Definition

Integrals with infinite limits of integration are improper Integrals of Type I.

1. If $f(x)$ is continuous on $[a, \infty)$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{U \rightarrow \infty} \int_{a}^{U} f(x) d x .
$$

2. If $f(x)$ is continuous on $(-\infty, b]$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{L \rightarrow-\infty} \int_{L}^{b} f(x) d x
$$

3. If $f(x)$ is continuous on $(-\infty, \infty)$, then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x \text {, where } c \text { is any real number. }
$$

In each case, if the limit exists and is finite, we say that the improper integral converges and that the limit is the value of the improper integral. If the limit fails to exist, the improper integral diverges.

Definition

Integrals of functions that become infinite at a point within the interval of integration are improper Integrals of Type II.

1. If $f(x)$ is continuous on $(a, b]$ and discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{L \rightarrow a^{+}} \int_{L}^{b} f(x) d x .
$$

2. If $f(x)$ is continuous on $[a, b)$ and discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{U \rightarrow b^{+}} \int_{a}^{U} f(x) d x .
$$

3. If $f(x)$ is discontinuous at c, where $a<c<b$, and continuous on [a,c) $\cup(c, b]$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x, \quad \text { where } c \text { is any real number. }
$$

In each case, if the limit exists and is finite, we say that the improper integral converges and that the limit is the value of the improper integral. If the limit fails to exist, the improper integral diverges.

Theorem 2

Let f and g be continuous on $[a, \infty)$ with $0 \leq f(x) \leq g(x)$ for all $x \geq a$. Then

1. If $\int_{a}^{\infty} g(x) d x$ converges, then $\int_{a}^{\infty} f(x) d x$ also converges.
2. If $\int_{a}^{\infty} f(x) d x$ diverges, then $\int_{a}^{\infty} g(x) d x$ also diverges.

Theorem 2-a
Let f and g be continuous on $(0, a]$ with $0 \leq f(x) \leq g(x)$ for all $0<x \leq a$. Then

1. If $\int_{0}^{a} g(x) d x$ converges, then $\int_{0}^{a} f(x) d x$ also converges.
2. If $\int_{0}^{a} f(x) d x$ diverges, then $\int_{0}^{a} g(x) d x$ also diverges.

Reference for Comparison Theorem:

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\left\{\begin{array}{cc}
\text { convergent if } & p>1 \\
\text { divergent if } & p \leq 1
\end{array} \quad \int_{0}^{1} \frac{1}{x^{p}} d x=\left\{\begin{array}{cc}
\text { divergent if } & p \geq 1 \\
\text { convergent if } & p<1
\end{array}\right.\right.
$$

Theorem 3
If the positive functions f and g are continuous on $[a, \infty)$ with $0 \leq f(x) \leq g(x)$, and if

$$
\lim _{x \rightarrow \infty} \frac{\text { smaller }}{\text { larger }}=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad 0<L<\infty
$$

then $\quad \int_{a}^{\infty} f(x) d x$ and $\int_{a}^{\infty} g(x) d x \quad$ either both converge or both diverge.

Theorem 3-a
If the positive functions f and g are continuous on ($0, a]$ with $0 \leq f(x) \leq g(x)$, and if

$$
\lim _{x \rightarrow 0} \frac{\text { smaller }}{\text { larger }}=\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=L, \quad 0<L<\infty
$$

then $\quad \int_{0}^{a} f(x) d x$ and $\int_{0}^{a} g(x) d x \quad$ either both converge or both diverge.

$$
\text { 2) } \int \frac{d x}{x^{1.001}}=\int x^{-1.001} d x=\left[\frac{x^{-0.001}}{-0.001}\right]+C=\frac{-1000}{x^{0.001}}+C
$$

$$
\int_{1}^{\infty} \frac{d x}{x^{1.001}}=\lim _{v \rightarrow \infty} \int_{1}^{v} \frac{1}{x^{1.001}} d x=\lim _{v \rightarrow \infty}\left[\frac{-1000}{x^{0.001}}+C\right]_{1}^{v}
$$

$$
=\lim _{u \rightarrow \infty}\left\{\left[\frac{-1000}{0^{0.001}}+C\right]-\left[\frac{-1000}{(1)^{0.001}}+C\right]\right\}=[0]-\left[\frac{-1000}{1}\right]=1000
$$

$$
\begin{aligned}
& \text { 4) } \int \frac{d x}{\sqrt{4-x}}=\int \frac{1}{\sqrt{p}}(-1 d p)=\int(-1) p^{-\frac{1}{2}} d p=(-1)\left[\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right]+C \\
& p=4-x \\
& d p=-1 d x \Rightarrow-1 d p=d x \quad=-2 \sqrt{p}+C=-2 \sqrt{4-x}+C \\
& \int_{0}^{4} \frac{d x}{\sqrt{4-x}}=\lim _{U \rightarrow 4^{-}} \int_{0}^{u} \frac{1}{\sqrt{4-x}} d_{x}=\lim _{u \rightarrow 4^{-}}[-2 \sqrt{4-x}+C]_{0}^{0} \\
& =\lim _{u \rightarrow 4^{-}}\{[-2 \sqrt{4-U}+C]-[-2 \sqrt{4-(0)}+C]\}=[0]-[-2(2)]=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8) } \int \frac{d \Omega}{\Omega^{0.999}}=\int \Omega^{-0.999} d \Omega=\left[\frac{\Omega^{0.001}}{0.001}\right]+C=1000 \Omega^{0.001}+C \\
& \int_{0}^{1} \frac{d n}{n^{0.999}}=\lim _{L \rightarrow 0^{+}} \int_{L \Omega^{0.999}}^{1} \frac{1}{L n}=\lim _{L \rightarrow 0^{+}}\left[1000 \Omega^{0.001}+C\right]_{L}^{1} \\
& =\lim _{L \rightarrow 0^{+}}\left\{\left[1000(1)^{0.001}+C\right]-\left[1000 L^{0.001}+C\right]\right\}=[1000]-[0] \\
& =1000
\end{aligned}
$$

