Theorem 7 -Substitution in Definite Integrals

If g^{\prime} is continuous on the interval $[a, b]$ and f is continuous on the range of $g(x)=p$, then

$$
\int_{a}^{b}(f(g(x)))\left(g^{\prime}(x) d x\right)=\int_{g(a)}^{g(b)} f(p) d p .
$$

Another option instead of using this theorem above is to first find the indefinite integral with substitution method and then apply the Fundamental Theorem of Calculus part 2.

Theorem 8:

Let f be continuous on the symmetric interval $[-a, a]$.

1. If f is even, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
2. If f is odd, then $\int_{-a}^{a} f(x) d x=0$.

Definition

If f and g are continuous with $f(x) \geq g(x)$ Throughout $[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from \boldsymbol{a} to \boldsymbol{b} is the integral of $(f-g)$ from a to b :

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

$$
\begin{aligned}
& \text { 2) } \int \Omega \sqrt{1-n^{2}}=\int \sqrt{1-n^{2}}(n d n)=\int \sqrt{p}\left(\frac{-1}{2} d p\right)=\frac{-1}{2} \int p^{\frac{1}{2}} d p \\
& \begin{array}{l}
p=1-\Omega^{2} \\
d p=-2 n d n \\
-\frac{1}{2} d p=-\Omega d n
\end{array}=\frac{-1}{2}\left[\frac{p^{\frac{3}{2}}}{\frac{3}{2}}\right]+C=\frac{-1}{3}(\sqrt{p})^{3}+C=\frac{-1}{3}\left(\sqrt{1-n^{2}}\right)^{3}+C
\end{aligned}
$$

a)

$$
\begin{aligned}
\int_{0}^{1} \Omega \sqrt{1-\Omega^{2}} d n & =\left[\frac{-1}{3}\left(\sqrt{1-\Omega^{2}}\right)^{3}+C\right]_{0}^{1}=\left[\frac{-1}{3}\left(\sqrt{1-(1)^{2}}\right)^{3}+C\right]-\left[\frac{-1}{3}\left(\sqrt{1-(0)^{2}}\right)^{3}+C\right] \\
& =\left[\frac{-1}{3}(0)^{3}\right]-\left[\frac{-1}{3}(1)^{3}\right]=[0]-\left[\frac{-1}{3}\right]=\frac{1}{3}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { b) } \int_{-1}^{1} n \sqrt{1-n^{2}} d n & =\left[-\frac{1}{3}\left(\sqrt{1-n^{2}}\right)^{3}+c\right]_{-1}^{1}=\left[-\frac{1}{3}\right. \\
& =\left[\frac{-1}{3}(0)^{3}\right]-\left[\frac{-1}{3}(0)^{3}\right]=c \\
p=1-n^{2} & & n=-1 \Rightarrow p=1-(-1)^{2}=1-1=0 \\
d p=-2 n d \Omega & & n=0 \Rightarrow p=1-(0)^{2}=1-0=1 \\
-\frac{1}{2} d p=n d \Omega & & =1 \Rightarrow p=1-(1)^{2}=1-1=0
\end{array}
$$

$$
\int_{-1}^{1} n \sqrt{1-n^{2}} d n=\left[\frac{-1}{3}\left(\sqrt{1-n^{2}}\right)^{3}+c\right]_{-1}^{1}=\left[\frac{-1}{3}\left(\sqrt{1-(1)^{2}}\right)^{3}+c\right]-\left[\frac{-1}{3}\left(\sqrt{1-(-1)^{2}}\right)^{3}+c\right]
$$

$$
=\left[\frac{-1}{3}(0)^{3}\right]-\left[\frac{-1}{3}(0)^{3}\right]=[0]-[0]=0
$$

a)

$$
\begin{aligned}
& \int_{0}^{1} n \sqrt{1-n^{2}} d n=\int_{1}^{0} \sqrt{p}\left(\frac{-1}{2} d p\right)=\int_{1}^{0} \frac{-1}{2} p^{\frac{1}{2}} d p=\left[\frac{-1}{2}\left(\frac{p^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\right]_{1}^{0} \\
& =\left[\frac{-1}{3}(\sqrt{p})^{3}+C\right]_{1}^{0}=\left[\frac{-1}{3}(\sqrt{(0)})^{3}+C\right]-\left[\frac{-1}{3}(\sqrt{(1)})^{3}+C\right] \\
& =\left[\frac{-1}{3}(0)\right]-\left[\frac{-1}{3}(1)\right]=\frac{1}{3}
\end{aligned}
$$

b) $\int_{-1}^{1} n \sqrt{1-n^{2}} d n=\int_{0}^{0} \sqrt{p}\left(\frac{-1}{2} d p\right)=0$

$$
\text { 4) } \begin{aligned}
\int 3 \cos ^{2} x \sin x d x=\int 3 p^{2}(-1 d p) & =-p^{3}+C \\
& =-\cos ^{3} x+C
\end{aligned}
$$

$$
d p=-\sin x d x
$$

$$
-1 d p=\sin x d x
$$

a)

$$
\begin{aligned}
\int_{0}^{x} 3 \cos ^{2} x \sin x d x & =\left[-\cos ^{3} x+c\right]_{0}^{x}=\left[-\cos ^{3}(\pi)+c\right]-\left[-\cos ^{3}(0)+c\right] \\
& =\left[-(-1)^{3}\right]-\left[-(1)^{3}\right]=[1]-[-1]=2
\end{aligned}
$$

$$
\int_{2 x}^{3 \pi} 3 \cos ^{2} x \sin x d x=\left[-\cos ^{3} x+c\right]_{2 y}^{3 x}=\left[-\cos ^{3}(3 \pi)+c\right]-\left[-\cos ^{3}(2 x)+c\right]
$$

$$
\text { b) } \begin{array}{rlrl}
\int_{2 \pi}^{3 \pi} 3 \cos ^{2} x \sin x d x & =\left[-\cos ^{3} x+c\right]_{2 y}^{34}=\left[-\cos ^{3}\right. \\
& =\left[-(-1)^{3}\right]-\left[-(1)^{3}\right]=[1 \\
p & =\cos x & & x=0 \Rightarrow p=\cos (0)=1 \\
d p & =-\sin x d x & & x=\pi \Rightarrow p=\cos (x)=-1 \\
-1 d p=\sin x d x & & x=2 \pi \Rightarrow p=\cos (2 \pi)=1 \\
& x & =3 \pi \Rightarrow p=\cos (3 \pi)=-1
\end{array}
$$

$$
=\left[-(-1)^{3}\right]-\left[-(1)^{3}\right]=[1]-[-1]=2
$$

$$
\text { a) } \begin{aligned}
\int_{0}^{\pi} 3 \cos ^{2} x \sin x d x & =\int_{1}^{-1} 3 p^{2}(-1 d p)=\left[-p^{3}+c\right]_{1}^{-1} \\
& =\left[-(-1)^{3}+c\right]-\left[-(1)^{3}+c\right]=[1]-[-1]=2
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\int_{2 \pi}^{3 \pi} 3 \cos ^{2} x \sin x d x & =\int_{1}^{-1} 3 p^{2}(-1 d p)=\left[-p^{3}+c\right]_{1}^{-1} \\
& =\left[-(-1)^{3}+c\right]-\left[-(1)^{3}+c\right]=[1]-[-1]=2
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 6) } \int t\left(t^{2}+1\right)^{\frac{1}{3}} d t & =\int\left(t^{2}+1\right)^{\frac{1}{3}}(t d t)=\int p^{\frac{1}{3}}\left(\frac{1}{2} d p\right) \\
p=t^{2}+1 & =\frac{1}{2}\left[\frac{p^{\frac{4}{3}}}{\frac{4}{3}}\right]+C=\frac{3}{8}(\sqrt[3]{p})^{4}+C \\
d p=2 t d t & =\frac{3}{8}\left(\sqrt[3]{t^{2}+1}\right)^{4}+C \\
\frac{1}{2} d p=t d t &
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{\sqrt{71}} t\left(t^{2}+1\right)^{\frac{1}{3}} d t & =\left[\frac{3}{8}\left(\sqrt[3]{t^{2}+1}\right)^{4}+C\right]_{0}^{\sqrt{7}}=\left[\frac{3}{8}\left(\sqrt[3]{(\sqrt{7})^{2}+1}\right)^{4}+C\right]-\left[\frac{3}{8}\left(\sqrt[3]{(0)^{2}+1}\right)^{4}+C\right] \\
& =\left[\frac{3}{8}(\sqrt[3]{7+1})^{4}\right]-\left[\frac{3}{8}(\sqrt[3]{1})^{4}\right]=\frac{3}{8}(2)^{4}-\frac{3}{8}(1)=\frac{48}{8}-\frac{3}{8}=\frac{45}{8}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\int_{-\sqrt{7}}^{0} t\left(t^{2}+1\right)^{\frac{1}{3}} d t & =\left[\frac{3}{8}\left(\sqrt[3]{t^{2}+1}\right)^{4}+c\right]_{-\sqrt{7}}^{0}=\left[\frac{3}{8}\left(\sqrt[3]{(0)^{2}+1}\right)^{4}+c\right]-\left[\frac{3}{8}\left(\sqrt[3]{(-\sqrt{7})^{2}+1}\right)^{4}+c\right] \\
& =\left[\frac{3}{8}(1)^{4}\right]-\left[\frac{3}{8}(\sqrt[3]{8})^{4}\right]=\frac{3}{8}-\frac{48}{8}=\frac{-45}{8}
\end{aligned}
$$

$$
\begin{array}{ll}
p=t^{2}+1 & t=\sqrt{7} \Rightarrow p=(\sqrt{7})^{2}+1=7+1=8 \\
d_{p}=2 t d t & t=0 \Rightarrow p=(0)^{2}+1=1 \\
\frac{1}{2} d p=t d t & t=-\sqrt{7} \Rightarrow p=(-\sqrt{7})^{2}+1=7+1=8
\end{array}
$$

a)

$$
\begin{aligned}
\int_{0}^{\sqrt{7}} t\left(t^{2}+1\right)^{\frac{1}{3}} d t & =\int_{1}^{8} p^{\frac{1}{3}}\left(\frac{1}{2} d p\right)=\left[\frac{1}{2}\left(\frac{p^{\frac{4}{3}}}{\frac{4}{3}}\right)+C\right]_{1}^{8}=\left[\frac{3}{8}(\sqrt[3]{p})^{4}+c\right]_{1}^{8} \\
& =\left[\frac{3}{8}(\sqrt[3]{(8)})^{4}+c\right]-\left[\frac{3}{8}(\sqrt[3]{(1)})^{4}+c\right]=\frac{48}{8}-\frac{3}{8}=\frac{45}{8}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\int_{-\sqrt{7}}^{0} t\left(t^{2}+1\right)^{\frac{1}{3}} d t & =\int_{8}^{1} p^{\frac{1}{3}}\left(\frac{1}{2} d \rho\right)=\left[\frac{1}{2}\left(\frac{p^{\frac{4}{3}}}{\frac{4}{3}}\right)+C\right]_{8}^{1}=\left[\frac{3}{8}(\sqrt[3]{p})^{4}+C\right]_{8}^{1} \\
& =\left[\frac{3}{8}(\sqrt[3]{(1)})^{4}+C\right]-\left[\frac{3}{8}(\sqrt[3]{(8)})^{4}+C\right] \\
& =\frac{3}{8}-\frac{48}{8}=\frac{-45}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8) } \begin{aligned}
\int \frac{10 \sqrt{v}}{\left(1+v^{3 / 2}\right)^{2}} d v & =\int \frac{10}{\left(1+v^{3 / 2}\right)^{2}}(\sqrt{v} d v)=\int \frac{10}{p^{2}}\left(\frac{2}{3} d p\right) \\
p=1+v^{\frac{3}{2}} & =\frac{20}{3} \int p^{-2} d p=\frac{20}{3}\left[\frac{p^{-1}}{-1}\right]+C \\
d p=\frac{3}{2} v^{\frac{1}{2}} d v & =\frac{-20}{3 p}+C=\frac{-20}{3\left(1+v^{3 / 2}\right)}+C=\frac{-20}{3\left(1+(\sqrt{v})^{3}\right)}+C
\end{aligned} \$=\frac{3}{2} \sqrt{v} d v
\end{aligned}
$$

