Definitions

The sequence $\left\{a_{n}\right\}$ converges to the number L if for every positive number ε there corresponds an integer N such that

$$
\left|a_{n}-L<\varepsilon\right| \quad \text { whenever } \quad n>N .
$$

If no such number L exists, we say that $\left\{a_{n}\right\}$ diverges.

If $\left\{a_{n}\right\}$ converges to L, we write $\lim _{x \rightarrow \infty} a_{n}=L$, or simply $a_{n} \rightarrow L$, and call L the limit of the sequence.

Definition

The sequence $\left\{a_{n}\right\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than $N, a_{n}>M$. If this condition holds we write

$$
\lim _{n \rightarrow \infty} a_{n}=\infty \quad \text { or } \quad a_{n} \rightarrow \infty .
$$

Similarly, if for every number m there is an integer N such that for all $n>N$ we have $a_{n}<m$, then we say $\left\{a_{n}\right\}$ diverges to negative infinity and write

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty \quad \text { or } \quad a_{n} \rightarrow-\infty .
$$

Theorem 1

Let $\left\{a_{n}\right\}$ and $\left\{a_{n}\right\}$ be sequences of real numbers, and let A and B be real numbers. The following rules hold if $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$.

1. Sum Rule: $\quad \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B$
2. Difference Rule: $\quad \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=A-B$
3. Constant Multiple Rule: $\quad \lim _{n \rightarrow \infty}\left(k \cdot b_{n}\right)=k \cdot B \quad$ (any number k)
4. Product Rule: $\quad \lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=A \cdot B$
5. Quotient Rule: $\quad \lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{A}{B} \quad$ if $B \neq 0$

Theorem 2 - The Sandwich Theorem for Sequences

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be sequences of real numbers. If $a_{n} \leq b_{n} \leq c_{n}$ holds for all n beyond some index N, and if $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$ also.

Theorem 3 - The Continuous Function Theorem for Sequences
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $a_{n} \rightarrow L$ and if f is a function that is continuous at L and defined at all a_{n}, then $f\left(a_{n}\right) \rightarrow f(L)$.

Theorem 4

Suppose that $f(x)$ is a function defined for all $x \geq n_{0}$ and that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n}=f(n)$ for $x \geq n_{0}$. Then
$\lim _{n \rightarrow \infty} a_{n}=L \quad$ whenever $\quad \lim _{x \rightarrow \infty} f(x)=L$.

Theorem 5

The following six sequences converge to the limits listed below:

1. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
2. $\quad \lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
3. $\lim _{n \rightarrow \infty} x^{1 / n}=1 \quad(x>0)$
4. $\quad \lim _{n \rightarrow \infty} x^{n}=0 \quad(|x|<1)$
5. $\quad \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad($ any $x)$
6. $\quad \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad$ (any x)

In Formulas (3) through (6), x remains fixed as $n \rightarrow \infty$.

Definition

A sequence $\left\{a_{n}\right\}$ is bounded from above if there exists a number M such that $a_{n} \leq M$ for all n. The number M is an upper bound for $\left\{a_{n}\right\}$. If M is an upper bound for $\left\{a_{n}\right\}$ but no number less than M is an upper bound for $\left\{a_{n}\right\}$, then M is the least upper bound for $\left\{a_{n}\right\}$.

A sequence $\left\{a_{n}\right\}$ is bounded from below if there exists a number m such that $a_{n} \geq m$ for all n. The number m is a lower bound for $\left\{a_{n}\right\}$. If m is a lower bound for $\left\{a_{n}\right\}$ but no number greater than m is a lower bound for $\left\{a_{n}\right\}$, then m is the greatest lower bound for $\left\{a_{n}\right\}$.

If $\left\{a_{n}\right\}$ is bounded from above and below, then $\left\{a_{n}\right\}$ is bounded. If $\left\{a_{n}\right\}$ is not bounded, then we say that $\left\{a_{n}\right\}$ is an unbounded sequence.

Definitions

A sequence $\left\{a_{n}\right\}$ is nondecreasing if $a_{n} \leq a_{n+1}$ for all n. That is, $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$. The sequence is nonincreasing if $a_{n} \geq a_{n+1}$ for all n. The sequence $\left\{a_{n}\right\}$ is monotonic if it is either nondecreasing or nonincreasing.