6)

$$
\begin{aligned}
\int_{-8}^{1} \frac{d x}{x^{\frac{1}{3}}}=\int_{-8}^{0} \frac{1}{x^{\frac{1}{3}}} d x+\int_{0}^{1} \frac{1}{x^{\frac{1}{3}}} d x & =[-6]+\left[\frac{3}{2}\right] \\
& =\frac{-12}{2}+\frac{3}{2}=\frac{-9}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-8}^{0} \frac{1}{x^{\frac{1}{3}}} d x=\lim _{v \rightarrow 0^{-}} \int_{-8}^{0} \frac{1}{x^{\frac{1}{3}}} d x=\lim _{v \rightarrow 0^{-}}\left[\frac{3}{2}(\sqrt[3]{x})^{2}+C\right]_{-8}^{0} \\
= & \lim _{v \rightarrow 0^{-}}\left\{\left[\frac{3}{2}(\sqrt[3]{v})^{2}+C\right]-\left[\frac{3}{2}(\sqrt[3]{(-8)})^{2}+C\right]\right\}=[0]-\left[\frac{3}{2}(-2)^{2}\right]=-6 \\
& \int_{0}^{1} \frac{1}{x^{\frac{1}{3}}} d x=\lim _{L \rightarrow 0^{+}} \int_{L}^{1} \frac{1}{x^{\frac{1}{3}}} d x=\lim _{L \rightarrow 0^{+}}\left[\frac{3}{2}(\sqrt[3]{x})^{2}+C\right] \\
= & \lim _{L \rightarrow 0^{+}}\left\{\left[\frac{3}{2}(\sqrt[3]{(1)})^{2}+C\right]-\left[\frac{3}{2}(\sqrt[3]{L})^{2}+C\right]\right\}=\left[\frac{3}{2}(1)^{2}\right]-[0]=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10) } \int \frac{2}{x^{2}+4} d x=\int \frac{2}{x^{2}+(2)^{2}} d x=2\left[\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right]+C=\tan ^{-1}\left(\frac{x}{2}\right)+C \\
& \int_{-\infty}^{2} \frac{2 d x}{x^{2}+4}=\lim _{L \rightarrow-\infty} \int_{L}^{2} \frac{2}{x^{2}+4} d x=\lim _{L \rightarrow-\infty}\left[\tan ^{-1}\left(\frac{x}{2}\right)+C\right]_{L}^{2} \\
& =\lim _{L \rightarrow-\infty}\left\{\left[\tan ^{-1}\left(\frac{(2)}{2}\right)+C\right]-\left[\tan ^{-1}\left(\frac{(-\infty)}{2}\right)+C\right]\right\} \\
& =\left[\tan ^{-1}(1)\right]-\left[\tan ^{-1}(-\infty)\right] \\
& =\left[\frac{\pi}{4}\right]-\left[\frac{-\pi}{2}\right]=\frac{\pi}{4}+\frac{\pi}{2}=\frac{3 \pi}{\varphi}
\end{aligned}
$$

12) $\int \frac{2 d t}{t^{2}-1}=\int \frac{2}{t^{2}-(1)^{2}} d t=\int \frac{2}{\left(\sqrt{t^{2}-(1)^{2}}\right)^{2}} d t=\int \frac{2}{(\tan \theta)^{2}}(\sec \theta \tan \theta d \theta)$

$$
\begin{aligned}
\begin{aligned}
\frac{t}{1} & =\sec \theta \quad \frac{\sqrt{t^{2}-(1)^{2}}}{1}=\tan \theta 1
\end{aligned} \\
\begin{aligned}
& t=\sec \theta \quad \frac{2 \sec \theta}{\sqrt{t^{2}(1)^{2}}=\tan \theta \mid} d \theta=\int\left(\frac{2}{\cos \theta}\right)\left(\frac{\cos \theta}{\cos \theta}\right) d \theta \\
& d t=\sec \theta \tan \theta d \theta \quad \frac{2}{\sin \theta} d \theta=\int 2 \csc \theta d \theta \\
&=2[\ln |\operatorname{coc} \theta-\cot \theta|]+C \\
&=2 \ln \left|\frac{t}{\sqrt{t^{2}-(1)^{2}}}-\frac{1}{\sqrt{t^{2}-(1)^{2}}}\right|+C \\
&=2 \ln \left|\frac{t-1}{\sqrt{t^{2}-1}}\right|+C
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{2 d t}{t^{2}-1}=\lim _{v \rightarrow \infty} \int_{2} \frac{2}{t^{2}-1} d t=\lim _{v \rightarrow \infty}\left[2 \ln \left|\frac{t-1}{\sqrt{t^{2}-1}}\right|+C\right]_{2}^{u} \\
& =\lim _{v \rightarrow \infty}\left\{\left[2 \ln \left|\frac{v-1}{\sqrt{v^{2}-1}}\right|+C\right]-\left[2 \ln \left|\frac{(2)-1}{\sqrt{(2)^{2}-1}}\right|+C\right]\right\} \\
& =[2 \ln |(1)|]-\left[2 \ln \left|\frac{1}{\sqrt{3}}\right|\right]=[2(0)]-\left[2 \ln \left(3^{-\frac{1}{2}}\right)\right] \\
& =[0]-\left[2\left(-\frac{1}{2} \ln 3\right)\right]=\ln 3
\end{aligned}
$$