$\frac{2}{3} d \rho=\sqrt{v} d v$
a)

$$
\begin{aligned}
& \int_{0}^{1} \frac{10 \sqrt{v}}{\left(1+v^{3 / 2}\right)^{2}} d v=\left[\frac{-20}{3\left(1+(\sqrt{v})^{3}\right)}+C\right]_{0}^{1}=\left[\frac{-20}{3\left(1+(\sqrt{(1)})^{3}\right)}+C\right]-\left[\frac{-20}{3\left(1+(\sqrt{(v)})^{3}\right)}+C\right] \\
= & {\left[\frac{-20}{3(2)}\right]-\left[\frac{-20}{3(1)}\right]=\frac{-20}{6}+\frac{20}{3}=\frac{20}{3}-\frac{10}{3}=\frac{10}{3} }
\end{aligned}
$$

b) $\int_{1}^{4} \frac{10 \sqrt{v}}{\left(1+v^{3 / 2}\right)^{2}} d v=\left[\frac{-20}{3\left(1+(\sqrt{v})^{3}\right)}+C\right]_{1}^{4}=\left[\frac{-20}{3\left(1+(\sqrt{(4)})^{3}\right)}+C\right]-\left[\frac{-20}{3\left(1+(\sqrt{64})^{3}\right)}+C\right]$

$$
=\left[\frac{-20}{3(1+8)}\right]-\left[\frac{-20}{3(2)}\right]=\frac{-20}{27}+\frac{20}{6}=\frac{20}{6}-\frac{20}{27}=\frac{10}{3}-\frac{20}{27}=\frac{90}{27}-\frac{20}{27}=\frac{70}{27}
$$

$$
p=1+v^{\frac{3}{2}}=1+(\sqrt{v})^{3}
$$

$$
r=0 \Rightarrow p=1+(\sqrt{(0)})^{3}=1+0=1
$$

$$
d p=\frac{3}{2} v^{\frac{1}{2}} d v
$$

$$
v=1 \Rightarrow p=1+(\sqrt{(1)})^{3}=1+1=2
$$

$d p=\frac{3}{2} \sqrt{v} d v$

$$
v=4 \Rightarrow p=1+(\sqrt{(4)})^{3}=1+(2)^{3}=1+8=9
$$

$\frac{2}{3} d p=\sqrt{v} d v$

$$
\begin{aligned}
& \text { a) } \int_{0}^{1} \frac{10 \sqrt{v}}{\left(1+v^{3 / 2}\right)^{2}} d v \\
&=\left[\frac{-20}{3 p}+C\right]_{1}^{2}=\left[\frac{10}{p^{2}}\left(\frac{2}{3} d p\right)=\frac{20}{3} \int_{1}^{2} p^{-2} d p=\left[\frac{20}{3}+C\right]-\left[\frac{-20}{3(1)}+C\right]=\frac{-20}{6}+\frac{20}{3}=\frac{20}{3}-\frac{10}{3}=\frac{10}{3}\right.
\end{aligned}
$$

$$
\left.\begin{array}{rl}
b) & \int_{1}^{4} \frac{10 \sqrt{v^{2}}}{\left(1+v^{3 / 2}\right)^{2}} d v
\end{array}=\int_{2}^{9} \frac{10}{p^{2}}\left(\frac{2}{3} d_{p}\right)=\frac{20}{3} \int_{2}^{9} p^{-2} d \rho=\left[\frac{20}{3}\left(\frac{p^{-1}}{-1}\right)+C\right]_{2}^{9}\right]_{2}^{9}=\left[\frac{-20}{3(9)}+C\right]-\left[\frac{-20}{3(2)}+C\right]=\left[\frac{-20}{27}\right]-\left[\frac{-10}{3}\right]=\frac{10}{3}-\frac{20}{27}+C=\frac{90}{27}-\frac{20}{27}=\frac{70}{27} .
$$

$$
\begin{aligned}
& \text { 10) } \begin{aligned}
& \int \frac{x^{3}}{\sqrt{x^{4}+9}} d x=\int \frac{1}{\sqrt{x^{4}+9}}\left(x^{3} d x\right)=\int \frac{1}{\sqrt{p}}\left(\frac{1}{4} d p\right)=\frac{1}{4} \int p^{-\frac{1}{2}} d p \\
& p=x^{4}+9=\frac{1}{4}\left[\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right]+C=\frac{1}{2} \sqrt{p}+C=\frac{1}{2} \sqrt{x^{4}+9}+C \\
& d p=4 x^{3} d x
\end{aligned}
\end{aligned}
$$

$$
\frac{1}{4} d p=x^{3} d x
$$

$$
\begin{aligned}
& \text { a) } \int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} d x=\left[\frac{1}{2} \sqrt{x^{4}+9}+c\right]_{0}^{1}=\left[\frac{1}{2} \sqrt{(1)^{4}+9}+c\right]-\left[\frac{1}{2} \sqrt{(0)^{4}+9}+c\right] \\
& =\left[\frac{1}{2} \sqrt{10}\right]-\left[\frac{1}{2} \sqrt{9}\right]=\frac{\sqrt{10}}{2}-\frac{3}{2}=\frac{\sqrt{10}-3}{2}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4}+9}} d x=\left[\frac{1}{2} \sqrt{x^{4}+9}+c\right]_{-1}^{0}=\left[\frac{1}{2} \sqrt{(0)^{4+9}}+c\right]-\left[\frac{1}{2} \sqrt{(-1)^{4}+9}+c\right] \\
=\left[\frac{1}{2} \sqrt{9}\right]-\left[\frac{1}{2} \sqrt{10}\right]=\frac{3}{2}-\frac{\sqrt{10}}{2}=\frac{3-\sqrt{10}}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
p=x^{4}+9 & x=1 \Rightarrow p=(1)^{4}+9=1+9=10 \\
d p=4 x^{3} d x & x=0 \Rightarrow p=(0)^{4}+9=0+9=9 \\
\frac{1}{4} d p=x^{3} d x & x=-1 \Rightarrow p=(-1)^{4}+9=1+9=10
\end{array}
$$

$$
\text { a) } \begin{aligned}
& \int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+q}} d x=\int_{q}^{10} \frac{1}{\sqrt{p p}}\left(\frac{1}{4} d p\right)=\frac{1}{4} \int_{q}^{10} p^{-\frac{1}{2}} d p=\left[\frac{1}{4}\left(\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right)+C\right]_{9}^{10} \\
&=\left[\frac{1}{2} \sqrt{p}+C\right]_{q}^{10}=\left[\frac{1}{2} \sqrt{(10)}+C\right]-\left[\frac{1}{2} \sqrt{(9)}+C\right]=\frac{\sqrt{10}}{2}-\frac{3}{2}=\frac{\sqrt{10}-3}{2}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4}+9}} d x=\int_{10}^{9} \frac{1}{\sqrt{p}}\left(\frac{1}{4} d p\right)=\frac{1}{4} \int_{10}^{9} p^{-\frac{1}{2}} d p=\left[\frac{1}{4}\left(\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right)+C\right]_{10}^{9} \\
&=\left[\frac{1}{2} \sqrt{p}+C\right]_{10}^{9}=\left[\frac{1}{2} \sqrt{(9)}+C\right]-\left[\frac{1}{2} \sqrt{(10)}+C\right]=\frac{3}{2}-\frac{\sqrt{10}}{2}=\frac{3-\sqrt{10}}{2}
\end{aligned}
$$

12) $\int(1-\cos 3 t) \sin 3 t d t=\int \varphi\left(\frac{1}{3} d_{p}\right)=\frac{1}{3}\left[\frac{p^{2}}{2}\right]+C$

$$
\begin{aligned}
p & =1-\cos 3 t \\
d p & =-[-\sin 3 t(3)] d t \\
d \varphi & =3 \sin 3 t d t \\
\frac{1}{3} d p & =\sin 3 t d t
\end{aligned}
$$

$$
=\frac{1}{6} p^{2}+C=\frac{1}{6}(1-\cos 3 t)^{2}+C
$$

$$
\text { a) } \begin{aligned}
& \int_{0}^{\frac{\pi}{6}}(1-\cos 3 t) \sin 3 t d t=\left[\frac{1}{6}(1-\cos 3 t)^{2}+C\right]_{0}^{\frac{\pi}{6}} \\
= & {\left[\frac{1}{6}\left(1-\cos \left(3\left(\frac{\pi}{6}\right)\right)\right)^{2}+C\right]-\left[\frac{1}{6}(1-\cos (3(0)))^{2}+C\right] } \\
= & {\left[\frac{1}{6}\left(1-\cos \left(\frac{\pi}{2}\right)\right)^{2}\right]-\left[\frac{1}{6}(1-\cos (0))^{2}\right]=\left[\frac{1}{6}(1-0)^{2}\right]-\left[\frac{1}{6}(1-1)^{2}\right]=\frac{1}{6} }
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}(1-\cos 3 t) \sin 3 t d t=\left[\frac{1}{6}(1-\cos 3 t)^{2}+C\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \\
= & {\left[\frac{1}{6}\left(1-\cos \left(3\left(\frac{\pi}{3}\right)\right)\right)^{2}+C\right]-\left[\frac{1}{6}\left(1-\cos \left(3\left(\frac{\pi}{6}\right)\right)\right)^{2}+C\right] } \\
= & {\left[\frac{1}{6}(1-\cos (x))^{2}\right]-\left[\frac{1}{6}\left(1-\cos \left(\frac{\pi}{2}\right)\right)^{2}\right]=\left[\frac{1}{6}(1-(-1))^{2}\right]-\left[\frac{1}{6}(1-0)^{2}\right]=\frac{4}{6}-\frac{1}{6}=\frac{3}{6}=\frac{1}{2} }
\end{aligned}
$$

$p=1-\cos 3 t$

$$
d \rho=-[-\sin 3 t(3)] d t
$$

$$
\frac{1}{3} d \phi=\sin 3 t d t
$$

$$
\begin{aligned}
& x=0 \Rightarrow p=1-\cos (3(0))=1-\cos (0)=1-1=0 \\
& t=\frac{\pi}{6} \Rightarrow p=1-\cos \left(3\left(\frac{\pi}{0}\right)\right)=1-\cos \left(\frac{\pi}{2}\right)=1-0=1 \\
& t=\frac{\pi}{3} \Rightarrow p=1-\cos \left(3\left(\frac{\pi}{3}\right)\right)=1-\cos (x)=1-(-1)=2
\end{aligned}
$$

a)

$$
\begin{aligned}
& \int_{0}^{\frac{x}{6}}(1-\cos 3 t) \sin 3 t d t=\int_{0}^{1} p\left(\frac{1}{3} d p\right)=\left[\frac{1}{3}\left(\frac{p^{2}}{2}\right)+C\right]_{0}^{1}=\left[\frac{1}{6} p^{2}+c\right]_{0}^{1} \\
& =\left[\frac{1}{6}(1)^{2}+c\right]-\left[\frac{1}{6}(0)^{2}+c\right]=\frac{1}{6}-0=\frac{1}{6}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}(1-\cos 3 t) \sin 3 t d t=\int_{1}^{2} p\left(\frac{1}{3} d p\right)=\left[\frac{1}{3}\left(\frac{p^{2}}{2}\right)+c\right]_{1}^{2}=\left[\frac{1}{6} p^{2}+c\right]_{1}^{2} \\
= & {\left[\frac{1}{6}(2)^{2}+c\right]-\left[\frac{1}{6}(1)^{2}+c\right]=\frac{4}{6}-\frac{1}{6}=\frac{3}{6}=\frac{1}{2} }
\end{aligned}
$$

$$
\text { 14) } \begin{aligned}
\int\left(2+\tan \frac{t}{2}\right) \sec ^{2} \frac{t}{2} d t & =\int p(2 d p)=2\left[\frac{p^{2}}{2}\right]+C \\
p & =2+\tan \frac{t}{2} \\
d p & =\sec ^{2} \frac{t}{2}\left(\frac{1}{2}\right) d t \\
2 d p & =\sec ^{2} \frac{t}{2} d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \int_{-\frac{\pi}{2}}^{0}\left(2+\tan \frac{t}{2}\right) \sec ^{2} \frac{t}{2} d t=\left[\left(2+\tan \left(\frac{t}{2}\right)\right)^{2}+C\right]_{-\frac{\pi}{2}}^{0} \\
& =\left[\left(2+\tan \left(\frac{10}{2}\right)\right)^{2}+C\right]-\left[\left(2+\tan \left(\frac{\left(-\frac{\pi}{2}\right)}{2}\right)\right)^{2}+C\right] \\
& =\left[(2+\tan (0))^{2}\right]-\left[\left(2+\tan \left(\frac{-\pi}{4}\right)\right)^{2}\right]=\left[(2+(0))^{2}\right]-\left[(2+(-1))^{2}\right] \\
& =4-1=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(2+\tan \frac{t}{2}\right) \sec ^{2} \frac{t}{2} d t=\left[\left(2+\tan \left(\frac{t}{2}\right)\right)^{2}+c\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\
&=\left[\left(2+\tan \left(\frac{\left(\frac{\pi}{2}\right)}{2}\right)\right)^{2}+c\right]-\left[\left(2+\tan \left(\frac{\left(-\frac{\pi}{2}\right)}{2}\right)+C\right]\right. \\
&=\left[\left(2+\tan \left(\frac{\pi}{4}\right)\right)^{2}\right]-\left[\left(2+\tan \left(\frac{-\pi}{4}\right)\right)^{2}\right]=\left[(2+(1))^{2}\right]-\left[(2+(-1))^{2}\right]=9-1=8 \\
& p=2+\tan \frac{t}{2} t=0 \Rightarrow p=2+\tan \left(\frac{(0)}{2}\right)=2+\tan (0)=2+0=2 \\
& d_{p}=\sec ^{2} \frac{t}{2}\left(\frac{1}{2}\right) d t \quad t=\frac{-\pi}{2} \Rightarrow p=2+\tan \left(\frac{\left(\frac{\pi}{2}\right)}{2}\right)=2+\tan \left(\frac{\pi}{4}\right)=2+(-1)=1 \\
& 2 d \rho=\sec ^{2} \frac{t}{2} d t \quad t=\frac{\pi}{2} \Rightarrow p=2+\tan \left(\frac{\left(\frac{\pi}{2}\right)}{2}\right)=2+\tan \left(\frac{\pi}{4}\right)=2+(1)=3
\end{aligned}
$$