Theorem 6 - The Monotonic Sequence Theorem
If a sequence $\left\{a_{n}\right\}$ is both bounded and monotonic, then the sequence converges.
2) $a_{n}=\frac{1}{n!}$

$$
a_{1}=\frac{1}{1!}=\frac{1}{1}=1
$$

$$
a_{2}=\frac{1}{2!}=\frac{1}{(1)(2)}=\frac{1}{2}
$$

$$
a_{3}=\frac{1}{3!}=\frac{1}{(1)(2)(3)}=\frac{1}{6}
$$

$$
a_{4}=\frac{1}{4!}=\frac{1}{(1)(2)(3)(4)}=\frac{1}{24}
$$

4) $a_{n}=2+(-1)^{n}$
5) $a_{n}=\frac{2^{n}-1}{2^{n}}$

$$
a_{1}=2+(-1)^{\prime}=1 \quad a_{1}=\frac{2^{\prime}-1}{2^{\prime}}=\frac{2-1}{2}=\frac{1}{2}
$$

$$
a_{2}=2+(-1)^{2}=3
$$

$$
a_{3}=2+(-1)^{3}=1
$$

$$
a_{2}=\frac{2^{2}-1}{2^{2}}=\frac{4-1}{4}=\frac{3}{4}
$$

$$
a_{4}=2+(-1)^{4}=3
$$

$$
a_{3}=\frac{2^{3}-1}{2^{3}}=\frac{8-1}{8}=\frac{7}{8}
$$

$$
a_{4}=\frac{2^{4}-1}{2^{4}}=\frac{16-1}{16}=\frac{15}{16}
$$

10) $a_{1}=-2, \quad a_{n+1}=\frac{n a_{n}}{n+1}$

$$
\begin{aligned}
& a_{1}=-2 \\
& a_{2}=\frac{(1)(-2)}{(2)}=-1 \\
& a_{3}=\frac{(2)(-1)}{(3)}=\frac{-2}{3} \\
& a_{4}=\frac{(3)\left(-\frac{2}{3}\right)}{(4)}=\frac{-1}{2} \\
& a_{5}=\frac{(4)\left(-\frac{1}{2}\right)}{(5)}=\frac{-2}{5}
\end{aligned}
$$

$$
\begin{aligned}
& a_{6}=\frac{(5)\left(\frac{-2}{5}\right)}{(6)}=\frac{-2}{6}=\frac{-1}{3} \\
& a_{7}=\frac{(6)\left(\frac{-1}{3}\right)}{(7)}=\frac{-2}{7} \\
& a_{8}=\frac{(7)\left(\frac{-2}{7}\right)}{(8)}=\frac{-2}{8}=\frac{-1}{4} \\
& a_{9}=\frac{(8)\left(\frac{-1}{4}\right)}{(9)}=\frac{-2}{9} \\
& a_{10}=\frac{(9)\left(\frac{-2}{9}\right)}{(10)}=\frac{-2}{10}=\frac{-1}{5}
\end{aligned}
$$

12) $a_{1}=2, a_{2}=-1, a_{n+2}=\frac{a_{n+1}}{a_{n}}$

$$
\begin{aligned}
& a_{1}=2 \\
& a_{2}=-1 \\
& a_{3}=\frac{(-1)}{(2)}=\frac{-1}{2} \\
& a_{4}=\frac{\left(-\frac{1}{2}\right)}{(-1)}=\frac{1}{2} \\
& a_{5}=\frac{\left(\frac{1}{2}\right)}{\left(-\frac{1}{2}\right)}=-1
\end{aligned}
$$

$$
\begin{aligned}
& a_{6}=\frac{(-1)}{\left(\frac{1}{2}\right)}=-2 \\
& a_{7}=\frac{(-2)}{(-1)}=2 \\
& a_{8}=\frac{(2)}{(-2)}=-1 \\
& a_{9}=\frac{(-1)}{(2)}=\frac{-1}{2} \\
& a_{10}=\frac{(-1)}{(-1)}=\frac{1}{2}
\end{aligned}
$$

18) $\frac{-3}{2}, \frac{-1}{6}, \frac{1}{12}, \frac{3}{20}, \frac{5}{30}, \ldots \quad a_{n}=\frac{2 n-5}{n(n+1)} \quad n=1,2,3, \ldots$

$$
\text { 20) }-3,-2,-1,0,1, \ldots \quad a_{n}=n-4 \quad n=1,2,3, \ldots
$$

$$
\text { 24) } \frac{1}{25}, \frac{8}{125}, \frac{27}{625}, \frac{64}{3125}, \frac{125}{15625}, \ldots \quad a_{n}=\frac{n^{3}}{5^{n+1}} \quad n=1,3,3, \ldots
$$