$$
\begin{aligned}
\lim _{v \rightarrow \infty} \frac{\frac{v-1}{+\infty}}{\sqrt{v^{2}-1}} & =\lim _{v \rightarrow \infty} \frac{\frac{v-1}{\sqrt{v^{2}}}}{\frac{\sqrt{v^{2}-1}}{\sqrt{v^{2}}}}=\lim _{v \rightarrow \infty} \frac{\frac{v-1}{v}}{\sqrt{\frac{v^{2}-1}{v^{2}}}}=\lim _{v \rightarrow \infty} \frac{\frac{v}{v}-\frac{1}{v}}{\sqrt{\frac{v^{2}}{v^{2}}-\frac{1}{v^{2}}}} \\
& =\lim _{v \rightarrow \infty} \frac{1-\frac{1}{v}}{\sqrt{1-\frac{1}{v^{2}}}}=\frac{1-0}{\sqrt{1-0}}=\frac{1}{\sqrt{v}}=1
\end{aligned}
$$

18) $\int \frac{1}{x \sqrt{x^{2}-(1)^{2}}} d x=\int \frac{1}{(\sec \theta)(\tan \theta)}(\sec \theta \tan \theta d \theta)$

$$
=\int 1 \partial \theta=[\theta]+C=\sec ^{-1} x+C
$$

$\frac{x}{1}=\sec \theta \quad \frac{\sqrt{x^{2}-(1)^{2}}}{1}=\tan \theta$

$$
x=\sec \theta
$$

リ
$x=\sec \theta \quad \sqrt{x^{2}-(1)^{2}}=\tan \theta \quad \sec ^{-1} x=\theta$
$d x=\sec \theta \tan \theta d \theta$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x \sqrt{x^{2}-1}} d x & =\int_{1}^{2} \frac{1}{x \sqrt{x^{2}-1}} d x+\int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-1}} d x \\
& =\left[\frac{\pi}{3}\right]+\left[\frac{\pi}{2}-\frac{\pi}{3}\right]=\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{2} \frac{1}{x \sqrt{x^{2}-1}} d x=\lim _{L \rightarrow 1^{+}} \int_{L}^{2} \frac{1}{x \sqrt{x^{2}-1}} d x=\lim _{L \rightarrow 1^{+}}\left[\sec ^{-1} x+C\right]_{L}^{2} \\
& =\lim _{L \rightarrow 1^{+}}\left\{\left[\sec ^{-1}(2)+C\right]-\left[\sec ^{-1}(L)+C\right]\right\}=\left[\sec ^{-1}(2)\right]-\left[\sec ^{-1}(1)\right] \\
& =\left[\frac{\pi}{3}\right]-[0]=\frac{\pi}{3} \\
& \int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-1}} d x=\lim _{u \rightarrow \infty} \int_{2}^{u} \frac{1}{x \sqrt{x^{2}-1}} d x=\lim _{u \rightarrow \infty}\left[\sec ^{-1} x+C\right]_{2}^{u} \\
& =\lim _{u \rightarrow \infty}\left\{\left[\sec ^{-1}(u)+C\right]-\left[\sec ^{-1}(2)+C\right]\right\}=\left[\sec ^{-1}(+\infty)\right]-\left[\sec ^{-1}(2)\right] \\
& =\left[\frac{\pi}{2}\right]-\left[\frac{\pi}{3}\right]=\left(\frac{\pi}{2}-\frac{\pi}{3}\right)
\end{aligned}
$$

20) $\int \frac{16 \tan ^{-1} x}{1+x^{2}} d x=\int 16 \tan ^{-1} x\left(\frac{1}{x^{2}+1} d x\right)=\int 16 p(d p)$

$$
p=\tan ^{-1} x
$$

\Downarrow
$\tan p=x=\frac{x}{1}$

$$
\begin{aligned}
d_{p}=\frac{1}{x^{2}+1} d_{x} & =16\left[\frac{p^{2}}{2}\right]+C \\
& =8\left(\tan ^{-1} x\right)^{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& \sec ^{2} p \frac{d p}{d x}=1 \\
& \frac{d p}{d x}=\frac{1}{\sec ^{2} p}=\frac{1}{\left(\frac{\sqrt{x^{2}+(1)^{2}}}{1}\right)^{2}}=\frac{1}{x^{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{16 \tan ^{-1} x}{1+x^{2}} d x=\lim _{v \rightarrow \infty} \int_{0}^{0} \frac{16 \tan ^{-1} x}{1+x^{2}} d x=\lim _{v \rightarrow \infty}\left[8\left(\tan ^{-1} x\right)^{2}+C\right]_{0}^{u} \\
& =\lim _{u \rightarrow \infty}\left\{\left[8\left(\tan ^{-1}(v)\right)^{2}+C\right]-\left[8\left(\tan ^{-1}(0)\right)^{2}+c\right]\right\} \\
& =\left[8\left(\tan ^{-1}(+\infty)\right)^{2}\right]-\left[8(0)^{2}\right]=\left[8\left(\frac{\pi}{2}\right)^{2}\right]-[0]=8\left(\frac{x^{2}}{4}\right)=2 \pi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 22) } \int 2 e^{-\theta} \sin \theta d \theta=2_{1}^{\prime}\left(e^{-\theta} \sin \theta d \theta=\left(e^{-\theta}\right)(-\cos \theta)-\int(-\cos \theta)\left(-e^{-\theta} d \theta\right)\right. \\
& \mu_{1} e^{-\theta} \quad d v_{1}=\sin ^{\prime} \theta d \sigma^{\prime} \int e^{-\theta} \sin \theta d \theta=-e^{-\theta} \cos \theta-\int e^{-\theta} \cos \theta d \theta \\
& d u_{1}=-e^{-\theta} d \theta \quad v_{1}=-\cos \theta: \int e^{-\theta} \sin \theta d \theta=-e^{-\theta} \cos \theta-\left\{\left(e^{-\theta}\right)(\sin \theta)-\int(\sin \theta)\left(-e^{-\theta} d \theta\right)\right\} \\
& \mu_{2}=e^{-\theta} \quad d v_{2}=\cos \theta d \theta \text { : } \int e^{-\theta} \sin \theta d \theta=-e^{-\theta} \cos \theta-e^{-\theta} \sin \theta-\int e^{-\theta} \sin \theta d \theta \\
& d_{\mu_{2}}=-e^{-\theta} d \theta \quad v_{2}=\sin \theta ; 2 \int e^{-\theta} \sin \theta d \theta=-e^{-\theta} \cos \theta-e^{-\theta} \sin \theta \\
& \int e^{-\theta} \sin \theta d \theta=\frac{-1}{2} e^{-\theta} \cos \theta-\frac{1}{2} e^{-\theta} \sin \theta+C \\
& =\frac{-\cos \theta-\sin \theta}{2 e^{\theta}}+C
\end{aligned}
$$