a)

$$
\begin{aligned}
& \int_{-\frac{\pi}{2}}^{0}\left(2+\tan \frac{t}{2}\right) \sec ^{2} \frac{t}{2} d t=\int_{1}^{2} p(2 d p)=\int_{1}^{2} 2 p d p=\left[p^{2}+c\right]_{1}^{2} \\
& =\left[(2)^{2}+c\right]-\left[(1)^{2}+c\right]=[4]-[1]=3
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(2+\tan \frac{t}{2}\right) \sec ^{2} \frac{t}{2} d t=\int_{1}^{3} p(2 d p)=\int_{1}^{3} 2 p d p=\left[p^{2}+c\right]_{1}^{3} \\
&=\left[(3)^{2}+c\right]-\left[(1)^{2}+c\right]=[9]-[1]=8
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16) } \int \frac{d y}{2 \sqrt{y}(1+\sqrt{y})^{2}}=\int \frac{1}{(1+\sqrt{y})^{2}}\left(\frac{1}{2 \sqrt{y}} d y\right)=\int \frac{1}{p^{2}} d p \\
& \begin{array}{l}
p=1+\sqrt{y}=1+y^{\frac{1}{2}} \\
d p=\frac{1}{2} y^{-\frac{1}{2}} d y
\end{array} \quad=\int p^{-2} d p=\left[\frac{p^{-1}}{-1}\right]+C=\frac{-1}{p}+C \\
& d_{p}=\frac{1}{2 \sqrt{y}} d y \quad=\frac{-1}{(1+\sqrt{y})}+C \\
& \int_{1}^{4} \frac{d y}{2 \sqrt{y}(1+\sqrt{y})^{2}}=\left[\frac{-1}{(1+\sqrt{y})}+C\right]_{1}^{4}=\left[\frac{-1}{(1+\sqrt{(4)})}+C\right]-\left[\frac{-1}{(1+\sqrt{(1)})}+C\right] \\
& =\left[\frac{-1}{1+2}\right]-\left[\frac{-1}{1+1}\right]=\frac{-1}{3}+\frac{1}{2}=\frac{-2}{6}+\frac{3}{6}=\frac{1}{6} \\
& p=1+\sqrt{y}=1+y^{\frac{1}{2}} \\
& y=1 \Rightarrow p=1+\sqrt{(1)}=1+1=2 \\
& d_{p}=\frac{1}{2} y^{-\frac{1}{2}} d y \\
& y=4 \Rightarrow p=1+\sqrt{(4)}=1+2=3 \\
& d p=\frac{1}{2 \sqrt{y}} d y \\
& \int_{1}^{4} \frac{d y}{2 \sqrt{y}(1+\sqrt{y})^{2}}=\int_{1}^{4} \frac{1}{(1+\sqrt{y})^{2}}\left(\frac{1}{2 \sqrt{y}} d y\right)=\int_{a}^{3} \frac{1}{p^{2}} d p \\
& =\int_{2}^{3} p^{-2} d p=\left[\frac{p^{-1}}{-1}+c\right]_{2}^{3}=\left[\frac{-1}{p}+c\right]_{2}^{3} \\
& =\left[\frac{-1}{(3)}+C\right]-\left[\frac{-1}{(2)}+C\right]=\frac{-1}{3}+\frac{1}{2}=\frac{-2}{6}+\frac{3}{6}=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 18) } \int \cot ^{5}\left(\frac{\theta}{6}\right) \sec ^{2}\left(\frac{\theta}{6}\right) d \theta=\int \frac{1}{\tan ^{5}\left(\frac{\theta}{6}\right)}\left(\sec ^{2}\left(\frac{\theta}{6}\right) d \theta\right) \\
& p=\tan \left(\frac{\theta}{6}\right) \quad=\int \frac{1}{p^{5}}(6 d p)=6 \int p^{-5} d p \\
& d_{p}=\sec ^{2}\left(\frac{\theta}{6}\right)\left(\frac{1}{6}\right) d \theta \\
& 6 d p=\sec ^{2}\left(\frac{\theta}{6}\right) d \theta \\
& =6\left[\frac{p^{-4}}{-4}\right]+C=\frac{-3}{2 p^{4}}+C \\
& =\frac{-3}{2 \tan ^{4}\left(\frac{\theta}{6}\right)}+C \\
& \int_{\pi}^{\frac{3 \pi}{2}} \cot ^{5}\left(\frac{\theta}{6}\right) \sec ^{2}\left(\frac{\theta}{6}\right) d \theta=\left[\frac{-3}{2 \tan ^{4}\left(\frac{\theta}{6}\right)}+C\right]_{\pi}^{\frac{3 \pi}{2}} \\
& =\left[\frac{-3}{2 \tan ^{4}\left(\frac{(372}{6}\right)}+C\right]-\left[\frac{-3}{2 \tan ^{4}\left(\frac{(\pi)}{6}\right)}+C\right]=\left[\frac{-3}{2 \tan ^{4}\left(\frac{\pi}{4}\right)}\right]-\left[\frac{-3}{2 \tan ^{4}\left(\frac{\pi}{6}\right)}\right] \\
& =\left[\frac{-3}{2(1)^{4}}\right]-\left[\frac{-3}{2\left(\frac{1}{\sqrt{3}}\right)^{4}}\right]=\left[\frac{-3}{2}\right]-\left[\frac{-3}{2\left(\frac{1}{9}\right)}\right]=\frac{-3}{2}+\frac{27}{2}=\frac{24}{2}=12 \\
& p=\tan \left(\frac{\theta}{6}\right) \quad \theta=\pi \Rightarrow p=\tan \left(\frac{(\pi)}{6}\right)=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}} \\
& d \rho=\sec ^{2}\left(\frac{\theta}{6}\right)\left(\frac{1}{6}\right) d \theta \quad \theta=\frac{3 \pi}{2} \Rightarrow p=\tan \left(\frac{\left(\frac{3 \pi}{2}\right)}{6}\right)=\tan \left(\frac{\pi}{4}\right)=1 \\
& 6 d \rho=\sec ^{2}\left(\frac{\theta}{6}\right) d \theta \\
& \int_{\pi}^{\frac{3 \pi}{2}} \cot ^{5}\left(\frac{\theta}{6}\right) \sec ^{2}\left(\frac{\theta}{6}\right) d \theta=\int_{\pi}^{\frac{3 \pi}{2}} \frac{1}{\tan ^{5}\left(\frac{\theta}{6}\right)}\left(\sec ^{2}\left(\frac{\theta}{6}\right) d \theta\right)=\int_{\sqrt{3}}^{1} \frac{1}{p^{5}}(6 d p) \\
& =6 \int_{\frac{1}{\sqrt{3}}}^{1} p^{-5} d p=\left[6\left(\frac{p^{-4}}{-4}\right)+c\right]_{\frac{1}{\sqrt{3}}}^{\prime}=\left[\frac{-3}{2 p^{4}}+c\right]_{\frac{1}{\sqrt{3}}}^{1} \\
& =\left[\frac{-3}{2(1)^{4}}+c\right]-\left[\frac{-3}{2\left(\frac{1}{\sqrt{3}}\right)^{4}}+C\right]=\left[\frac{-3}{2}\right]-\left[\frac{-3}{2\left(\frac{1}{4}\right)}\right] \\
& =\frac{-3}{2}+\frac{27}{2}=\frac{24}{2}=12
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20) } \int(1-\sin 2 t)^{\frac{3}{2}} \cos 2 t d t=\int p^{\frac{3}{2}}\left(\frac{-1}{2} d p\right) \\
& p=1-\sin 2 t \quad=\frac{-1}{2}\left[\frac{p^{\frac{5}{2}}}{\frac{5}{2}}\right]+C=\frac{-1}{5}(\sqrt{p})^{5}+C \\
& d p=-[\cos 2 t(2)] d t \quad=\frac{-1}{5}(\sqrt{1-\sin 2 t})^{5}+C \\
& -\frac{1}{2} d p=\cos 2 t d t \quad \\
& \int_{0}^{\frac{\pi}{4}}(1-\sin 2 t)^{\frac{3}{2}} \cos 2 t d t=\left[\frac{-1}{5}(\sqrt{1-\sin 2 t})^{5}+C\right]_{0}^{\frac{\pi}{4}} \\
& =\left[\frac{-1}{5}\left(\sqrt{1-\sin \left(2\left(\frac{\pi}{4}\right)\right)}\right)^{5}+C\right]-\left[\frac{-1}{5}(\sqrt{1-\sin (2(0)))})^{5}+C\right] \\
& =\left[\frac{-1}{5}\left(\sqrt{1-\sin \left(\frac{\pi}{2}\right)}\right)^{5}\right]-\left[\frac{-1}{5}(\sqrt{1-\sin (0)})^{5}\right]=\left[\frac{-1}{5}(\sqrt{1-(1)})^{5}\right]-\left[\frac{-1}{5}(\sqrt{1-(0)})^{5}\right] \\
& =\left[\frac{-1}{5}(0)^{5}\right]-\left[\frac{-1}{5}(1)^{5}\right]=\frac{1}{5} \\
& p=1-\sin 2 t \quad t=0 \Rightarrow p=1-\sin (2(0))=1-10)=1 \\
& d p=-2 \cos 2 t d t \quad t=\frac{\pi}{4} \Rightarrow p=1-\sin \left(2\left(\frac{\pi}{4}\right)\right)=1-\sin \left(\frac{\pi}{2}\right)=1-(1)=0 \\
& -\frac{1}{2} d p=\cos 2 t d t \quad \\
& \left.\int_{0}^{\frac{\pi}{4}}(1-\sin 2 t)^{\frac{3}{2}} \cos 2 t d t=\int_{1}^{0} p^{\frac{3}{2}}\left(\frac{-1}{2} d p\right)=\left[\frac{-1}{2}\left(\frac{p}{\frac{5}{2}}\right)^{\frac{5}{2}}\right)+C\right]_{1}^{0} \\
& =\left[\frac{-1}{5}(\sqrt{p})^{5}+C\right]_{1}^{0}=\left[\frac{-1}{5}(\sqrt{(0)})^{5}+C\right]-\left[\frac{-1}{5}(\sqrt{(1)})^{5}+C\right] \\
& =\frac{1}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 22) } \int\left(y^{3}+6 y^{2}-12 y+9\right)^{-1 / 2}\left(y^{2}+4 y-4\right) d y \\
& p=y^{3}+6 y^{2}-12 y+9=\int p^{-\frac{1}{2}}\left(\frac{1}{3} d p\right)=\frac{1}{3}\left[\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right]+C \\
& d p=3 y^{2}+12 y-12 d y=\frac{2}{3} \sqrt{p}+C \\
& d p=3\left(y^{2}+4 y-4\right) d y=\frac{2}{3} \sqrt{y^{3}+6 y^{2}-12 y+9}+C \\
& \frac{1}{3} d p=\left(y^{2}+4 y-4\right) d y \\
& \int_{0}^{1}\left(y^{3}+6 y^{2}-12 y+9\right)^{\frac{-1}{2}}\left(y^{2}+4 y-4\right) d y=\left[\frac{2}{3} \sqrt{y^{3}+6 y^{2}-12 y+9}+C\right]_{0}^{1} \\
& =\left[\frac{2}{3} \sqrt{(1)^{3}+6(1)^{2}-12(1)+9}+C\right]-\left[\frac{2}{3} \sqrt{(0)^{3}+6(0)^{2}-12(0)+9}+C\right] \\
& =\left[\frac{2}{3} \sqrt{4}\right]-\left[\frac{2}{3} \sqrt{9}\right]=\frac{4}{3}-\frac{6}{3}=\frac{-2}{3} \\
& p=y^{3}+6 y^{2}-12 y+9 \quad y=0 \Rightarrow p=(0)^{3}+6(0)^{2}-12(0)+9=9 \\
& d p=3 y^{2}+12 y-12 d y \quad y=1 \Rightarrow p=(1)^{3}+6(1)^{2}-12(1)+9=4 \\
& d p=3\left(y^{2}+4 y-4\right) d y \quad \\
& \frac{1}{3} d p=\left(y^{2}+4 y-4\right) d y \quad \\
& \int_{0}^{1}\left(y^{3}+6 y^{2}-12 y+9\right)^{-\frac{1}{2}}\left(y^{2}+4 y-4\right) d y=\int_{q}^{4} p p^{-\frac{1}{2}}\left(\frac{1}{3} d p\right) \\
& =\left[\frac{1}{3}\left(\frac{p^{\frac{1}{2}} \frac{1}{2}}{2}\right)+C\right]_{9}^{4}=\left[\frac{2}{3} \sqrt{p}+C\right]_{q}^{4} \\
& =\left[\frac{2}{3} \sqrt{(4)}+C\right]-\left[\frac{2}{3} \sqrt{(9)}+C\right]=\frac{4}{3}-\frac{6}{3}=\frac{-2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24) } \int t^{-2} \sin ^{2}\left(1+\frac{1}{t}\right) d t=\int \sin ^{2}\left(1+\frac{1}{t}\right)\left(t^{-2} d t\right) \\
& p=1+\frac{1}{t}=1+t^{-1} \\
& =\int \sin ^{2} p(-1 d p)=-1 \int\left(\frac{1-\cos (2 p)}{2}\right) d p \\
& d p=-1 t^{-2} d t \\
& -1 d p=t^{-2} d t \\
& =\int \frac{-1}{2} d p+\int \frac{1}{2} \cos (2 p) d p \\
& =\int-\frac{1}{2} d p+\int \frac{1}{2} \cos \phi\left(\frac{1}{2} d q\right) \\
& q=2 p \quad d_{q}=2 d p \\
& =\frac{-1}{2} \varphi+\frac{1}{4} \sin \phi+C=\frac{-1}{2} p+\frac{1}{4} \sin (2 \phi)+C \\
& =-\frac{1}{2}\left(1+\frac{1}{t}\right)+\frac{1}{4} \sin \left(2\left(1+\frac{1}{t}\right)\right)+C \\
& \int_{-1}^{\frac{-1}{2}} t^{-2} \sin ^{2}\left(1+\frac{1}{t}\right) d t=\left[\frac{-1}{2}\left(1+\frac{1}{t}\right)+\frac{1}{4} \sin \left(2\left(1+\frac{1}{t}\right)\right)+C\right]_{-1}^{-\frac{1}{2}} \\
& =\left[\frac{-1}{2}\left(1+\frac{1}{\left(-\frac{1}{2}\right)}\right)+\frac{1}{4} \sin \left(2\left(1+\frac{1}{\left(\frac{-1}{2}\right)}\right)\right)+C\right]-\left[\frac{-1}{2}\left(1+\frac{1}{(-1)}\right)+\frac{1}{4} \sin \left(2\left(1+\frac{1}{(-1)}\right)\right)+C\right] \\
& =\left[-\frac{1}{2}(1-2)+\frac{1}{4} \sin (2(1-2))\right]-\left[-\frac{1}{2}(0)+\frac{1}{4} \sin (2(0))\right] \\
& =\left[-\frac{1}{2}(-1)+\frac{1}{4} \sin (-2)\right]-[0+0]=\frac{1}{2}+\frac{1}{4} \sin (-2) \\
& p=1+\frac{1}{t}=1+t^{-1} \quad t=-1 \Rightarrow p=1+\frac{1}{(-1)}=0 \\
& d p=-1 t^{-2} d t \quad t=\frac{-1}{2} \Rightarrow p=1+\frac{1}{\left(-\frac{1}{2}\right)}=1-2=-1 \\
& -1 d p=t^{-2} d t \\
& \int_{-1}^{\frac{-1}{2}} t^{-2} \sin ^{2}\left(1+\frac{1}{t}\right) d t=\int_{-1}^{\frac{-1}{2}} \sin ^{2}\left(1+\frac{1}{t}\right)\left(t^{-2} d t\right)=\int_{0}^{-1} \sin ^{2} p(-1 d p) \\
& =\int_{0}^{-1}-\left(\frac{1-\cos (2 p)}{2}\right) d p=\int_{0}^{-1} \frac{-1}{2} d p+\int_{0}^{-1} \frac{1}{2} \cos (2 p) d p \\
& q=2 \varphi \quad p=0 \Rightarrow q=2(0)=0 \quad=\int_{0}^{-1} \frac{-1}{2} d p+\int_{0}^{-2} \frac{1}{2} \cos q\left(\frac{1}{2} d q\right) \\
& d q=2 d p \quad p=-1 \Rightarrow q=2(-1)=-2 \quad=\left[-\frac{1}{2} p+C\right]_{0}^{-1}+\left[\frac{1}{4} \sin q+D\right]_{0}^{-2} \\
& \frac{1}{2} d q=d p \quad=\left\{\left[\frac{-1}{2}(-1)+C\right]-\left[\frac{-1}{2}(0)+C\right]\right\}+\left\{\left[\frac{1}{4} \sin (-2)+D\right]-\left[\frac{1}{4} \sin (0)+D\right]\right\} \\
& =\frac{1}{2}+\frac{1}{4} \sin (-2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 26) } \int\left(1+e^{\cot \theta}\right) \csc ^{2} \theta d \theta=\int\left(1+e^{\phi}\right)(-1 d p) \\
& p=\cot \theta \quad-\left\{[p]+\left[e^{\phi}\right]\right\}+C \\
& d p=-\csc ^{2} \theta d \theta \quad-\cot \theta-e^{\cot \theta}+c \\
& -1 d p=\csc ^{2} \theta d \theta \quad \\
& \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\left(1+e^{\cot \theta}\right) \csc ^{2} \theta d \theta=\left[-\cot \theta-e^{\cot \theta}+c\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
& =\left[-\cot \left(\frac{\pi}{2}\right)-e^{\cot \left(\frac{\pi}{2}\right)}+c\right]-\left[-\cot \left(\frac{\pi}{4}\right)-e^{\cot \left(\frac{\pi}{4}\right)}+c\right] \\
& =\left[-(0)-e^{(0)}\right]-\left[-(1)-e^{(1)}\right]=[-1]-[-1-e]=e \\
& p=\cot \theta \quad \theta=\frac{\pi}{4} \Rightarrow p=\cot \left(\frac{\pi}{4}\right)=1 \\
& d p=-\cos ^{2} \theta d \theta \quad \theta=\frac{\pi}{2} \Rightarrow p=\cot \left(\frac{\pi}{2}\right)=0 \\
& -1 d p=\csc ^{2} \theta d \theta \quad \\
& \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\left(1+e^{\cot \theta)} \csc ^{2} \theta d \theta=\int_{1}^{0}\left(1+e^{p}\right)(-1 d p)\right. \\
& =\int_{1}^{0}\left(-1-e^{p}\right) d p=\left[-p-e^{p}+C\right]_{1}^{0} \\
& =\left[-(0)-e^{(0)}+c\right]-\left[-(1)-e^{(1)}+C\right] \\
& =[-1]-[-1-e]=e
\end{aligned}
$$

