^{n+1} n+\cdots \\
& =1-2+3-4+\cdots
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}(-1)^{n+1} \neq 0$, the series diverges by a th term
58)

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\cos n \pi}{5^{n}} & =\frac{\cos (0) \pi}{5^{0}}+\frac{\cos (1) \pi}{5^{1}}+\frac{\cos (2) \pi}{5^{2}}+\cdots+\frac{\cos \pi \pi}{5^{n}}+\cdots \\
& =\frac{(1)}{(1)}+\frac{(-1)}{5}+\frac{(1)}{5^{2}}+\cdots+\frac{(-1)^{n}}{5^{n}}+\cdots \quad \cos n \pi=(-1)^{n} \\
& =1+\left(\frac{-1}{5}\right)^{1}+\left(\frac{-1}{5}\right)^{2}+\cdots+\left(\frac{-1}{5}\right)^{n}+\cdots
\end{aligned}
$$

this is a geometric series with $a=1$ and $n=\frac{7}{5}$ since $\left|\frac{1}{5}\right|=|n|<\mid$, the series converges to $\frac{a}{1-n}=\frac{(1)}{1-\left(\frac{1}{5}\right)}=\frac{1}{5} \frac{1}{5}=\frac{5}{6}$
60) $\sum_{n=1}^{\infty} \ln \frac{1}{3^{n}}=\ln \frac{1}{3^{1}}+\ln \frac{1}{3^{2}}+\ln \frac{1}{3^{3}}+\cdots+\ln \frac{1}{3^{n}}+\cdots$

$$
\lim _{n \rightarrow \infty} \ln \frac{1}{3^{n}}=\ln \lim _{n \rightarrow \infty} \frac{1}{3^{n}}=\ln \left(0^{+}\right)=-\infty
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{3^{n}} \neq 0$, the series diverges by n thtertern 64) $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}$

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{2}=\lim _{n \rightarrow \infty}\left(1+\frac{(-1)}{n}\right)^{n}=e^{(-1)} \neq 0 \quad\{\sec \operatorname{T2n} 5 \# 5, \sec 10.1\}
$$

since $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n} \neq 0$, the series diverge by x the term
66)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n^{n}}{n!} \\
& \lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\lim _{n \rightarrow \infty} \frac{(n)(n) \cdots(n)}{(1)(2) \cdots(n)}>\lim _{n \rightarrow \infty} n=\infty
\end{aligned}
$$

so by thirect Comparison Th m $\lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\infty \neq 0$
so this series diverges by a th term test

$$
\text { 68) } \begin{aligned}
& \sum_{n=1}^{\infty} \frac{2^{n}+4^{n}}{3^{n}+4^{n}} \\
& \lim _{n \rightarrow \infty} \frac{2^{n}+4^{n}}{3^{n}+4^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{2^{n}+4^{n}}{4^{n}}}{\frac{3^{n}+4^{n}}{4^{n}}}=\lim _{n \rightarrow \infty} \frac{\frac{2^{n}}{4^{n}}+\frac{4^{n}}{4^{n}}}{\frac{3^{n}}{4^{n}}+\frac{4^{n}}{4^{n}}}=\lim _{n \rightarrow \infty} \frac{\left(\frac{2}{4}\right)^{n}+1}{\left(\frac{3}{4}\right)^{n}+1} \\
&=\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{2}\right)^{2}+1}{\left(\frac{2}{4}\right)^{2}+1}=\frac{0+1}{0+1}=1
\end{aligned}
$$

$\lim _{x \rightarrow \infty} \frac{2^{n}+4^{n}}{3^{n}+4^{n}} \neq 0$ so this series diverges by nth term test

$$
\begin{aligned}
& \text { 70) } \sum_{n=1}^{\infty} \ln \left(\frac{n}{2 n+1}\right) \\
& \lim _{n \rightarrow \infty} \ln \left(\frac{n}{2 n+1}\right)=\ln \lim _{n \rightarrow \infty} \frac{n}{2 n+1} \leqslant \ln \lim _{n \rightarrow \infty} \frac{1}{2}=\ln \left(\frac{1}{2}\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \ln \left(\frac{n}{2 n+1}\right) \neq 0$ so this series diverges $b y n$th term test
72)

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{e^{n \pi}}{\pi^{n e}} & =\frac{e^{(0) x}}{\pi^{(0) e}}+\frac{e^{(1) \pi}}{\pi^{(1) e}}+\frac{e^{(2) \pi}}{\pi^{(2) e}}+\cdots+\frac{e^{n \pi}}{\pi^{n e}}+\cdots \\
& =1+\left(\frac{e^{\pi}}{\pi^{e}}\right)^{\prime}+\left(\frac{e^{\pi}}{\pi^{e}}\right)^{2}+\cdots+\left(\frac{\left(\frac{\pi}{\pi^{2}}\right.}{\pi^{n}}\right)^{n}+\cdots
\end{aligned}
$$