22) continued

$$
\begin{aligned}
& \int 2 e^{-\theta} \sin \theta d \theta=2 \int e^{-\theta} \sin \theta d \theta=2\left(\frac{-\cos \theta-\sin \theta}{2 e^{\theta}}\right)+C \\
&=\frac{-\cos \theta-\sin \theta}{e^{\theta}}+C \\
& \int_{0}^{\infty} 2 e^{-\theta} \sin \theta d \theta=\lim _{u \rightarrow \infty} \int_{0}^{0} 2 e^{-\theta} \sin \theta d \theta=\lim _{v \rightarrow \infty}\left[\frac{-\cos \theta-\sin \theta}{e^{\theta}}+C\right]_{0}^{0} \\
&=\lim _{v \rightarrow \infty}\left\{\left[\frac{-\cos (v)-\sin (0)}{e^{(0)}}+C\right]-\left[\frac{-\cos (0)-\sin (0)}{e^{(0)}}+C\right]\right\} \\
&=[0]-\left[\frac{-(1)-(0)}{(1)}\right]=[0]-[-1]=1
\end{aligned}
$$

28) $\int \frac{4 \Omega d n}{\sqrt{1-n^{4}}}=\int \frac{2}{\sqrt{1-\left(n^{2}\right)^{2}}}(2 n d n)=\int \frac{2}{\sqrt{(1)^{2}-p^{2}}} d p$

$$
p=\Omega^{2}
$$

$$
d p=2 n d n
$$

$$
\sum_{\sqrt{(1)^{2}-p^{2}}}^{1}
$$

$$
p=\sin \theta \quad \sqrt{(1)^{2}-p^{2}}=\cos \theta
$$

$$
\partial_{p}=\cos \theta d \theta
$$

$$
\begin{aligned}
& =\int \frac{2}{(\cos \theta)}(\cos \theta d \theta)=\int 2 d \theta \\
& =2 \theta+C=2\left(\sin ^{-1} p\right)+c=2 \sin ^{-1}\left(n^{2}\right)+c \\
& \int_{0}^{1} \frac{4 n d 2}{\sqrt{1-n^{4}}}=\lim _{v \rightarrow 1^{-1}}^{0} \int_{0}^{0} \frac{4 n d n}{\sqrt{1-n^{2}}}=\lim _{u \rightarrow 1^{-}}\left\{2 \sin ^{-1}\left(n^{2}\right)+c\right]_{0}^{0} \\
& =\lim _{v \rightarrow 1^{-}}\left\{\left[2 \sin ^{-1}\left(u^{2}\right)+c\right]-\left[2 \sin ^{-1}\left((0)^{2}\right)+c\right]\right\} \\
& =\left[2 \sin ^{-1}\left((1)^{2}\right)\right]-\left[2 \sin ^{-1}(0)\right] \\
& =\left[2\left(\frac{\pi}{2}\right)\right]-[2(0)]=\pi
\end{aligned}
$$

36) $\int \frac{d \theta}{\theta^{2}-2 \theta}=\int \frac{1}{(\theta)^{\prime}(\theta-2)^{\prime}} d \theta=\int\left(\frac{\left(-\frac{1}{2}\right)}{(\theta)^{\prime}}+\frac{\left(\frac{1}{2}\right)}{(\theta-2)^{\prime}}\right) d \theta$

$$
\begin{array}{rll}
\frac{1}{(\theta)^{\prime}(\theta-2)^{\prime}}=\frac{A}{(\theta)^{\prime}}+\frac{B}{(\theta-2)^{\prime}} & =\frac{-1}{2}[\ln |\theta|]+\frac{1}{2}[\ln |\theta-2|]+C \\
1=A(\theta-2)+B(\theta) & & =\frac{-1}{2} \ln |\theta|+\frac{1}{2} \ln |\theta-2|+C \\
\text { constant term } \theta-\operatorname{tem} & & =\frac{1}{2} \ln \left|\frac{\theta-2}{\theta}\right|+C \\
1=-2 A & 0=A+B & \\
A=\frac{-1}{2} & B=-A \\
B=-\left(\frac{1}{2}\right)=\frac{1}{2}
\end{array} \quad=\frac{1}{2} \ln \left|1-\frac{2}{\theta}\right|+C,
$$