36) $a_{n}=\frac{n+3}{n^{2}+5 n+6}$

$$
\lim _{n \rightarrow \infty} \frac{\frac{+\infty}{n+3}}{\substack{n+5 \\+\infty}}=\lim _{n \rightarrow \infty} \frac{n+3}{(n+3)(n+2)}=\lim _{n \rightarrow \infty} \frac{1}{n+2}=0
$$

38) $a_{n}=\frac{1-n^{3}}{70-4 n^{2}}$

$$
\lim _{n \rightarrow \infty} \frac{1-n^{3}}{10-4 n^{2}} \stackrel{\lim _{n \rightarrow \infty} \frac{-3 n^{2}}{-8 n}=\lim _{n \rightarrow \infty} \frac{3 n^{2}}{8 n} \triangleq \lim _{n \rightarrow \infty} \frac{6 \pi}{8}=\lim _{n \rightarrow \infty} \frac{3 n}{4}=+\infty \text { deverges }}{-\infty}
$$

42) $a_{n}=\left(2-\frac{1}{2^{n}}\right)\left(3+\frac{1}{2^{n}}\right)$

$$
\lim _{n \rightarrow \infty}\left(2-\frac{1}{2^{n}}\right)\left(3+\frac{1}{2^{n}}\right)=(2-0)(3+0)=6
$$

46) $a_{n}=\frac{1}{(0.4)^{2}}$
$\lim _{n \rightarrow \infty} \frac{1}{(0.9)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{9}{10}\right)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{10}{9}\right)^{n}=+\infty$ divenges
47) $a_{n}=n \pi \cos (n \pi) \quad$ since n are positive integess,

$$
\cos (\pi \pi)=(-1)^{n}
$$

$\lim _{n \rightarrow \infty} n \pi \cos (n \pi)=\lim _{n \rightarrow \infty} n \pi(-1)^{n} \Rightarrow$ D.N.E. diverges
50) $a_{n}=\frac{\sin ^{2} n}{2^{n}}$
comverges

$$
0 \leq \frac{\sin ^{2} n}{2^{n}} \leq \frac{1}{2^{n}} \text { and } \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0, \lim _{n \rightarrow \infty} 0=0
$$

so by the sandwich theorem for sequences,

$$
0=\lim _{x \rightarrow \infty} 0 \leq \lim _{n \rightarrow \infty} \frac{\sin ^{2} n}{2^{x}} \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0 \Rightarrow \lim _{x \rightarrow \infty} \frac{\sin ^{2} n}{2^{n}}=0
$$

52) $a_{n}=\frac{3^{n}}{n^{3}}$

$$
\lim _{n \rightarrow \infty} \frac{3^{+\infty}}{n^{3}} \leq \lim _{n \rightarrow \infty} \frac{(\ln 3) 3^{n}}{3 n^{2}} \leq \lim _{n \rightarrow \infty} \frac{(\ln 3)^{2} 3^{n}}{6 n} \leq \lim _{n \rightarrow \infty} \frac{(\ln 3)^{3} 3^{n}}{6}=+\infty
$$

54) $a_{n}=\frac{\ln n}{\ln 2 x}$
55) $a_{n}=(n+4)^{\frac{1}{(n+4)}}$
converges

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}(x+4)^{\frac{1}{(n+4)}}=\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=1 \quad \text { by } \operatorname{thm}_{\ln } 5 \# 2 \text { and } \\
& \lim _{x \rightarrow \infty} x^{\frac{1}{x}} \quad \lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
& y=x^{\frac{1}{x}} \quad \ln y=0 \Rightarrow y=e^{0}=1 \quad, \lim _{x \rightarrow \infty} x^{\frac{1}{x}}= \\
& \ln y=\ln \left(x^{\frac{1}{x}}\right) \quad \\
& \ln y=\frac{\ln x}{x}
\end{aligned}
$$

$$
\operatorname{by} \operatorname{th} 5 \# 2 \text { and } \operatorname{let} x=x+4
$$

$$
\text { 64) } a_{n}=\ln n-\ln (n+1)
$$

comerges

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}(\ln n-\ln (n+1))=\lim _{n \rightarrow \infty} \ln \left(\frac{n}{n+1}\right)=\ln \lim _{n \rightarrow \infty} \frac{n}{n+1}=\ln (1)=0 \\
\lim _{\substack{n \rightarrow \infty \\
+\infty \\
+\infty}}^{+\infty} \cong \lim _{n \rightarrow \infty} \frac{1}{1}=\lim _{n \rightarrow \infty} 1=1
\end{array}
$$