$$
\begin{aligned}
& \text { 28) } \int \frac{4 \sin \theta}{1-4 \cos \theta} d \theta=\int \frac{1}{1-4 \cos \theta}(4 \sin \theta d \theta)=\int \frac{1}{p} d p \\
& p=1-4 \cos \theta \quad=\ln |p|+C=\ln |1-4 \cos \theta|+C \\
& d p=-4[-\sin \theta] d \theta \\
& d p=4 \sin \theta d \theta \\
& \int_{0}^{\frac{\pi}{3}} \frac{4 \sin \theta}{1-4 \cos \theta} d \theta=[\ln |1-4 \cos \theta|+C]_{0}^{\frac{\pi}{3}} \\
& =\left[\ln \left|1-4 \cos \left(\frac{\pi}{3}\right)\right|+c\right]-[\ln |1-4 \cos (0)|+c] \\
& =\left[\ln \left|1-4\left(\frac{1}{2}\right)\right|\right]-[\ln |1-4(1)|]=[\ln |1-2|]-[\ln |1-4|] \\
& =\ln |-1|-\ln |-3|=\ln \mid-\ln 3=0-\ln 3=-\ln 3 \\
& p=1-4 \cos \theta \quad \theta=0 \Rightarrow p=1-4 \cos (0)=1-4(1)=-3 \\
& d p=-4[-\sin \theta] d \theta \quad \theta=\frac{\pi}{3} \Rightarrow p=1-4 \cos \left(\frac{\pi}{3}\right)=1-4\left(\frac{1}{2}\right)=1-2=-1 \\
& d p=4 \sin \theta d \theta \quad \\
& \int_{0}^{\frac{\pi}{3}} \frac{4 \sin \theta}{1-4 \cos \theta} d \theta=\int_{0}^{\frac{\pi}{3}} \frac{1}{1-4 \cos \theta}(4 \sin \theta d \theta)=\int_{-3}^{-1} \frac{1}{p}(d p) \\
& =[\ln |p|+C]_{-3}^{-1}=[\ln |(-1)|+C]-[\ln |(-3)|+C] \\
& =\ln |-1|-\ln |-3|=\ln \mid-\ln 3=0-\ln 3=-\ln 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 30) } \int \frac{d x}{x \ln x}=\int \frac{1}{\ln x}\left(\frac{1}{x} d x\right)=\int \frac{1}{p} d p \\
& p=\ln x \quad=\ln |p|+c=\ln |\ln x|+C \\
& d p=\frac{1}{x} d x \quad \\
& \int_{2}^{4} \frac{d x}{x \ln x}=[\ln |\ln x|+C]_{2}^{4}=[\ln |\ln (4)|+C]-[\ln |\ln (2)|+C] \\
& =\ln (\ln 4)-\ln (\ln 2)=\ln \left(\frac{\ln \psi}{\ln 2}\right)=\ln \left(\frac{\ln \left(2^{2}\right)}{\ln 2}\right) \\
& =\ln \left(\frac{2 \ln 2}{\ln 2}\right)=\ln 2 \\
& p=\ln x \quad x=2 \Rightarrow p=\ln (2)=\ln 2 \\
& d p=\frac{1}{x} d x \quad x=4 \Rightarrow p=\ln (4)=\ln 4 \\
& \int_{2}^{4} \frac{d x}{x \ln x}=\int_{2}^{4} \frac{1}{\ln x}\left(\frac{1}{x} d x\right)=\int_{\ln 2}^{\ln 4} \frac{1}{p} d p=[\ln |p|+C]_{\ln 2}^{\ln 2} \\
& =[\ln |(\ln 4)|+C]-[\ln |(\ln 2)|+c] \\
& =\ln (\ln 4)-\ln (\ln 2)=\ln \left(\frac{\ln 4}{\ln 2}\right)=\ln \left(\frac{\ln \left(2^{2}\right)}{\ln 2}\right) \\
& =\ln \left(\frac{2 \ln 2}{\ln 2}\right)=\ln 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 32) } \int \frac{d x}{2 x \sqrt{\ln x}}=\int \frac{1}{2 \sqrt{\ln x}}\left(\frac{1}{x} d x\right)=\int \frac{1}{2 \sqrt{p}} d p \\
& p=\ln x \quad=\int \frac{1}{2} p^{-\frac{1}{2}} d p=\frac{1}{2}\left[\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right]+C=\sqrt{p}+C \\
& d p=\frac{1}{x} d x \quad=\sqrt{\ln x}+C \\
& \int_{2}^{16} \frac{d x}{2 x \sqrt{\ln x}}=[\sqrt{\ln x}+C]_{2}^{16}=[\sqrt{\ln (16)}+C]-[\sqrt{\ln (2)}+C] \\
& =[\sqrt{\ln 16}]-[\sqrt{\ln 2}]=\sqrt{\ln \left(2^{4}\right)}-\sqrt{\ln 2}=\sqrt{4 \ln 2}-\sqrt{\ln 2} \\
& =2 \sqrt{\ln 2}-\sqrt{\ln 2}=\sqrt{\ln 2} \\
& p=\ln x \quad x=2 \Rightarrow p=\ln (2)=\ln 2 \\
& d p=\frac{1}{x} d x \quad x=16 \Rightarrow p=\ln (16)=\ln \left(2^{4}\right)=4 \ln 2 \\
& \int_{2}^{16} \frac{d x}{2 x \sqrt{\ln x}}=\int_{2}^{186} \frac{1}{2 \sqrt{\ln x}}\left(\frac{1}{x} d x\right)=\int_{\ln 2}^{4 \ln 2} \frac{1}{2 \sqrt{p}} d p \\
& =\int_{\ln 2}^{4 \ln 2} \frac{1}{2} p^{-\frac{1}{2}} d p=\left[\frac{1}{2}\left(\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right)+C\right]_{\ln 2}^{4 \ln 2}=[\sqrt{p}+C]_{\ln 2}^{4 \ln 2} \\
& =[\sqrt{(4 \ln 2)}+C]-[\sqrt{(\ln 2)}+C] \\
& =\sqrt{4 \ln 2}-\sqrt{\ln 2}=2 \sqrt{\ln 2}-\sqrt{\ln 2}=\sqrt{\ln 2}
\end{aligned}
$$

$$
\begin{aligned}
& 34) \int \cot t d t=\int \frac{\cos t}{\sin t} d t=\int \frac{1}{\sin t}(\cos t d t) \\
& p=\sin t \quad=\int \frac{1}{p} d p=\ln |p|+C \\
& d p=\cos t d t \quad=\ln |\sin t|+c \\
& \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot t d t=[\ln |\sin t|+c]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
& =\left[\ln \left|\sin \left(\frac{\pi}{2}\right)\right|+c\right]-\left[\ln \left|\sin \left(\frac{\pi}{4}\right)\right|+c\right] \\
& \left.=(\ln |1|]-\left[\ln \left|\frac{1}{\sqrt{2}}\right|\right]=\ln \right\rvert\,-\ln \left(\frac{1}{\sqrt{2}}\right)=-\ln \left(\frac{1}{\sqrt{2}}\right) \\
& =-\{\ln \mid-\ln \sqrt{2}\}=-\{0-\ln \sqrt{2}\}=\ln \sqrt{2}=\frac{1}{2} \ln 2 \\
& p=\sin t \quad t=\frac{\pi}{4} \Rightarrow p=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\
& d p=\cos t d t \quad t=\frac{\pi}{2} \Rightarrow p=\sin \left(\frac{\pi}{2}\right)=1 \\
& \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot t d t=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos t}{\sin t} d t=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\sin t}(\cos t d t)=\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{p} d p \\
& =[\ln |p|+c]_{\sqrt{2}}^{\prime}=[\ln |(1)|+c]-\left[\ln \left|\left(\frac{1}{\sqrt{2}}\right)\right|+c\right] \\
& =[0]-\left[\ln \left(\frac{1}{\sqrt{2}}\right)\right]=-\ln \left(\frac{1}{\sqrt{2}}\right)=-\{\ln \mid-\ln \sqrt{2}\} \\
& =-\{0-\ln \sqrt{2}\}=\ln \sqrt{2}=\frac{1}{2} \ln 2
\end{aligned}
$$