$$
\int_{-1}^{1} \frac{d \theta}{\theta^{2}-2 \theta}=\int_{-1}^{0} \frac{d \theta}{\theta^{2}-2 \theta}+\int_{0}^{1} \frac{d \theta}{\theta^{2}-2 \theta}
$$

$$
\int_{-1}^{0} \frac{\partial \theta}{\theta^{2}-2 \theta}=\lim _{v \rightarrow 0^{-}} \int_{-1}^{v} \frac{\partial \theta}{\theta^{2}-2 \theta}=\lim _{v \rightarrow 0^{-}}\left[\frac{1}{2} \ln \left|\frac{\theta-2}{\theta}\right|+C\right]_{-1}^{0}
$$

$$
=\lim _{v \rightarrow 0^{-}}\{[\frac{1}{2} \underbrace{\lim \left|\frac{v-2}{v}\right|}_{ \pm \infty}+c]-\left[\frac{1}{2} \ln \left|\frac{(-1)-2}{(-1)}\right|+c\right]\}=+\infty
$$

Since $\int_{-1}^{0} \frac{d \theta}{\theta^{2}-2 \theta}$ diverges, $\int_{-1}^{1} \frac{d \theta}{\theta^{2}-2 \theta}$ also diverges

$$
\begin{aligned}
& \text { 38) } \int \frac{\partial \theta}{\theta^{2}-1}=\int \frac{1}{(\theta+1)^{\prime}(\theta-1)^{\prime}} d \theta=\int\left(\frac{\left(-\frac{1}{2}\right)}{(\theta+1)^{\prime}}+\frac{\left(\frac{1}{2}\right)}{(\theta-1)^{\prime}}\right) d \theta \\
& \frac{1}{(\theta+1)^{\prime}(\theta-1)^{\prime}}=\frac{A}{(\theta+1)^{1}}+\frac{B}{(\theta-1)^{\prime}} ; 1=(B)+B ;=\frac{-1}{2}[\ln |\theta+1|]+\frac{1}{2}[\ln |\theta-1|]+C \\
& 1=A(\theta-1)+B(\theta+1) \\
& 1=2 B \\
& \text { constant term } \quad \begin{array}{l}
\theta \text {-term } \\
0=A+B \\
0
\end{array} \\
& \left|\begin{array}{cc}
B=\frac{B}{2} \\
A=-B
\end{array}\right| \\
& =-\frac{1}{2} \ln |\theta+1|+\frac{1}{2} \ln |\theta-1|+C \\
& \begin{array}{l}
A=-B \\
A=-\left(\frac{1}{2}\right)
\end{array} \\
& =\frac{1}{2} \ln |\theta-1|-\frac{1}{2} \ln |\theta+1|+C
\end{aligned}
$$

38) continued

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\partial \theta}{\theta^{2}-1}=\int_{0}^{1} \frac{d \theta}{\theta^{2}-1}+\int_{1}^{\infty} \frac{d \theta}{\theta^{2}-1}=\int_{0}^{1} \frac{\partial \theta}{\theta^{2}-1}+\int_{1}^{2} \frac{\partial \theta}{\theta^{2}-1}+\int_{2}^{\infty} \frac{d \theta}{\theta^{2}-1} \\
& \int_{0}^{1} \frac{\partial \theta}{\theta^{2}-1}=\lim _{u \rightarrow 1^{-}} \int_{0}^{u} \frac{d \theta}{\theta^{2}-1}=\lim _{v \rightarrow 1^{-}}\left[\frac{1}{2} \ln |\theta-1|-\frac{1}{2} \ln |\theta+1|+c\right]_{0}^{v} \\
& =\lim _{v \rightarrow 1^{-}}\{[\frac{1}{2} \underbrace{\left.\left.\ln |u-1|-\frac{1}{2} \ln |u+1|+c\right]-\left[\frac{1}{2} \ln |(0)-1|-\frac{1}{2} \ln |(0)+1|+c\right]\right\}}_{y-\infty} \\
& =-\infty \quad \text { diverges }
\end{aligned}
$$

Since $\int_{0}^{1} \frac{d \theta}{\theta^{2}-1}$ diverges, $\int_{0}^{\infty} \frac{d \theta}{\theta^{2}-1}$ also diverges

$$
\begin{aligned}
& \text { 42) } \quad \int \frac{d x}{x \ln x}=\int \frac{1}{\ln x}\left(\frac{1}{x} d x\right)=\int \frac{1}{p} d p=\ln |p|+C \\
& =\ln |\ln x|+C \\
& \begin{aligned}
\phi & =\ln x \\
d p & \frac{1}{x} d x \\
& \int_{1}^{2} \frac{d x}{x \ln x}=\lim _{L \rightarrow 1^{+}} \int_{L} \frac{d x}{x \ln x}=\lim _{L \rightarrow 1^{+}}[\ln |\ln x|+C]_{L}^{2} \\
& =\lim _{L \rightarrow 1^{+}}\{[\ln |\ln (2)|+C]-[\underbrace{\ln |\ln L|}_{y_{-\infty}}+C]\} \\
& =+\infty
\end{aligned}
\end{aligned}
$$

diverges
46)

$$
f(t)=\frac{1}{t-\sin ^{t}} \leq g(t)=\frac{1}{t^{3}} \quad \text { for }(0,1]
$$

since $\int_{0}^{1} \frac{d t}{1-\sin t}$ is not easy to find with techniques learned in earlier sections, we must use the tests of theorem 2 or 3,

$$
\begin{aligned}
\int_{0}^{1} g(t) d t & =\int_{0}^{1} \frac{1}{t^{3}} d t=\int_{0}^{1} t^{-3} d t=\lim _{L \rightarrow 0^{+}} \int_{L}^{1} t^{-3} d t=\lim _{\rightarrow \rightarrow 0^{+}}\left[\frac{t^{-2}}{-2}+C\right]_{L}^{1} \\
& =\lim _{L \rightarrow 0^{+}}\{\left[\frac{-1}{2(1)^{2}}+c\right]-\underbrace{\frac{-1}{2 L^{2}}}_{t-\infty}+c]\}=+\infty
\end{aligned}
$$

$\int_{0}^{1} g(t) d t=+\infty$ which diverges and we cam not use the Llirect Comparison test.