68) $a_{n}=\frac{(-4)^{n}}{n!}$

$$
\lim _{n \rightarrow \infty} \frac{(-4)^{n}}{n!}=0 \quad \text { by } \operatorname{th} 5 \# 6
$$

70) $a_{n}=\frac{n!}{2^{n} 3^{n}}$

$$
\lim _{n \rightarrow \infty} \frac{n!}{2^{n} 3^{n}}=\lim _{n \rightarrow \infty} \frac{n!}{(2 \cdot 3)^{n}}=\lim _{n \rightarrow \infty} \frac{n!}{6^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{6^{n}}{n!}\right)}=\frac{1}{\lim _{n \rightarrow \infty}\left(\frac{6^{n}}{n!}\right)}=\frac{1}{(0)}=+\infty
$$

by thm 5 \#6 diverges
72) $a_{n}=\frac{(n+1)!}{(n+3)!}$

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+3)!}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+3)(n+2)(n+1)!}=\lim _{n \rightarrow \infty} \frac{1}{(n+3)(n+2)}=0 \text { comerges }
$$

78) $a_{n}=\ln \left(1+\frac{1}{n}\right)^{n}$
by 1 lom $5 \# 5$
$\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}=\ln \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\ln \left(e^{(1)}\right)=1 \quad$ converges
79) $a_{n}=\frac{1}{\sqrt{n}} \tan ^{-1} n$
$\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \tan ^{-1} n=(0)\left(\frac{\pi}{2}\right)=0 \quad$ comerges
80) $a_{n}=\left(3^{n}+5^{n}\right)^{\frac{1}{n}}$

$$
\begin{array}{ll}
\begin{array}{l}
\lim _{n \rightarrow \infty}\left(3^{(+\infty)^{(0)}}\left(5^{n}\right)^{\frac{1}{n}}=5 \quad\right. \text { converges } \\
y=\left(3^{n}+5^{n}\right)^{\frac{1}{n}} \quad
\end{array} \quad \lim _{n \rightarrow \infty} \frac{\ln \left(3^{n}+5^{n}\right)}{+\infty^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{3^{n}+5^{n}}\left((\ln 3) 3^{n}+(\ln 5) 5^{n}\right)}{1} \\
\ln y=\ln \left(3^{n}+5^{n}\right)^{\frac{1}{n}} \\
\ln y=\frac{\ln \left(3^{n}+5^{n}\right)}{n} \quad=\lim _{n \rightarrow \infty} \frac{(\ln 3) 3^{n}+(\ln 5) 5^{n}}{3^{n}+5^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{(\ln 3) 3^{n}}{5^{n}}+\frac{\ln 5) 5^{n}}{5^{n}}}{\frac{3^{n}}{5^{n}}+\frac{5^{n}}{5^{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{(\ln 3) \frac{3^{n}}{5^{n}}+\ln 5}{\left(\frac{33^{n}}{5^{n}}\right)+1}=\lim _{n \rightarrow \infty} \frac{(\ln 3)\left(\frac{3}{5}\right)^{n}+\ln 5}{\left(\frac{3}{5}\right)^{n}+1} \\
\ln y=\ln 5 \Rightarrow y=5 \quad & =\frac{(\ln 3)(0)+\ln 5}{(0)+\ln 5 \quad \text { simece } 0<\frac{3}{5}<1, \lim _{n \rightarrow \infty}\left(\frac{3}{5}\right)^{n}=0}
\end{array}
$$