$$
\begin{aligned}
& 36) \int 6 \tan 3 x d x=\int 6 \frac{\sin 3 x}{\cos 3 x} d x=\int \frac{2}{\cos 3 x}(3 \sin 3 x d x) \\
& p=\cos 3 x \quad=\int \frac{2}{p}(-1 d p)=-2 \ln |p|+C \\
& d p=[-\sin 3 x(3)] d x=-2 \ln |\cos 3 x|+C \\
& -1 d p=3 \sin 3 x d x \\
& \int_{0}^{\frac{\pi}{12}} 6 \tan 3 x d x=[-2 \ln |\cos 3 x|+C]_{0}^{\frac{\pi}{12}} \\
& =\left[-2 \ln \left|\cos \left(3\left(\frac{\pi}{12}\right)\right)\right|+C\right]-[-2 \ln |\cos (3(0))|+C] \\
& =\left[-2 \ln \left|\cos \left(\frac{\pi}{4}\right)\right|\right]-[-2 \ln |\cos (0)|]=\left[-2 \ln \left|\left(\frac{1}{\sqrt{2}}\right)\right|\right]-[-2 \ln |(1)|] \\
& =\left[-2 \ln \left(\frac{1}{\sqrt{2}}\right)\right]-[-2(0)]=-2 \ln \left(\frac{1}{\sqrt{2}}\right)=-2\{\ln (1)-\ln (\sqrt{2})\} \\
& =-2\{0-\ln \sqrt{2}\}=2 \ln \sqrt{2}=2\left(\frac{1}{2} \ln 2\right)=\ln 2 \\
& p=\cos 3 x \quad x=0 \Rightarrow p=\cos (3 \operatorname{los}))=\cos (0)=1 \\
& d p=-3 \sin 3 x d x \quad x=\frac{\pi}{12} \Rightarrow p=\cos \left(3\left(\frac{\pi}{12}\right)\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\
& -1 d p=3 \sin 3 x d x \quad \\
& \int_{0}^{\frac{\pi}{12}} 6 \tan 3 x d x=\int_{0}^{\frac{\pi}{12}} 6 \frac{\sin 3 x}{\cos 3 x} d x=\int_{0}^{\frac{\pi}{12}} \frac{2}{\cos 3 x}(3 \sin 3 x d x)=\int_{1} \frac{2}{p}(-1 d p) \\
& =[-2 \ln |p|+c]_{1}^{\frac{1}{\sqrt{2}}}=\left[-2 \ln \left|\left(\frac{1}{\sqrt{2}}\right)\right|+C\right]-[-2 \ln |(1)|+C] \\
& =\left[-2 \ln \left(\frac{1}{\sqrt{2}}\right)\right]-[-2(0)]=-2 \ln \left(\frac{1}{\sqrt{2}}\right)=-2\{\ln 1-\ln \sqrt{2}\} \\
& =-2\{0-\ln \sqrt{2}\}=2 \ln \sqrt{2}=2\left(\frac{1}{2} \ln 2\right)=\ln 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 38) } \int \frac{\csc ^{2} x d x}{1+(\cot x)^{2}}=\int \frac{1}{1+(\cot x)^{2}}\left(\csc ^{2} x d x\right)=\int \frac{1}{1+p^{2}}(-1 d p) \\
& p=\cot x \quad \text { usingthe }=-\left[\frac{1}{1} \tan ^{-1}\left(\frac{p}{1}\right)\right]+C \\
& d p=-\csc ^{2} x d x \text { formula } \\
& =-\tan ^{-1}(\cot x)+C \\
& -1 d p=\csc ^{2} x d x \\
& \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\csc ^{2} x d x}{1+(\cot x)^{2}}=\left[-\tan ^{-1}(\cot x)+C\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}} \\
& =\left[-\tan ^{-1}\left(\cot \left(\frac{\pi}{4}\right)\right)+C\right]-\left[-\tan ^{-1}\left(\cot \left(\frac{\pi}{6}\right)\right)+C\right] \\
& =\left[-\tan ^{-1}\left(\frac{1}{1}\right)\right]-\left[-\tan ^{-1}\left(\frac{\sqrt{3}}{1}\right)\right]=\left[-\left(\frac{\pi}{4}\right)\right]-\left[-\left(\frac{\pi}{3}\right)\right]=\frac{-\pi}{4}+\frac{\pi}{3} \\
& =\frac{-3 \pi}{12}+\frac{4 \pi}{12}=\frac{\pi}{12} \\
& p=\cot x \\
& x=\frac{\pi}{6} \Rightarrow p=\cot \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{1}=\sqrt{3} \\
& d p=-\csc ^{2} x d x \\
& x=\frac{\pi}{4} \Rightarrow p=\cot \left(\frac{\pi}{4}\right)=\frac{1}{1}=1 \\
& -1 d \rho=\cos ^{2} x d x \\
& \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\csc ^{2} x d x}{1+(\cot x)^{2}}=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{1+(\cot x)^{2}}\left(\csc ^{2} x d x\right)=\int_{\sqrt{3}}^{1} \frac{1}{1+p^{2}}(-1 d p) \\
& =\left[-\left(\frac{1}{1} \tan ^{-1}\left(\frac{p}{1}\right)\right)+c\right]_{\sqrt{3}}^{1}=\left[-\tan ^{-1} p+c\right]_{\sqrt{3}}^{1} \\
& =\left[-\tan ^{-1}(1)+C\right]-\left[-\tan ^{-1}(\sqrt{3})+C\right] \\
& =\left[-\left(\frac{\pi}{4}\right)\right]-\left[-\left(\frac{\pi}{3}\right)\right]=\frac{-\pi}{4}+\frac{\pi}{3}=\frac{-3 \pi}{12}+\frac{4 \pi}{12}=\frac{\pi}{12}
\end{aligned}
$$

$$
\begin{aligned}
& 40) \int \frac{4 d t}{t\left(1+\ln ^{2} t\right)}=\int 4\left(\frac{1}{1+(\ln t)^{2}}\right)\left(\frac{1}{t} d t\right)=\int 4\left(\frac{1}{1+p^{2}}\right) d p \\
& p=\ln t \quad \text { usingth }=4\left[\frac{1}{1} \tan ^{-1}\left(\frac{p}{1}\right)\right]+C=4 \tan ^{-1} p+C \\
& d p=\frac{1}{t} d t \text { fonnela }=4 \tan ^{-1}(\ln t)+C \\
& \int_{1}^{e^{\frac{\pi}{4}}} \frac{4 d t}{t\left(1+\ln ^{2} t\right)}=\left[4 \tan ^{-1}(\ln t)+C\right]_{1}^{e^{\frac{\pi}{4}}} \\
& =\left[4 \tan ^{-1}\left(\ln \left(e^{\frac{\pi}{4}}\right)\right)+C\right]-\left[4 \tan ^{-1}(\ln (1))+C\right] \\
& =\left[4 \tan ^{-1}\left(\frac{\pi}{4}\right)\right]-\left[4 \tan ^{-1}(0)\right]=4 \tan ^{-1}\left(\frac{\pi}{4}\right)-4(0)=4 \tan ^{-1}\left(\frac{\pi}{4}\right) \\
& p=\ln t \\
& d p=\frac{1}{t} d t \quad t=e^{\frac{\pi}{4}} \Rightarrow p=\ln (1)=0 \\
& \left.\int_{1}^{\frac{\pi}{4}} \frac{4 d t}{t\left(1+\ln ^{2} t\right)}=e_{1}^{\frac{\pi}{4}}\right)=\frac{\pi}{4} \\
& e^{\frac{\pi}{4}} \\
& 4\left(\frac{1}{1+(\ln t)^{2}}\right)\left(\frac{1}{t} d t\right)=\int_{0}^{\frac{\pi}{4}} 4\left(\frac{1}{1+p^{2}}\right) d p \\
& =\left[4\left(\frac{1}{1} \tan ^{-1}\left(\frac{p}{1}\right)\right)+C\right]_{0}^{\frac{\pi}{4}}=\left[4 \tan ^{-1} p+C\right]_{0}^{\frac{\pi}{4}} \\
& =\left[4 \tan ^{-1}\left(\frac{\pi}{4}\right)+C\right]-\left[4 \tan ^{-1}(0)+C\right] \\
& =4 \tan ^{-1}\left(\frac{\pi}{4}\right)-4(0) \\
& =4 \tan ^{-1}\left(\frac{\pi}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 42) \int \frac{d s}{\sqrt{9-4 s^{2}}}=\int \frac{1}{\sqrt{(3)^{2}-(2 s)^{2}}} d s=\int \frac{1}{\sqrt{(3)^{2}-p^{2}}}\left(\frac{1}{2} d p\right) \\
& p=2 s \quad \text { usingthe }=\frac{1}{2}\left[\sin ^{-1}\left(\frac{p}{3}\right)\right]+C=\frac{1}{2} \sin ^{-1}\left(\frac{2 s}{3}\right)+C \\
& d p=2 d s \quad \text { pormula } \\
& \frac{1}{2} d p=d s \\
& \int_{0}^{\frac{\sqrt[3]{2}}{4}} \frac{d s}{\sqrt{9-4 s^{2}}}=\left[\frac{1}{2} \sin ^{-1}\left(\frac{2 s}{3}\right)+C\right]_{0}^{\frac{\sqrt[3]{2}}{4}}=\left[\frac{1}{2} \sin ^{-1}\left(\frac{2\left(\frac{3 \sqrt{2}}{4}\right)}{3}\right)+C\right]-\left[\frac{1}{2} \sin ^{-1}\left(\frac{2(0)}{3}\right)+C\right] \\
& =\left[\frac{1}{2} \sin ^{-1}\left(\frac{\sqrt[3]{2}}{6}\right)\right]-\left[\frac{1}{2} \sin ^{-1}(0)\right]=\frac{1}{2} \sin ^{-1}\left(\frac{\sqrt[3]{2}}{6}\right) \\
& p=2 s \quad s=0 \Rightarrow p=2(0)=0 \\
& d p=2 d s \\
& \frac{1}{2} d p=d s \\
& \int_{0}^{\frac{3 \sqrt{2}}{4}} \frac{d s}{\sqrt{q-4 s^{2}}}=\int_{0}^{\frac{3 \sqrt[3]{2}}{4}} \frac{1}{\sqrt{(3)^{2}-(2 s)^{2}}} d s=\int_{0}^{\frac{3}{2}} \frac{1}{4} \Rightarrow p=2\left(\frac{\sqrt[3]{2}}{4}\right)=\frac{\sqrt[3]{2}}{2} \\
& =\left[\frac { 1 } { 2 } \left(\sin ^{-1}-p^{2}\right.\right. \\
& \left.\left.\left(\frac{p}{3}\right)\right)+C\right]_{0}^{\frac{\sqrt[3]{2}}{2}}=\left[\frac{1}{2} \sin ^{-1}\left(\frac{p}{3}\right)+C\right]_{0}^{\frac{\sqrt[3]{2}}{2}} \\
& =\left[\frac{1}{2} \sin ^{-1}\left(\frac{\left(\frac{3 \sqrt{2}}{2}\right)}{3}\right)+C\right]-\left[\frac{1}{2} \sin ^{-1}\left(\frac{10)}{3}\right)+C\right] \\
& =\frac{1}{2} \sin ^{-1}\left(\frac{\sqrt[3]{2}}{6}\right)-\frac{1}{2}(0)=\frac{1}{2} \sin ^{-1}\left(\frac{\sqrt[3]{2}}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44) } \int \frac{\cos \left(\sec ^{-1} x\right) d x}{x \sqrt{x^{2}-1}}=\int \cos \left(\sec ^{-1} x\right)\left(\frac{1}{x \sqrt{x^{2}-1}} d x\right) \\
& \varphi=\sec ^{-1} x \\
& \sec p=x=\frac{x}{1} \\
& \sum_{1}^{x}\left|\sqrt{x^{2}-(1)^{2}}\right|=\int \cos p d p=\sin p+C \\
& =\sin \left(\sec ^{-1} x\right)+C \\
& \text { secp } \tan p \frac{d p}{d x}=1 \\
& \frac{d p}{d x}=\frac{1}{\sec p \tan p}=\frac{1}{\left(\frac{x}{1}\right)\left(\frac{\sqrt{x^{2}-(1)^{2}}}{1}\right)} \\
& d p=\frac{1}{x \sqrt{x^{2}-1}} d x \\
& \int_{\frac{2}{\sqrt{3}}}^{2} \frac{\cos \left(\sec ^{-1} x\right) d x}{x \sqrt{x^{2}-1}}=\left[\sin \left(\sec ^{-1} x\right)+C\right]_{\frac{2}{\sqrt{3}}}^{2} \\
& =\left[\sin \left(\sec ^{-1}(2)\right)+C\right]-\left[\sin \left(\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)\right)+C\right] \\
& =\left[\sin \left(\frac{\pi}{3}\right)\right]-\left[\sin \left(\frac{\pi}{6}\right)\right]=\left[\frac{\sqrt{3}}{2}\right]-\left[\frac{1}{2}\right]=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2} \\
& p=\sec ^{-1} x \\
& x=\frac{2}{\sqrt{3}} \Rightarrow p=\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{6} \\
& x=2 \Rightarrow p=\sec ^{-1}(2)=\frac{\pi}{3} \\
& \int_{\frac{2}{\sqrt{3}}}^{2} \frac{\cos \left(\sec ^{-1} x\right) d x}{x \sqrt{x^{2}-1}}=\int_{\frac{2}{\sqrt{3}}}^{2} \cos \left(\sec ^{-1} x\right)\left(\frac{1}{x \sqrt{x^{2}-1}} d x\right)=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos p d p \\
& =[\sin p+C]_{\frac{\pi}{6}}^{\frac{\pi}{3}}=\left[\sin \left(\frac{\pi}{3}\right)+C\right]-\left[\sin \left(\frac{\pi}{6}\right)+C\right] \\
& =\left[\frac{\sqrt{3}}{2}\right]-\left[\frac{1}{2}\right]=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 46) } \int \frac{y d y}{\sqrt{5 y+1}}=\int \frac{y}{\sqrt{5 y+1}} d y=\int \frac{\left(\frac{p-1}{5}\right)}{\sqrt{p}}\left(\frac{1}{5} d_{p}\right) \\
& p=5 y+1 \Rightarrow 5 y=p-1 \left\lvert\,=\frac{1}{5^{2}} \int\left(\frac{p}{\sqrt{p}}-\frac{1}{\sqrt{p}}\right) d p=\frac{1}{25} \int\left(p^{\frac{1}{2}}-p^{\frac{-1}{2}}\right) d p\right. \\
& \begin{array}{l}
d_{p}=5 d y \quad y=\frac{p-1}{5} \\
\frac{1}{5} d_{p}=d_{y}
\end{array} \quad=\frac{1}{25}\left\{\left[\frac{p^{\frac{3}{2}}}{\frac{3}{2}}\right]-\left[\frac{p^{\frac{1}{2}}}{\frac{1}{2}}\right]\right\}+C \\
& =\frac{1}{25}\left\{\frac{2}{3}(\sqrt{p})^{3}-2 \sqrt{p}\right\}+C \\
& =\frac{1}{25}\left\{\frac{2}{3}(\sqrt{5 y+1})^{3}-2 \sqrt{5 y+1}\right\}+C \\
& \int_{0}^{3} \frac{y d y}{\sqrt{5 y+1}}=\left[\frac{1}{25}\left\{\frac{2}{3}(\sqrt{5 y+1})^{3}-2 \sqrt{5 y+1}\right\}+C\right]_{0}^{3} \\
& =\left[\frac{1}{25}\left\{\frac{2}{3}(\sqrt{5(3)+1})^{3}-2 \sqrt{5(3)+1}\right\}+C\right]-\left[\frac{1}{25}\left\{\frac{2}{3}(\sqrt{5(0)+1})^{3}-2 \sqrt{5(0)+1}\right\}+C\right] \\
& =\left[\frac{1}{25}\left\{\frac{2}{3}(\sqrt{16})^{3}-2 \sqrt{16}\right\}\right]-\left[\frac{1}{25}\left\{\frac{2}{3}(\sqrt{1})^{3}-2 \sqrt{1}\right\}\right] \\
& =\frac{1}{25}\left\{\left[\frac{2}{3}(4)^{3}-2(4)\right]-\left[\frac{2}{3}-2\right]\right\}=\frac{1}{25}\left\{\left[\frac{128}{3}-8\right]-\left[\frac{2}{3}-2\right]\right\}=\frac{1}{25}\left\{\frac{126}{3}-6\right\} \\
& =\frac{1}{25}\{42-6\}=\frac{1}{25}\{36\}=\frac{36}{25} \\
& p=5 y+1 \quad y=\frac{p-1}{5} \quad y=0 \Rightarrow p=5(0)+1=1 \\
& \frac{1}{5} d p=d y \text { \{see abore\} } \quad y=3 \Rightarrow p=5(3)+1=15+1=16 \\
& \int_{0}^{3} \frac{y d y}{\sqrt{5 y+1}}=\int_{0}^{3} \frac{y}{\sqrt{5 y+1}} d y=\int_{1}^{16} \frac{\left(\frac{p-1}{5}\right)}{\sqrt{p}}\left(\frac{1}{5} d p\right)=\frac{1}{25} \int_{1}^{16}\left(p^{\frac{1}{2}}-p^{-\frac{1}{2}}\right) d p \\
& =\frac{1}{25}\left[\left(\frac{\varphi^{\frac{3}{2}}}{\frac{3}{2}}\right)-\left(\frac{\rho^{\frac{1}{2}}}{\frac{1}{2}}\right)+C\right]_{1}^{16}=\frac{1}{25}\left[\frac{2}{3}(\sqrt{p})^{3}-2 \sqrt{\rho}+C\right]_{1}^{16} \\
& =\frac{1}{25}\left\{\left[\frac{2}{3}(\sqrt{(16)})^{3}-2 \sqrt{(16)}+C\right]-\left[\frac{2}{3}(\sqrt{(1)})^{3}-2 \sqrt{(1)}+C\right]\right\} \\
& =\frac{1}{25}\left\{\left[\frac{128}{3}-8\right]-\left[\frac{2}{3}-2\right]\right\}=\frac{1}{25}\left\{\frac{126}{3}-6\right\}=\frac{1}{25}\{42-6\}=\frac{1}{25}\{36\}=\frac{36}{25}
\end{aligned}
$$