We should use Limit Comparison test

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{l(t)}{g(t)} & =\lim _{t \rightarrow 0} \frac{\left(\frac{1}{t-\sin t}\right)}{\left(\frac{1}{t^{3}}\right)}=\lim _{t \rightarrow 0} \frac{t^{3}}{t-\sin t} \stackrel{L}{ } \lim _{t \rightarrow 0} \frac{\left[3 t^{2}\right]}{[1-\cos t]} \\
& =\lim _{t \rightarrow 0} \frac{3 t^{2}}{1-\cos t} \triangleq \lim _{t \rightarrow 0} \frac{[6 t]}{-[-\sin t]}=\lim _{t \rightarrow 0} \frac{6 t}{\sin _{0} t}=\lim _{t \rightarrow 0} \frac{[6]}{[\cos t]} \\
& =\lim _{t \rightarrow 0} \frac{6}{\cos t}=\frac{6}{\cos (0)}=\frac{6}{(1)}=6
\end{aligned}
$$

$\lim _{t \rightarrow 0} \frac{p(t)}{g(t)}=6$ and $\int_{0}^{1} g(t) d t=+\infty$, so by Limit Comparison test
$\int_{0}^{1} P(t) d t=\int_{0}^{1} \frac{d t}{t-\sin t}$ diverges

$$
\begin{aligned}
& \text { 50) } \int(-x) \ln (-x) d x=(\ln (-x))\left(\frac{-x^{2}}{2}\right)-\int\left(\frac{-x^{2}}{2}\right)\left(\frac{1}{x} d x\right) \\
& \mu_{1}=\ln (-x) \quad \delta v_{1}=-x d x \quad=\frac{-1}{2} x^{2} \ln (-x)+\int x d x \\
& d \mu_{1}=\left[\frac{1}{-x}(-1)\right] d x \quad v_{1}=-\left[\frac{x^{2}}{2}\right] \quad=\frac{-1}{2} x^{2} \ln (-x)+\left[\frac{x^{2}}{2}\right]+C \\
& d \mu_{1}=\frac{1}{x} d x \quad v_{1}=\frac{-x^{2}}{2}=\frac{-1}{2} x^{2} \ln (-x)+\frac{1}{2} x^{2}+C \\
& \int(-x) \ln x d x=(\ln x)\left(\frac{-x^{2}}{2}\right)-\int\left(\frac{-x^{2}}{2}\right)\left(\frac{1}{x} d x\right) \\
& \mu_{1}=\ln x \quad d v_{1}=-x d x=\frac{-1}{2} x^{2} \ln x+\int x d x \\
& d \mu_{1}=\frac{1}{x} d x \quad v_{1}=\frac{-x^{2}}{2}=\frac{-1}{2} x^{2} \ln x+\frac{1}{2} x^{2}+C \\
& \int_{-1}^{1}-x \ln |x| d x=\int_{-1}^{0}(-x) \ln (-x) d x+\int_{0}^{1}(-x) \ln x d x \\
& \int_{-1}^{0}(-x) \ln (-x) d x=\lim _{u \rightarrow 0^{-}} \int_{-1}^{v}(-x) \ln (-x) d x=\lim _{u \rightarrow 0^{-}}\left[\frac{-1}{2} x^{2} \ln (-x)+\frac{1}{2} x^{2}+c\right]_{-1}^{v} \\
& =\lim _{u \rightarrow 0^{-}}\{[\frac{-1}{2} \underbrace{0}_{\frac{1}{0} u^{2} \ln (-v)}+\frac{1}{2} u^{2}+C]-\left[\frac{-1}{2}(-1)^{2} \ln (-(-1))+\frac{1}{2}(-1)^{2}+C\right]\} \\
& =[0+0]-\left[0+\frac{1}{2}\right]=-\frac{1}{2} \\
& \lim _{v \rightarrow 0^{-}}(0)(-\infty) \quad v^{2} \ln (-v)=\lim _{v \rightarrow 0^{-}} \frac{\ln ^{-\infty}(-v)}{\frac{1}{v^{2}}} \equiv \lim _{v \rightarrow 0^{-}} \frac{\left[\frac{1}{-v}(-1)\right]}{\left[-2 v^{-3}\right]}=\lim _{v \rightarrow 0^{-}} \frac{\frac{1}{v}}{\frac{-2}{v^{3}}}=\lim _{v \rightarrow 0}\left(\frac{1}{v}\right)\left(\frac{v^{3}}{-2}\right) \\
& =\lim _{v \rightarrow 0^{-}} \frac{-v^{2}}{2}=\frac{-\left(0^{-}\right)^{2}}{2}=0
\end{aligned}
$$