94) $a_{n}=\sqrt[n]{n^{2}+n}$
$(+\infty)^{(0)}$
$\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}+n}=\lim _{n \rightarrow \infty}\left(n^{2}+n\right)^{\frac{1}{n}}=1 \quad$ converges

$$
\begin{array}{ll}
y=\left(n^{2}+n\right)^{\frac{1}{n}} & \lim _{n \rightarrow \infty} \frac{\ln ^{+\infty}\left(n^{2}+n\right)}{\lim ^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}+n}(2 n+1)}{1}=\lim _{n \rightarrow \infty} \frac{2 n+1}{n^{2}+n} \\
\ln y=\ln \left(n^{2}+n\right)^{\frac{1}{n}} & \leqq \lim _{n \rightarrow \infty} \frac{2}{2 n+1}=0 \\
\ln y=\frac{\ln \left(n^{2}+n\right)}{n} & \ln y=0 \Rightarrow y=e^{0}=1 \\
n &
\end{array}
$$

$$
\begin{aligned}
& \text { 96) } a_{n}=\frac{(\overline{\ln n})^{5}}{\sqrt{n}} \\
& \lim _{n \rightarrow \infty} \frac{\left(\ln _{n}\right)^{5}}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{5(\ln n)^{4}\left(\frac{1}{n}\right)}{\frac{1}{2 \sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{(2)(5)(\ln n)^{4}}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{(2)(5)(4)(\ln n)^{3}\left(\frac{1}{n}\right)}{\frac{1}{2 \sqrt{n}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{(2)^{(i)}(5)(4)(3)(\ln -1)}{\sqrt{n}} \triangleq \lim _{n \rightarrow \infty} \frac{(2)^{5}(5)(4)(3)(3)\left(\frac{1}{n}\right)}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{(2)^{f}(5)(4)(3)}{\sqrt{n}}=0 \quad \text { comerges }
\end{aligned}
$$

98) $a_{n}=\frac{1}{\sqrt{n^{2}-1}-\sqrt{\lambda^{2}+\lambda}}$
converges

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}-1}-\sqrt{n^{2}+n}}\right)\left(\frac{\sqrt{n^{2}-1}+\sqrt{n^{2}+n}}{\sqrt{n^{2}-1}+\sqrt{n^{2}+n}}\right)=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}-1}+\sqrt{n^{2}+n}}{\left(n^{2}-1\right)-\left(n^{2}+n\right)}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}-1}+\sqrt{n^{2}+n}}{-1-n} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n^{2}-1}+\sqrt{n^{2}+n}}{\sqrt{n^{2}}}}{\frac{-1-n}{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{n^{2}}{n^{2}}-\frac{1}{n^{2}}}+\sqrt{\frac{n^{2}}{n^{2}}+\frac{x}{n^{2}}}}{\frac{-1}{n}-\frac{n}{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{1-\frac{1}{n^{2}}}+\sqrt{1+\frac{1}{n}}}{\frac{-1}{n}-1}=\frac{\sqrt{1-0}+\sqrt{1+0}}{0-1}=-2
\end{aligned}
$$

102) $a_{1}=-1, a_{n+1}=\frac{a_{n}+6}{a_{n}+2}$

Since a_{n} converges, $\lim _{n \rightarrow \infty} a_{n}=L$
and $\lim _{n \rightarrow \infty}\left(a_{n+1}\right)=\lim _{n \rightarrow \infty}\left(\frac{a_{n}+6}{a_{n}+2}\right)$

$$
\begin{array}{rl}
L=\frac{L+6}{L+2} & \text { now, sin } \\
L(L+2)=L+6 & \text { for } n \geq 2 \\
L^{2}+2 L=L+6 & L=2 \\
L^{2}+L-6=0 & \\
(L+3)(L-2)=0 & \\
L+3=0 & L-2=0
\end{array}
$$

now, since $a_{n}>0$
we discant $L=-3$!
104) $a_{1}=0, a_{n+1}=\sqrt{8+2 a_{n}}$
since a_{n} converges, $\lim _{n \rightarrow \infty} a_{n}=L$

$$
\text { and } \lim _{n \rightarrow \infty}\left(a_{n+1}\right)=\lim _{n \rightarrow \infty}\left(\sqrt{8+2 a_{n}}\right)
$$

\Downarrow

$$
\left.\begin{gathered}
L=\sqrt{8+2 L} \\
(L)^{2}=(\sqrt{8+2 L})^{2} \\
L^{2}=8+2 L \\
L^{2}-2 L-8=0 \\
(L+2)(L-4)=0 \\
L+2=0 \\
L=-2
\end{gathered} \right\rvert\, L=4=0
$$