48) $\int \frac{\cos \left(\tan ^{-1} 3 x\right)}{1+9 x^{2}} d x=\int \cos \left(\tan ^{-1} 3 x\right)\left(\frac{1}{1+9 x^{2}} d x\right)$

$$
p=\tan ^{-1} 3 x
$$

\Downarrow
$\tan p=3 x=\frac{(3 x)}{1}$

$$
\sec ^{2} p \frac{d p}{d x}=3
$$

$$
\frac{d p}{d x}=\frac{3}{s^{2} p}=\frac{3}{\left(\frac{\sqrt{(1)^{2}+(3 x)^{2}}}{1}\right)^{2}}=\frac{3}{1+9 x^{2}} \Rightarrow d p=\frac{3}{1+9 x^{2}} d x \Rightarrow \frac{1}{3} d p=\frac{1}{1+9 x^{2}} d x
$$

$$
\int_{-\sqrt{3}}^{\frac{1}{\sqrt{3}}} \frac{\cos \left(\tan ^{-1} 3 x\right)}{1+9 x^{2}} d x=\left[\frac{1}{3} \sin \left(\tan ^{-1}(3 x)\right)+C\right]_{-\sqrt{3}}^{\frac{1}{\sqrt{3}}}
$$

$$
=\left[\frac{1}{3} \sin \left(\tan ^{-1} 3\left(\frac{1}{\sqrt{3}}\right)\right)+C\right]-\left[\frac{1}{3} \sin \left(\tan ^{-1} 3(-\sqrt{3})\right)+c\right]
$$

$$
=\left[\frac{1}{3} \sin \left(\tan ^{-1}(\sqrt{3})\right]-\left[\frac{1}{3} \sin \left(\tan ^{-1}(-3 \sqrt{3})\right]=\left[\frac{1}{3} \sin \left(\frac{\pi}{3}\right)\right]-\left[\frac{1}{3} \sin \left(\tan ^{-1}(-3 \sqrt{3})\right]\right.\right.\right.
$$

$$
=\left[\frac{1}{3}\left(\frac{\sqrt{3}}{2}\right)\right]-\left[\frac{1}{3} \sin \left(\tan ^{-1}(-3 \sqrt{3})\right]=\frac{\sqrt{3}}{6}-\frac{1}{3} \sin \left(\tan ^{-1}(-3 \sqrt{3})\right)\right.
$$

$$
p=\tan ^{-1}(3 x)
$$

$$
x=\frac{1}{\sqrt{3}} \Rightarrow p=\tan ^{-1}\left(3\left(\frac{1}{\sqrt{3}}\right)\right)=\tan ^{-1}\left(\frac{3}{\sqrt{3}}\right)
$$

$$
d p=\frac{3}{1+9 x^{2}} d x
$$

$$
=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}
$$

$\frac{1}{3} d p=\frac{1}{1+9 x^{2}} d x \quad\left\{\right.$ see above\} $\quad x=-\sqrt{3} \Rightarrow p=\tan ^{-1}(3(-\sqrt{3}))=\tan ^{-1}(-3 \sqrt{3})$

$$
\begin{aligned}
& \int_{-\sqrt{3}}^{\frac{1}{3}} \frac{\cos \left(\tan ^{-1}(3 x)\right)}{1+9 x^{2}} d x=\int_{\tan ^{-1}(-3 \sqrt{3})}^{\frac{\pi}{3}} \cos p\left(\frac{1}{3} d p\right)=\left[\frac{1}{3} \sin p+C\right]_{\tan ^{-1}(-3 \sqrt{3})}^{\frac{\pi}{3}} \\
& =\left[\frac{1}{3} \sin \left(\frac{\pi}{3}\right)+C\right]-\left[\frac{1}{3} \sin \left(\tan ^{-1}(-3 \sqrt{3})\right)+C\right] \\
& =\left[\frac{1}{3}\left(\frac{\sqrt{3}}{2}\right)\right]-\left[\frac{1}{3} \sin \left(\tan ^{-1}(-3 \sqrt{3})\right)\right]=\frac{\sqrt{3}}{6}-\frac{1}{3} \sin \left(\tan ^{-1}(-3 \sqrt{3})\right)
\end{aligned}
$$

50) Upper Curves $y=(1-\cos x) \sin x$
lower curve: $y=0$

$$
\begin{aligned}
& A=\int_{0}^{\pi}\{((1-\cos x) \sin x)-(0)\} d x=\int_{0}^{\pi}(1-\cos x) \sin x d x \\
& p=1-\cos x \\
& d p=-[-\sin x] d x \quad \int(1-\cos x) \sin x d x=\int \frac{p^{2}}{2}+C=\frac{1}{2} p^{2}+C=\frac{1}{2}(1-\cos x)^{2}+C \\
& d p=\sin x d x \\
& A=\int_{0}^{\pi}(1-\cos x) \sin x d x=\left[\frac{1}{2}(1-\cos x)^{2}+C\right]_{0}^{\pi} \\
&=\left[\frac{1}{2}(1-\cos (\pi))^{2}+C\right]-\left[\frac{1}{2}(1-\cos (0))^{2}+C\right] \\
&=\left[\frac{1}{2}(1-(-1))^{2}\right]-\left[\frac{1}{2}(1-(1))^{2}\right] \\
&=\left[\frac{1}{2}(2)^{2}\right]-\left[\frac{1}{2}(0)^{2}\right]=2
\end{aligned}
$$

52) on $\left(-\pi, \frac{-\pi}{2}\right)$: Upperturve: $y=0$

$$
\begin{aligned}
& \text { lower caver } y=\frac{\pi}{2}(\cos x)(\sin (\pi+\pi \sin x)) \\
& \text { region, }=(0)-\left(\frac{\pi}{2}(\cos x)(\sin (\pi+\pi \cdot \sin x))\right)=\quad-\frac{\pi}{2}(\cos x) \sin (\pi+\pi \sin x)
\end{aligned}
$$

on $\left(\frac{-\pi}{2}, 0\right): \quad$ Upper Curve; $y=\frac{\pi}{2}(\cos x)(\sin (\pi+\pi \sin x))$
lower curve: $y=0$

$$
\text { region }=\left(\frac{\pi}{2}(\cos x)(\sin (\pi+\pi \sin x))\right)-(0)=\frac{\pi}{2}(\cos x) \sin (\pi+\pi \sin x)
$$