50) continued

$$
\begin{aligned}
& \int_{0}^{1}(-x) \ln x d x=\lim _{L \rightarrow 0^{+}} \int_{L}^{1}(-x) \ln x d x=\lim _{L \rightarrow 0^{+}}\left[\frac{-1}{2} x^{2} \ln x+\frac{1}{2} x^{2}+C\right]_{L}^{1} \\
& =\lim _{L \rightarrow 0^{+}}\{\left[\frac{-1}{2}(1)^{2} \ln (1)+\frac{1}{2}(1)^{2}+C\right]-[\frac{-1}{2} \underbrace{L}_{L_{0}^{2} \ln L}+\frac{1}{2} L^{2}+C]\} \\
& =\left[0+\frac{1}{2}\right]-[0+0]=\frac{1}{2} \\
& \left.\lim _{L \rightarrow 0^{+}} L^{(}\right) \ln L=(+\infty)=\lim _{L \rightarrow 0^{+}} \frac{\ln L}{\frac{1}{L^{2}}}=\lim _{L \rightarrow 0^{+}} \frac{\frac{1}{L}}{\frac{-2}{L^{3}}}=\lim _{L \rightarrow 0^{+}} \frac{-L^{2}}{2}=\frac{-\left(0^{+}\right)^{2}}{2}=0 \\
& \int_{-1}^{1}-x \ln |x| d x=\int_{-1}^{0}(-x) \ln (-x) d x+\int_{0}^{1}(-x) \ln x d x \\
& =\left(\frac{-1}{2}\right)+\left(\frac{1}{2}\right)=0
\end{aligned}
$$

$\int_{-1}^{1}-x \ln |x| d x=0$ and this integral converges
52) $\int \frac{d x}{\sqrt{x}-1}=$?

$$
\begin{aligned}
& 0 \leq f(x)=\frac{1}{\sqrt{x}-1} \leq g(x)=\frac{1}{\sqrt{x}} \text { for }[4, \infty) \\
& \int_{4}^{\infty} \frac{1}{\sqrt{x}} d x=\lim _{v \rightarrow \infty} \int_{4}^{v} \frac{1}{\sqrt{x}} d x=\lim _{v \rightarrow \infty}\left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c\right]_{4}^{v} \\
& =\lim _{u \rightarrow \infty}\left\{\begin{array}{c}
[2 \sqrt{v}+c]-[2 \sqrt{(4)}+c]\}=+\infty \\
+\infty
\end{array}\right.
\end{aligned}
$$

52) continued
we should use Limit Comparison test

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{l(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{\sqrt{x}-1}\right)}{\left(\frac{1}{\sqrt{x}}\right)}=\lim _{x \rightarrow \infty} \frac{+\infty}{+\infty} \frac{\sqrt{x}}{\sqrt{x}-1}=\lim _{x \rightarrow \infty} \frac{\left[\frac{1}{2 \sqrt{x}}\right)}{\left[\frac{1}{2 \sqrt{x}}-0\right]} \\
& =\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{2 \sqrt{x}}=\lim _{x \rightarrow \infty} 1=1
\end{aligned}
$$

$\lim _{x \rightarrow \infty} \frac{l(x)}{g(x)}=1$ and $\int_{\varphi}^{\infty} g(x) d x=+\infty$, so by Limit Companion Lest $\int_{\varphi}^{\infty} f(x) d x=\int_{4}^{\infty} \frac{d x}{\sqrt{x}-1}$ diverges
54) $\int \frac{d \theta}{1+e^{\theta}}=$?

$$
\begin{aligned}
& 0 \leq l(\theta)=\frac{1}{1+e^{\theta}} \leq g(\theta)=\frac{1}{e^{\theta}} \text { for } 0 \leq \theta<\infty \\
& \int_{0}^{\infty} \frac{1}{e^{\theta}} d \theta=\lim _{v \rightarrow \infty} \int_{0}^{v} \frac{1}{e^{\theta}} d \theta=\lim _{v \rightarrow \infty}\left[-e^{-\theta}+C\right]_{0}^{0} \\
& =\lim _{v \rightarrow \infty}\left\{\left[\frac{-1}{e^{v}}+C\right]-\left[\frac{-1}{e^{(0)}}+C\right]\right\}=[0]-\left[\frac{-1}{(1)}\right]=1 \text { comerges } \\
& \int_{0}^{\infty} g(\theta) d \theta=\int_{0}^{\infty} \frac{1}{e^{\theta}} d \theta=1 \text { and by Direct Comparison Lest } \\
& \int_{0}^{\infty} l(\theta) d \theta=\int_{0}^{\infty} \frac{d \theta}{1+e^{\theta}} \text { converges }
\end{aligned}
$$

56) $\int \frac{d x}{\sqrt{x^{2}-1}}$ is a long one.

$$
\begin{aligned}
& 0 \leqslant P(x)=\frac{1}{\sqrt{x^{2}-1}} \leq g(x)=\frac{1}{\sqrt{x^{2}}}=\frac{1}{x} \text { for } 2 \leq x<\infty \\
& \int_{2}^{\infty} \frac{1}{x} d x=\lim _{u \rightarrow \infty} \int_{2}^{u} \frac{1}{x} d x=\lim _{u \rightarrow \infty}[\ln |x|+C]_{2} \\
& =\lim _{u \rightarrow \infty}\{[\ln |u|+c]-[\ln |(2)|+c]\}=+\infty \\
& +\infty
\end{aligned}
$$

we should use Limit Comparison text

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{\sqrt{x_{1}+}}\right)}{\left(\frac{1}{x}\right)}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{\frac{x}{\sqrt{x}}}{\frac{\sqrt{x^{2}-1}}{\sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{\frac{x}{x}}{\frac{\sqrt{x^{2}-1}}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}}{x^{2}} \cdot \frac{1}{x^{2}}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{x^{2}}}}=\frac{1}{\sqrt{1-0}}=1
\end{aligned}
$$

$\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$ and $\int_{2}^{\infty} g(x) d x=+\infty$, so by Limit Comparison Lest $\int_{2}^{\infty} f(x) d x=\int_{2}^{\infty} \frac{d x}{\sqrt{x^{2}-1}}$ diverges