Now, since $a_{n}>0$
for $n \geq 2$

$$
L=4
$$

106) $a_{1}=3, a_{n+1}=12-\sqrt{a_{n}}$
since a_{n} converges, $\lim _{n \rightarrow \infty} a_{n}=L$

$$
\text { and } \begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n+1}\right)=\lim _{n \rightarrow \infty}\left(12-\sqrt{a_{n}}\right) \\
& L \psi 12-\sqrt{L} \\
& \sqrt{L}=12-L \\
&(\sqrt{L})^{2}=(12-L)^{2} \\
& L=144-24 L+L^{2} \\
& 0=L^{2}-25 L+144 \\
& 0=(L-9)(L-16) \\
& L-9=0 \\
& L=9 \mid L-16=0 \\
& L=16
\end{aligned}
$$

now, since

$$
a_{n+1}=12-\sqrt{a_{n}}<12
$$

for $n \geq 1$

$$
L=9
$$

108) $\sqrt{1}, \sqrt{1+\sqrt{1}}, \sqrt{1+\sqrt{1+\sqrt{1}}}, \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1}}}}, \ldots$

$$
a_{1}=\sqrt{1}, \quad a_{n+1}=\sqrt{1+a_{n}}
$$

since a_{n} converges, $\lim _{n \rightarrow \infty} a_{n}=L$
and $\lim _{n \rightarrow \infty}\left(a_{n+1}\right)=\lim _{n \rightarrow \infty}\left(\sqrt{1+a_{n}}\right)$

$$
\begin{gathered}
\Downarrow \\
L=\sqrt{1+L} \\
(L)^{2}=(\sqrt{1+L})^{2} \\
L^{2}=1+L \\
L^{2}-L-1=0 \\
L=\frac{(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{5}}{2}
\end{gathered}
$$

122) $a_{n}=\frac{(2 n+3)!}{(n+1)!}$

$$
\frac{(2 n+5)(2 n+4)(2 n+3)!}{(2 n+3)!}>\frac{(n+2)(n+1)!}{(n+1)!}
$$

$$
a_{n+1} \geq a_{n}
$$

$$
(2 n+5)(2 n+4)>(n+2)
$$

$\frac{(2(n+1)+3)!}{((n+1)+1)!}>\frac{(2 n+3)!}{(n+1)!}$, is nondecreasing

$$
\begin{aligned}
\frac{(2 n+5)!}{(n+2)!}>\frac{(2 n+3)!}{(n+1)!}, \frac{(2 n+3)!}{(n+1)!} & =\frac{(2 n+3)(2 n+2)(2 n+1)(2 n)(n+1(n-1))(n+(n-2)) \cdots(n+2)(n+1)!}{(n+1)!} \\
& =(2 n+3)(2 n+2) \cdots(n+2)
\end{aligned}
$$

$\frac{(2 n+5)!}{(2 n+3)!}>\frac{(n+2)!}{(n+1)!}$; can become as large as we please.
124) $a_{n}=2-\frac{2}{n}-\frac{1}{2^{n}}$

$$
\begin{aligned}
& a_{n+1} \geq a_{n} \\
& \left(2-\frac{2}{n+1}-\frac{1}{2^{n+1}}\right) \geq\left(2-\frac{1}{2^{n+1}}-\frac{1}{2^{n}} \quad L C D=\left(2^{n}\right)\left(2^{n+1}\right)\right. \\
& \left.\left.\frac{-2}{2^{n}}\right)-\frac{1}{2^{n+1}} \geq \frac{-2}{n}-\frac{1}{2^{n}} \quad=\frac{1}{2^{n+1}}\right)\left(\frac{2^{n}}{2^{n}}\right)-\left(\frac{1}{2^{n}}\right)\left(\frac{2^{n+1}}{2^{n+1}}\right) \\
& \frac{2}{n}-\frac{2}{n+1} \geq \frac{1}{\left.2^{n+1}\right)\left(2^{n+1}\right)}-\frac{1}{2^{n}}=\frac{2^{n}-\left(2^{n}\right)\left(2^{1}\right)}{\left(2^{n}\right)\left(2^{n+1}\right)} \\
& \left(\frac{2}{n}\right)\left(\frac{n+1}{n+1}\right)-\left(\frac{2}{n+1}\right)\left(\frac{n}{n}\right) \geq \frac{-1}{2^{n+1}} \\
& \frac{2(n+1)-2(n)}{n(n+1)} \geq \frac{-1}{2^{n+1}} \\
& \frac{2}{n(n+1)} \geq \frac{-1}{2^{n+1}}
\end{aligned}
$$

the steps are reversible so the sequence is nondersesong

$$
2-\frac{2}{n}-\frac{1}{2^{n}} \leq 2
$$

the sequence is bounded from above