52) continued

$$
\begin{array}{rl}
& \int \frac{\pi}{2}(\cos x) \sin (\pi+\pi \sin x) d x=\int \frac{\pi}{2} \sin (\pi+\pi \sin x)(\cos x d x) \\
p=\pi+\pi \sin x \left\lvert\,=\int \frac{\pi}{2} \sin p\left(\frac{1}{\pi} d p\right)=\int \frac{1}{2} \sin p d p\right. \\
d p=\pi[\cos x] d x \left\lvert\,=\frac{1}{2}[-\cos p]+C=\frac{-1}{2} \cos (\pi+\pi \sin x)+C\right. \\
\left.\frac{1}{\pi} d p=\cos x d x \right\rvert\, \\
A_{1}= & \int_{-\pi}^{-\frac{\pi}{2}}-\frac{\pi}{2}(\cos x) \sin (\pi+\pi \sin x) d x=\left[\left(-\frac{1}{2} \cos (\pi+\pi \sin x)\right)+C\right]_{-\pi}^{-\frac{\pi}{2}} \\
= & {\left[\frac{1}{2} \cos \left(\pi+\pi \sin \left(\frac{-\pi}{2}\right)\right)+C\right]-\left[\frac{1}{2} \cos (\pi+\pi \sin (-\pi))+C\right]} \\
= & {\left[\frac{1}{2} \cos (\pi+\pi(-1)]-\left[\frac{1}{2} \cos (\pi+\pi(0))\right]=\left[\frac{1}{2} \cos (0)\right]-\left[\frac{1}{2} \cos (\pi)\right]\right.} \\
= & {\left[\frac{1}{2}(1)\right]-\left[\frac{1}{2}(-1)\right]=\left[\frac{1}{2}\right]-\left[-\frac{1}{2}\right]=\frac{1}{2}+\frac{1}{2}=1} \\
A_{2}= & \int_{-\frac{\pi}{2}}^{0} \frac{\pi}{2}(\cos x) \sin (\pi+\pi \sin x) d x=\left[\frac{-1}{2} \cos (\pi+\pi \sin x)+C\right] 0 \\
= & {\left[\frac{-1}{2} \cos (\pi+\pi \sin (0))+C\right]-\left[\frac{-1}{2} \cos \left(\pi+\pi \sin \left(\frac{-\pi}{2}\right)\right)+C\right]} \\
= & {\left[\frac{-1}{2} \cos (\pi+\pi(0))\right]-\left[\frac{-1}{2} \cos (\pi+\pi(-1))\right]=\left[\frac{-1}{2} \cos (\pi)\right]-\left[\frac{-1}{2} \cos (0)\right]} \\
= & {\left[\frac{-1}{2}(-1)\right]-\left[\frac{-1}{2}(1)\right]=\left[\frac{1}{2}\right]-\left[\frac{-1}{2}\right]=\frac{1}{2}+\frac{1}{2}=1} \\
A=A & A+A+=(1)+[1)=2
\end{array}
$$

54) Upper Curve: $y=\frac{1}{2} \sec ^{2} t$
lower curve: $y=-4 \sin ^{2} t=-4\left(\frac{1-\cos (2 t)}{2}\right)=-2(1-\cos (2 t))$

$$
=-2+2 \cos (2 t)
$$

$$
\begin{aligned}
& \text { region }=\left(\frac{1}{2} \sec ^{2} t\right)-(-2+2 \cos (2 t))=\frac{1}{2} \sec ^{2} t+2-2 \cos (2 t) \\
& A=\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\left(\frac{1}{2} \sec ^{2} t+2-2 \cos (2 t)\right) d t=\left[\frac{1}{2} \tan t+2 t-\sin (2 t)+C\right]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \\
&=\left[\frac{1}{2} \tan \left(\frac{\pi}{3}\right)+2\left(\frac{\pi}{3}\right)-\sin \left(2\left(\frac{\pi}{3}\right)\right)+C\right]-\left[\frac{1}{2} \tan \left(\frac{-\pi}{3}\right)+2\left(-\frac{\pi}{3}\right)-\sin \left(2\left(\frac{-\pi}{3}\right)\right)+C\right] \\
&=\left[\frac{1}{2}\left(\frac{\sqrt{3}}{1}\right)+\frac{2 \pi}{3}-\left(\frac{\sqrt{3}}{2}\right)\right]-\left(\frac{1}{2}\left(\frac{-\sqrt{3}}{1}\right)-\frac{2 \pi}{3}-\left(\frac{-\sqrt{3}}{2}\right)\right]=\left[\frac{2 \pi}{3}\right]-\left[-\frac{2 \pi}{3}\right]=\frac{4 \pi}{3}
\end{aligned}
$$

56) Upper Curve: $x=y^{2}$
lower curve: $x=y^{3}$ region $=\left(y^{2}\right)-\left(y^{3}\right)=y^{2}-y^{3}$

$$
\begin{aligned}
A & =\int_{0}^{1}\left(y^{2}-y^{3}\right) d y=\left[\frac{y^{3}}{3}-\frac{y^{4}}{4}+C\right]_{0}^{1}=\left[\frac{(1)^{3}}{3}-\frac{(1)^{4}}{4}+C\right]-\left[\frac{(0)^{3}}{3}-\frac{(0)^{4}}{4}+C\right] \\
& =\left[\frac{1}{3}-\frac{1}{4}\right]-[0]=\frac{1}{3}-\frac{1}{4}=\frac{4}{12}-\frac{3}{12}=\frac{1}{12}
\end{aligned}
$$

58) Upper Curve: $y=x^{2}$ region $=\left(x^{2}\right)-\left(-2 x^{4}\right)=x^{2}+2 x^{4}$

$$
\begin{aligned}
A & =\int_{-1}^{1}\left(x^{2}+2 x^{4}\right) d x=\left[\frac{1}{3} x^{3}+\frac{2}{5} x^{5}+c\right]_{-1}^{1}=\left[\frac{1}{3}(1)^{3}+\frac{2}{5}(1)^{5}+C\right]-\left[\frac{1}{3}(-1)^{3}+\frac{2}{5}(-1)^{5}+C\right] \\
& =\left[\frac{1}{3}+\frac{2}{5}\right]-\left[\frac{-1}{3}-\frac{2}{5}\right]=\frac{2}{3}+\frac{4}{5}=\frac{10}{15}+\frac{12}{15}=\frac{22}{15}
\end{aligned}
$$

60) best when we set up x as a function of y Upper Curve: $x+y=2 \Rightarrow x=2-y \quad\{i n t e r v a l: 0 \leq y \leq 1\}$ Sower curve: $y=x^{2} \Rightarrow x= \pm \sqrt{y} \Rightarrow x=+\sqrt{y}=y^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { region }=(2-y)-(\sqrt{y})=2-y-\sqrt{y}=2-y-y^{\frac{1}{2}} \\
A= & \int_{0}^{1}\left(2-y-y^{\frac{1}{2}}\right) d y=\left[2 y-\frac{y^{2}}{2}-\left(\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\right]_{0}^{1}=\left[2 y-\frac{1}{2} y^{2}-\frac{2}{3}(\sqrt{y})^{3}+C\right]_{0}^{1} \\
& =\left[2(1)-\frac{1}{2}(1)^{2}-\frac{2}{3}(\sqrt{(1)})^{3}+C\right]-\left[2(0)-\frac{1}{2}(0)^{2}-\frac{2}{3}(\sqrt{(0)})^{3}+C\right] \\
& =\left[2-\frac{1}{2}-\frac{2}{3}\right]-[0]=\frac{12}{6}-\frac{3}{6}-\frac{4}{6}=\frac{5}{6}
\end{aligned}
$$

62) on ($-2,0$) Upper Curves: $y=2 x^{3}-x^{2}-5 x$
lower curve: $y=-x^{2}+3 x$

$$
\text { region, }=\left(2 x^{3}-x^{2}-5 x\right)-\left(-x^{2}+3 x\right)=2 x^{3}-x^{2}-5 x+x^{2}-3 x=2 x^{3}-8 x
$$

on $(0,2)$ Upper Curve: $y=-x^{2}+3 x$ lawn curve: $y=2 x^{3}-x^{2}-5 x$

$$
\begin{aligned}
& \text { region_ }=\left(-x^{2}+3 x\right)-\left(2 x^{3}-x^{2}-5 x\right)=-x^{2}+3 x-2 x^{3}+x^{2}+5 x=8 x^{-}-2 x^{3}=-\left(2 x^{3}-8 x\right) \\
& \int\left(2 x^{3}-8 x\right) d x=2\left[\frac{x^{4}}{4}\right]-8\left[\frac{x^{2}}{2}\right]+C=\frac{1}{2} x^{4}-4 x^{2}+C \\
& A_{1}=\int_{-2}^{0}\left(2 x^{3}-8 x\right) d x=\left[\frac{1}{2} x^{4}-4 x^{2}+c\right]_{-2}^{0}=\left[\frac{1}{2}(0)^{4}-4(0)^{2}+C\right]-\left[\frac{1}{2}(-2)^{4}-4(-2)^{2}+c\right] \\
& =[0]-[8-16]=0-(-8)=8 \\
& A_{2}=\int_{0}^{2}-\left(2 x^{3}-8 x\right) d x=\left[-\left(\frac{1}{2} x^{4}-4 x^{2}\right)+C\right]_{0}^{2}=\left[-\left(\frac{1}{2}(2)^{4}-4(2)^{2}\right)+C\right]-\left[-\left(\frac{1}{2}(0)^{4}-4(0)^{2}\right)+C\right] \\
& =[-(8-16)]-[-(0)]=[-(-8)]=8 \quad A=A_{1}+A_{2}=(8)+(8)=16
\end{aligned}
$$

64) intersection points: $\frac{x^{3}}{3}-x=\frac{x}{3} \quad \frac{1}{3} x(x+2)(x-2)=0$

$$
\begin{aligned}
& \frac{x^{3}}{3}-\frac{4 x}{3}=\left.\left.0 \quad \Rightarrow \underset{x=0}{\frac{1}{3} x=0}\right|_{x=-2} ^{x+2=0}\right|_{x=2} ^{x-2=0} \\
& \frac{1}{3} x\left(x^{2}-4\right)=0
\end{aligned}
$$

On $(-2,0)$: Upper Curve: $y=\frac{x^{3}}{3}-x$ region, $=\left(\frac{x^{3}}{3}-x\right)-\left(\frac{x}{3}\right)$ lower Curve: $y=\frac{x}{3}$

$$
=\left(\frac{x^{3}}{3}-\frac{4 x}{3}\right)
$$

On (0,2) Upper Curve; $y=\frac{x}{3}$
Sown curve: $y=\frac{x^{3}}{3}-x$ Region $=\left(\frac{x}{3}\right)-\left(\frac{x^{3}}{3}-x\right)=\frac{4 x}{3}-\frac{x^{3}}{3}$

$$
=-\left(\frac{x^{3}}{3}-\frac{4 x}{3}\right)
$$

on $(2,3)$ Upper Curve: $y=\frac{x^{3}}{3}-x$
lower curve: $y=\frac{x}{3} \quad$ region $=\left(\frac{x^{3}}{3}-x\right)-\left(\frac{x}{3}\right)=\left(\frac{x^{3}}{3}-\frac{4 x}{3}\right)$

$$
\begin{aligned}
& \int\left(\frac{x^{3}}{3}-\frac{4 x}{3}\right) d x=\frac{1}{3}\left[\frac{x^{4}}{4}\right]-\frac{4}{3}\left[\frac{x^{2}}{2}\right]+C=\frac{1}{12} x^{4}-\frac{2}{3} x^{2}+C \\
& A_{1}=\int_{-2}^{0}\left(\frac{x^{3}}{3}-\frac{4 x}{3}\right) d x=\left[\frac{1}{12} x^{4}-\frac{2}{3} x^{2}+C\right]_{-2}^{0}=\left[\frac{1}{12}(0)^{4}-\frac{2}{3}(0)^{2}+c\right]-\left[\frac{1}{12}(-2)^{4}-\frac{2}{3}(-2)^{2}+c\right] \\
& =[0]-\left[\frac{4}{3}-\frac{8}{3}\right]=[0]-\left[\frac{-4}{3}\right]=\frac{4}{3} \\
& A_{2}=\int_{0}^{2}-\left(\frac{x^{3}}{3}-\frac{4 x}{3}\right) d x=\left[-\left(\frac{1}{12} x^{4}-\frac{2}{3} x^{2}\right)+C\right]_{0}^{2}=\left[-\left(\frac{1}{12}(2)^{4}-\frac{2}{3}(2)^{2}\right)+C\right]-\left[-\left(\frac{1}{12}(0)^{4}-\frac{2}{3}(0)^{2}\right)+C\right] \\
& =\left[-\left(\frac{4}{3}-\frac{8}{3}\right)\right]-[-(0)]=\left[-\left(\frac{-4}{3}\right)\right]=\frac{4}{3} \\
& A_{3}=\int_{2}^{3}\left(\frac{x^{3}}{3}-\frac{4 x}{3}\right) d x=\left[\frac{1}{12} x^{4}-\frac{2}{3} x^{2}+C\right]_{2}^{3}=\left[\frac{1}{12}(3)^{4}-\frac{2}{3}(3)^{2}+C\right]-\left[\frac{1}{12}(2)^{4}-\frac{2}{3}(2)^{2}+C\right] \\
& =\left[\frac{27}{4}-6\right]-\left[\frac{4}{3}-\frac{8}{3}\right]=\left[\frac{27}{4}-\frac{24}{4}\right]-\left[\frac{-4}{3}\right]=\frac{3}{4}+\frac{4}{3} \\
& A=A_{1}+A_{2}+A_{3}=\left(\frac{4}{3}\right)+\left(\frac{4}{3}\right)+\left(\frac{3}{4}+\frac{4}{3}\right)=\frac{3}{4}+\frac{12}{3}=\frac{3}{4}+4=\frac{3}{4}+\frac{16}{4}=\frac{19}{4}
\end{aligned}
$$