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x^{2}-(1)^{2}}}=\int \frac{1}{(\tan \theta)}(\sec \theta \tan \theta d \theta)=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+c \\
& \text { x. } \int \sqrt{x^{2}-(4)^{2}} \quad 1=\ln \left|\left(\frac{x}{1}\right)+\left(\frac{\sqrt{x^{2}-11^{2}}}{1}\right)\right|+C=\ln \left|x+\sqrt{x^{2}-1}\right|+C \\
& \frac{x}{1}=\sec \theta \frac{\sqrt{\left.x^{2}-1\right)^{2}}}{1}=\tan \theta \left\lvert\, \int_{2}^{\infty} \frac{d x}{\sqrt{x^{2}-1}}=\lim _{v \rightarrow \infty} \int_{2}^{0} \frac{1}{\sqrt{x^{2}-()^{2}}} d x=\lim _{v \rightarrow \infty}\left[\ln \left|x+\sqrt{x^{2}-1}\right|+c\right]_{2}^{0}\right. \\
& \begin{array}{c}
x=\sec \theta \frac{1}{\sqrt{x^{2}-()^{2}}=\tan \theta \mid}=\lim _{v \rightarrow \infty}\{\frac{(\underbrace{\ln \mid u+\sqrt{v^{2}-1}}_{+\infty} \mid+c]-\left[\ln \left|(2)+\sqrt{(2)^{2}-1}\right|+c\right]\}=+\infty}{d x=\sec \theta \tan \theta d \theta:} \quad \text { diverges }
\end{array}
\end{aligned}
$$

60)

$$
\begin{aligned}
& \int \frac{1+\sin x}{x^{2}} d x=? \\
& 0 \leq l(x)=\frac{1+\sin x}{x^{2}} \leq g(x)=\frac{2}{x^{2}} \text { for } \pi \leq x<\infty \\
& \int_{\pi}^{\infty} \frac{2}{x^{2}} d x=\lim _{u \rightarrow \infty} \int_{\pi}^{u} \frac{2}{x^{2}} d x=\lim _{v \rightarrow \infty}\left[\frac{-2}{x}+c\right]_{\pi}^{u} \\
& =\lim _{u \rightarrow \pi}\left\{\left[\frac{-2}{v}+c\right]-\left[\frac{-2}{(\pi)}+c\right]\right\}=[0]-\left[\frac{-2}{\pi}\right]=\frac{2}{\pi} \text { converges }
\end{aligned}
$$

$\int_{\pi}^{\infty} g(x) d x=\frac{2}{\pi}$ converges so by the Lhinect Comparison Lest and $0 \leqslant l(x) \leq g(x)$

$$
\int_{\pi}^{\infty} l(x) d x=\int_{\pi}^{\infty} \frac{1+\sin x}{x^{2}} d x \text { converges }
$$

62) $\int \frac{1}{\ln x} d x=$?

$$
\begin{aligned}
& 0 \leq l(x)=\frac{1}{x} \leq g(x)=\frac{1}{\ln x} \quad \text { for } 2<x<\infty \\
& \int_{2}^{\infty} \frac{1}{x} d x=\lim _{v \rightarrow \infty} \int_{2}^{u} \frac{1}{x} d x=\lim _{v \rightarrow \infty}[\ln |x|+c]_{2}^{u} \\
& =\lim _{u \rightarrow \infty}\left\{\left[\ln _{\substack{ \\
+\infty}} \mid+c\right]-[\ln |(2)|+c]\right\}=+\infty
\end{aligned}
$$

$\int_{2}^{\infty} l(x) d x=\int_{2}^{\infty} \frac{1}{x} d x=+\infty$ diverges, so by the Llinect Comparison Lest and $0 \leq f(x) \leq g(x)$

$$
\int_{2}^{\infty} g(x) d x=\int_{2}^{\infty} \frac{1}{\ln x} d x \text { diverges }
$$

66) $\int \frac{1}{e^{x}-2^{x}} d x=$?

$$
\begin{aligned}
& 0 \leq \ell(x)=\frac{1}{e^{x}-2^{x}} \leq g(x)=\frac{1}{e^{x}} \quad \text { for } 1 \leq x<\infty \\
& \int_{1}^{\infty} \frac{1}{e^{x}} d x=\lim _{u \rightarrow \infty} \int_{1}^{u} \frac{1}{e^{x}} d x=\lim _{v \rightarrow \infty}\left[\frac{-1}{e^{x}}+c\right]_{1}^{v} \\
& =\lim _{u \rightarrow \infty}\left\{\left[\frac{-1}{e^{u}}+c\right]-\left[\frac{-1}{e^{(1)}}+C\right]\right\}=[0]-\left[\frac{-1}{e}\right]=\frac{1}{e} \text { converges } \\
& \lim _{x \rightarrow \infty} \frac{\ell(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{e^{x}-2^{x}}\right)}{\left(\frac{1}{e^{x}}\right)}=\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}-2^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{e^{x}}{e^{x}}}{\frac{e^{x}}{e^{x}}-\frac{2^{x}}{e^{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1-\left(\frac{2}{e}\right)^{x}}=\frac{1}{1-0}=1
\end{aligned}
$$

because $0<\frac{2}{e}<1$ and $\lim _{x \rightarrow \infty}\left(\frac{2}{e}\right)^{x}=0$
$\lim _{x \rightarrow \infty} \frac{l(x)}{g(x)}=1$ and $\int_{1}^{\infty} g(x) d x=\int_{1}^{\infty} \frac{1}{e^{x}} d x=\frac{1}{e}$ converges,
so by Limit Comparison test

$$
\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{e^{x}-2^{x}} d x \text { converges }
$$