this is a geometric series with $a=1$ and $n=\frac{e^{*}}{\pi^{e}}$ Since $\left|\frac{e^{x}}{\pi^{2}}\right|=|n|>1$, the series diverges

$$
\text { 74) } \begin{aligned}
& \sum_{n=2}^{\infty}\left(\sin \left(\frac{\pi}{n}\right)-\sin \left(\frac{\pi}{n-1}\right)\right) \\
\Delta_{n} & =\left(\sin \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{2-1}\right)\right)+\left(\sin \left(\frac{\pi}{3}\right)-\sin \left(\frac{\pi}{3-1}\right)\right)+\cdots+\left(\sin \left(\frac{\pi}{n}\right)-\sin \left(\frac{\pi}{n-1}\right)\right) \\
& =\left(\sin \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{1}\right)\right)+\left(\sin \left(\frac{\pi}{3}\right)-\sin \left(\frac{\pi}{2}\right)\right)+\cdots+\left(\sin \left(\frac{\pi}{n}\right)-\sin \left(\frac{\pi}{n-1}\right)\right) \\
& =\sin \left(\frac{\pi}{n}\right)-\sin \left(\frac{\pi}{1}\right)=\sin \left(\frac{\pi}{n}\right)-\sin (\pi)=\sin \left(\frac{\pi}{n}\right)-(0)=\sin \left(\frac{\pi}{n}\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{n}\right)=\sin (0)=0$ this series converge
76) $\sum_{n=0}^{\infty}\left(\ln \left(4 e^{n}-1\right)-\ln \left(2 e^{n}+1\right)\right)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\ln \left(4 e^{x}-1\right)-\ln \left(2 e^{x}+1\right)\right)=\lim _{n \rightarrow \infty} \ln \left(\frac{4 e^{n}-1}{2 e^{n}+1}\right)=\ln \left(\lim _{n \rightarrow \infty} \frac{\frac{4 e^{x}-1}{2 e^{x}+1}}{++^{n}+}\right) \\
& \stackrel{L}{=} \ln \left(\lim _{n \rightarrow \infty} \frac{4 e^{n}}{2 e^{x}}\right)=\ln \left(\lim _{n \rightarrow \infty} 2\right)=\ln 2
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left(\ln \left(4 e^{x}-1\right)-\ln \left(2 e^{2}+1\right)\right) \neq 0$ this series diverges by the nth term test
78)

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} & =(-1)^{0} x^{2(0)}+(-1)^{1} x^{2(1)}+(-1)^{2} x^{2(2)}+\cdots+(-1)^{n} x^{22 n}+\cdots \\
& =1-x^{2}+x^{4}+\cdots+(-1)^{n} x^{2 n}+\cdots \\
& =1+\left(-x^{2}\right)^{1}+\left(-x^{2}\right)^{2}+\cdots+\left(-x^{2}\right)^{n}+\cdots
\end{aligned}
$$

this is a geometric series with $a=1$ and $\Omega=-x^{2}$ it will converge to $\frac{a}{1-n}=\frac{(1)}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}$ as long as

$$
\left|-x^{2}\right|=|n|<1 \Rightarrow|x|<\sqrt{1}=1,|x|<1
$$

80) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2}\left(\frac{1}{3+\sin x}\right)^{n}$

$$
\begin{aligned}
& =\frac{(-1)^{0}}{2}\left(\frac{1}{3+\sin x}\right)^{0}+\frac{(-1)^{1}}{2}\left(\frac{1}{3+\sin x}\right)^{1}+\frac{(-1)^{2}}{2}\left(\frac{1}{3+\sin x}\right)^{2}+\cdots+\frac{(-1)^{n}}{2}\left(\frac{1}{3+\sin x}\right)^{n}+\cdots \\
& =\frac{1}{2}(1)-\frac{1}{2}\left(\frac{1}{3+\sin x}\right)+\frac{1}{2}\left(\frac{1}{3+\sin x}\right)^{2}+\cdots+\frac{(-1)^{n}}{2}\left(\frac{1}{3+\sin x}\right)^{n}+\cdots \\
& =\frac{1}{2}(1)^{+}+\frac{1}{2}\left(\frac{-1}{3 \tan x}\right)^{1}+\frac{1}{2}\left(\frac{-1}{3+\sin x}\right)^{2}+\cdots+\frac{1}{2}\left(\frac{-1}{3+\sin x}\right)^{n}+\cdots
\end{aligned}
$$

this is a geometric shies with $a=\frac{1}{2}$ and $r=\frac{-1}{3+\sin x}$ it will converge to $\frac{a}{1-n}=\frac{\left(\frac{1}{2}\right)}{1-\left(\frac{-1}{3+\sin x}\right)}=\frac{\frac{1}{2}}{\frac{4+\sin x}{3+\sin x}}=\frac{3+\sin x}{2(4+\sin x)}$ as long as this will be true for all x

$$
\left|\frac{-1}{3+\sin x}\right|=|n|<1 \text { because } \frac{1}{4}=\frac{1}{3+(1)} \leq \frac{1}{3+\sin x} \leq \frac{1}{3+(-1)}=\frac{1}{2}
$$

which ensures that for all x

$$
|\Omega|=\left|\frac{1}{3+\sin x}\right|<1
$$

82)

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n} x^{-2 n} & =\frac{(-1)^{0}}{x^{2(0)}}+\frac{(-1)^{\prime}}{x^{2(1)}}+\frac{(-1)^{2}}{x^{2(2)}}+\cdots+\frac{(-1)^{n}}{x^{2 n}}+\cdots \\
& =1-\frac{1}{x^{2}}+\frac{1}{x^{4}}+\cdots+\frac{(-1)^{n}}{x^{2 n}}+\cdots \\
& =1+\left(\frac{-1}{x^{2}}\right)^{\prime}+\left(\frac{-1}{x^{2}}\right)^{2}+\cdots+\left(\frac{-1}{x^{2}}\right)^{n}+\cdots
\end{aligned}
$$

this is a geometric series with $a=1$ and $\Omega=\frac{-1}{x^{2}}$ it will converge to $\frac{a}{1-2}=\frac{(1)}{1-\left(\frac{-1}{x^{2}}\right)}=\frac{1}{\frac{x^{2}+1}{x^{2}}}=\frac{x^{2}}{x^{2}+1}$
as long as $\left.\left|\frac{-1}{x^{2}}\right|=|n /<1 \Rightarrow| x \right\rvert\,>1$
84)

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \left(\frac{-1}{2}\right)^{n}(x-3)^{n}=\left(\frac{-1}{2}\right)^{0}(x-3)^{0}+\left(\frac{-1}{2}\right)^{1}(x-3)^{1}+\left(\frac{-1}{2}\right)^{2}(x-3)^{2}+\cdots+\left(\frac{-1}{2}\right)^{n}(x-3)^{n}+\cdots \\
& =1-\frac{x-3}{2}+\frac{(x-3)^{2}}{2^{2}}+\cdots+\frac{(-1)^{n}(x-3)^{n}}{2^{n}}+\cdots \\
& =1+\frac{(-(x-3))}{2}+\frac{(-(x-3))^{2}}{2^{2}}+\cdots+\frac{(-(x-3))^{n}}{2^{2}}+\cdots \\
& =1+\left(\frac{3-x}{2}\right)+\left(\frac{3-x}{2}\right)^{2}+\cdots+\left(\frac{3-x}{2}\right)^{n}+\cdots
\end{aligned}
$$

thisis a geometric series with $a=1$ and $r=\frac{3-x}{2}$ it will converge to $\frac{a}{1-n}=\frac{(1)}{1-\left(\frac{3-x}{2}\right)}=\frac{1}{\frac{2-3+x}{2}}=\frac{1}{\frac{x-1}{2}}=\frac{2}{x-1}$ as long as $\left|\frac{3-x}{2}\right| \leqslant 1$

$$
\begin{aligned}
& -1<\frac{3-x}{2}<1 \quad \underline{1<x<5} \\
& -2<3-x<2 \\
& -5<-x<-1 \\
& 5>x>1
\end{aligned}
$$

86)

$$
\begin{aligned}
\sum_{n=0}^{\infty}(\ln x)^{x} & =(\ln x)^{0}+(\ln x)^{\prime}+(\ln x)^{2}+(\ln x)^{3}+\cdots+(\ln x)^{n}+\cdots \\
& =1+(\ln x)^{\prime}+(\ln x)^{2}+(\ln x)^{3}+\cdots+(\ln x)^{n}+\cdots
\end{aligned}
$$

this is a geometric series with $a=1$ and $n=\ln x$ it will converge to $\frac{a}{1-n}=\frac{(1)}{1-(\ln x)}=\frac{1}{1-\ln x}$
as long as $|\ln x|=\ln \left\lvert\,<1 \Rightarrow \begin{aligned} & -1<\ln x<1 \\ & e^{-1}<x<e^{1}\end{aligned}\right.$
98)

$$
\begin{aligned}
& 1+e^{b}+e^{2 b}+e^{3 b}+\cdots=9 \\
& 1+\left(e^{b}\right)^{\prime}+\left(e^{2 b}\right)^{2}+\left(e^{2}\right)^{3}+\cdots+\left(e^{b}\right)^{2}+\cdots=9
\end{aligned}
$$

this is a geometric series with $a=1$ and $s=e^{b}$ it will converge because the series is equal to 9
and $\frac{a}{1-n}=\frac{(1)}{1-\left(e^{4}\right)}=\frac{1}{1-e^{e}} \quad$ also $\frac{a}{1-n}=\frac{1}{1-e^{t}}=9$

$$
\begin{aligned}
& \frac{1}{9}=1-e^{d} \\
& e^{b}=1-\frac{1}{9}=\frac{8}{9} \\
& \psi \\
& b=\ln \left(\frac{8}{9}\right)
\end{aligned}
$$