66) $y=2 x$
testing at $x=0$

Upper Cures $y=2 x-x^{2}$
lower curve: $y=-3$
intersection:

$$
\begin{array}{rl}
2 x-x^{2} & =-3 \\
0 & =x^{2}-2 x-3 \\
0 & =(x+1)(x-3) \\
x+1=0 & x-3=0 \\
x & =-1 \\
x=3
\end{array}
$$

$$
\begin{aligned}
& \text { region }=\left(2 x-x^{2}\right)-(-3)=\left(3+2 x-x^{2}\right) \\
& A=\int_{-1}^{3}\left(3+2 x-x^{2}\right) d x=\left[3 x+x^{2}-\frac{x^{3}}{3}+C\right]_{-1}^{3} \\
& \\
& =\left[3(3)+(3)^{2}-\frac{(3)^{3}}{3}+6\right]-\left[3(-1)+(-1)^{2}-\frac{(-1)^{3}}{3}+C\right] \\
& \\
& =[9+9-9]-\left[-3+1+\frac{1}{3}\right]=[9]-\left[-2+\frac{1}{3}\right]=11-\frac{1}{3}=\frac{33}{3}-\frac{1}{3}=\frac{32}{3}
\end{aligned}
$$

68) $y=x^{2}-2 x \quad y=x \quad$ intersection:
testing at $x=1$
Upper curves: $y=x$
lower curve: $y=x^{2}-2 x$

$$
\begin{aligned}
& \text { region }=(x)-\left(x^{2}-2 x\right)=\left(3 x-x^{2}\right) \\
& \begin{aligned}
A & =\int_{0}^{3}\left(3 x-x^{2}\right) d x=\left[\frac{3}{2} x^{2}-\frac{1}{3} x^{3}+c\right]_{0}^{3} \\
& =\left[\frac{3}{2}(3)^{2}-\frac{1}{3}(3)^{3}+C\right]-\left[\frac{3}{2}(0)^{2}-\frac{1}{3}(0)^{3}+C\right] \\
& =\left[\frac{27}{2}-9\right]-[0]=\frac{27}{2}-\frac{18}{2}=\frac{9}{2}
\end{aligned}
\end{aligned}
$$

70) $y=7-2 x^{2} \quad y=x^{2}+4$
testing at $x=0$
Upper Curve: $y=7-2 x^{2}$
lower curve: $y=x^{2}+4$
region $=\left(7-2 x^{2}\right)-\left(x^{2}+4\right)=\left(3-3 x^{2}\right)$
intersection:

$$
\begin{array}{rl}
7-2 x^{2} & =x^{2}+4 \\
0 & =3 x^{2}-3 \\
0 & =3\left(x^{2}-1\right) \\
0 & =3(x+1)(x-1) \\
x+1=0 & x-1=0 \\
x & =-1 \mid x=1
\end{array}
$$

$$
\begin{aligned}
A & =\int_{-1}^{1}\left(3-3 x^{2}\right) d x=\left[3 x-x^{3}+c\right]_{-1}^{1}=\left[3(1)-(1)^{3}+c\right]-\left[3(-1)-(-1)^{3}+c\right] \\
& =[3-1]-[-3+1]=[2]-[-2]=4
\end{aligned}
$$

72) $y=x \sqrt{a^{2}-x^{2}}, a>0 \quad y=0$
on $(-a, 0)$: Uyperleurve: $y=0$
lower anvers $y=x \sqrt{a^{2}-x^{2}}$

$$
\text { region, }=(0)-\left(x \sqrt{a^{2}-x^{2}}\right)=-\left(x \sqrt{a^{2}-x^{2}}\right)
$$

intersection:

$$
x \sqrt{a^{2}-x^{2}}=0
$$

$$
x=0 \left\lvert\, \begin{aligned}
& a^{2}-x^{2}=0 \\
& a^{2}-x^{2}=0 \\
& (a+x)(a-x)=0 \\
& a+x=0 \\
& x=-a \left\lvert\, \begin{array}{c}
a-x=0 \\
x=a
\end{array}\right.
\end{aligned}\right.
$$

on $(0, a)$: Upper Curve: $y=x \sqrt{a^{2}-x^{2}}$
lower curve: $y=0 \quad$ region $=\left(x \sqrt{a^{2}-x^{2}}\right)-(0)=\left(x \sqrt{a^{2}-x^{2}}\right)$

$$
\begin{aligned}
& \int x \sqrt{a^{2}-x^{2}} d x=\int\left(a^{2}-x^{2}\right)^{\frac{1}{2}}(x d x)=\int \rho^{\frac{1}{2}}\left(\frac{-1}{2} d p\right)=\frac{1}{2}\left[\frac{p^{\frac{3}{2}}}{\frac{3}{2}}\right]+C=\frac{-1}{3}(\sqrt{p})^{3}+C \\
& p=a^{2}-x^{2} \\
& d p=-2 x d x \Rightarrow \frac{-1}{2} d p=x d x \quad\left(\sqrt{a^{2}-x^{2}}\right)^{3}+C \\
& A_{1}=\int_{-a}^{0}-\left(x \sqrt{a^{2}-x^{2}}\right) d x=\left[-\left(-\frac{1}{3}\left(\sqrt{a^{2}-x^{2}}\right)^{3}\right)+C\right]_{-a}^{0}=\left[\frac{1}{3}\left(\sqrt{a^{2}-x^{2}}\right)^{3}+C\right]_{-a}^{0} \\
& =\left[\frac{1}{3}\left(\sqrt{a^{2}-(0)^{2}}\right)^{3}+C\right]-\left[\frac{1}{3}\left(\sqrt{a^{2}-(-a)^{2}}\right)^{3}+C\right]=\left[\frac{1}{3}\left(\sqrt{a^{2}}\right)^{3}\right]-\left[\frac{1}{3}(\sqrt{0})^{3}\right]=\frac{a^{3}}{3} \\
& A_{2}=\int_{0}^{a}\left(x \sqrt{a^{2}-x^{2}}\right) d x=\left[-\frac{1}{3}\left(\sqrt{a^{2}-x^{2}}\right)^{3}+C\right]_{0}^{a}=\left[-\frac{1}{3}\left(\sqrt{a^{2}-(a)^{2}}\right)^{3}+C\right]-\left[\frac{-1}{3}\left(\sqrt{a^{2}-(0)^{2}}\right)^{3}+C\right] \\
& =\left[-\frac{1}{3}(\sqrt{0})^{3}\right]-\left[\frac{-1}{3}\left(\sqrt{a^{2}}\right)^{3}\right]=\frac{a^{3}}{3} \quad A=A_{1}+A_{2}=\left(\frac{a^{3}}{3}\right)+\left(\frac{a^{3}}{3}\right)=\frac{2 a^{3}}{3}
\end{aligned}
$$

74) $y=\left|x^{2}-4\right|=\left\{\begin{array}{lll}+\left(x^{2}-4\right)^{\prime A} & x \leq-2 \text { or } 2 \leq x & y=\frac{x^{2}}{2}+4 \\ -\left(x^{2}-4\right)=C & -2<x<2 & B^{\prime \prime}\end{array}\right.$
intersections:

$$
\begin{aligned}
& +\left(x^{2}-4\right)=\frac{x^{2}}{2}+4 \\
& \frac{1}{2} x^{2}-8=0 \\
& \frac{1}{2}\left(x^{2}-16\right)=0 \\
& \frac{1}{2}(x+4)(x-4)=0 \\
& x+4=0 \\
& x=-4 \\
& x-4=0 \\
& x=4
\end{aligned}
$$

on $(-2,2)$;
$-\left(x^{2}-4\right)=\frac{x^{2}}{2}+4$ $-x^{2}+4=\frac{x^{2}}{2}+4$ $0=\frac{3}{2} x^{2}$ $0=x^{2}$

$$
x=0
$$

(-2,
on $(-4,-2)$ and $(2,4)$

$$
\begin{aligned}
& \text { region, region } 3=\left(\frac{x^{2}}{2}+4\right)-\left(+\left(x^{2}-4\right)\right)=\frac{x^{2}}{2}+4-x^{2}+4=\left(8-\frac{1}{2} x^{2}\right) \\
& \int\left(8-\frac{1}{2} x^{2}\right) d x=8[x]-\frac{1}{2}\left[\frac{x^{3}}{3}\right]+C=8 x-\frac{1}{6} x^{3}+c \\
& A_{1}=\int_{-4}^{-2}\left(8-\frac{1}{2} x^{2}\right) d x=\left[8 x-\frac{1}{6} x^{3}+C\right]_{-4}^{-2}=\left[8(-2)-\frac{1}{6}(-2)^{3}+c\right]-\left(8(-4)-\frac{1}{6}(-4)^{3}+c\right] \\
& \quad=\left[-16+\frac{4}{3}\right]-\left[-32+\frac{32}{3}\right]=-16+\frac{4}{3}+32-\frac{32}{3}=16-\frac{28}{3} \\
& A_{3}=\int_{2}^{4}\left(8-\frac{1}{2} x^{2}\right) d x=\left[8 x-\frac{1}{6} x^{3}+c\right]_{2}^{4}=\left[8(4)-\frac{1}{6}(4)^{3}+c\right]-\left[8(2)-\frac{1}{6}(2)^{3}+c\right] \\
& =\left[32-\frac{32}{3}\right]-\left[16-\frac{4}{3}\right]=32-\frac{32}{3}-16+\frac{4}{3}=16-\frac{28}{3} \\
& A_{2}=\int_{-2}^{2}\left(\frac{3}{2} x^{2}\right) d x=\left[\frac{1}{2} x^{3}+C\right]_{-2}^{2}=\left[\frac{1}{2}(2)^{3}+C\right]-\left[\frac{1}{2}(-2)^{3}+c\right]=[4]-(-4]=8 \\
& A_{A}=A_{1}+A_{2}+A_{3}=\left(16-\frac{28}{3}\right)+(8)+\left(16-\frac{28}{3}\right)=40-\frac{56}{3}=\frac{120}{3}-\frac{56}{3}=\frac{64}{3}
\end{aligned}
$$

76) $x=y^{2} \quad x=y+2 \quad$ best when x as function of y intersection:

Upper Cure: $x=y+2$

$$
\begin{gathered}
y^{2}=y+2 \\
y^{2}-y-2=0 \\
(y+1)(y-2)=0 \\
y+1=0 \\
y=-1 \\
y-2=0
\end{gathered}
$$

lower carve, $x=y^{2}$
region: $(y+2)-\left(y^{2}\right)=\left(2+y-y^{2}\right)$

$$
A=\int_{-1}^{2}\left(2+y-y^{2}\right) d y=\left[2 y+\frac{y^{2}}{2}-\frac{y^{3}}{3}+c\right]=\left[2(2)+\frac{(2)^{2}}{2}-\frac{(2)^{3}}{3}+c\right]-\left[2\left(-1-1+\frac{(-1)^{2}}{2}-\frac{(-1)^{3}}{3}+c\right]\right.
$$

$$
=\left[4+2-\frac{8}{3}\right]-\left[-2+\frac{1}{2}+\frac{1}{3}\right]=\left[6-\frac{8}{3}\right]-\left[-2+\frac{1}{2}+\frac{1}{3}\right]=6-\frac{8}{3}+2-\frac{1}{2}-\frac{1}{3}
$$

$$
=8-\frac{9}{3}-\frac{1}{2}=8-3-\frac{1}{2}=5-\frac{1}{2}=\frac{10}{2}-\frac{1}{2}=\frac{9}{2}
$$

78) $x-y^{2}=0 \quad x+2 y^{2}=3$ best when x as function of y

$$
x=y^{2}
$$

intersection:

$$
\left.\begin{aligned}
& y^{2}=3-2 y^{2} \\
& 3 y^{2}-3=0 \\
& 3\left(y^{2}-1\right)=0 \\
& 3(y+1)(y-1)=0 \\
& y+1=0 \\
& y=-1
\end{aligned} \right\rvert\, y-1=0 .
$$

$$
x=3-2 y^{2}
$$

$$
\begin{aligned}
& \text { region }=\left(3-2 y^{2}\right)-\left(y^{2}\right)=\left(3-3 y^{2}\right) \\
& A=\int_{-1}^{1}\left(3-3 y^{2}\right) d y=\left[2 y-y^{3}+c\right]_{-1}^{1} \\
&=\left[2(1)-(1)^{3}+c\right]-\left[2(-1)-(-1)^{3}+c\right] \\
&=[2-1]-(-2+1] \\
&=[1]-[-1] \\
&=2
\end{aligned}
$$

Upper Cave: $x=3-2 y^{2}$
low cave: $x=y^{2}$
80) $x-y^{\frac{2}{3}}=0 \quad x+y^{4}=2$ best when x as function of y

$$
x=y^{2 / 3} \quad x=2-y^{4}
$$

Upper Curve: $x=2-y^{4}$
lowe curve: $x=y^{\frac{2}{3}}$

$$
\begin{aligned}
\text { region } & =\left(2-y^{4}\right)-\left(y^{\frac{2}{3}}\right) \\
& =\left(2-y^{4}-y^{\frac{2}{3}}\right)
\end{aligned}
$$

intersection

$$
y^{\frac{2}{3}}=2-y^{4}
$$

$$
y^{4}+y^{\frac{2}{3}}-z=0
$$

$$
y^{\frac{12}{3}}+y^{\frac{2}{3}}-2=0
$$

$$
\left(y^{\frac{2}{3}}\right)^{6}+\left(y^{\frac{2}{3}}\right)-2=0
$$

this statement will equal 0 when $y=1$ and $y=-1$

$$
\begin{aligned}
A & =\int_{-1}^{1}\left(2-y^{4}-y^{\frac{2}{3}}\right) d y=\left[2 y-\frac{y^{5}}{5}-\left(\frac{y^{\frac{5}{3}}}{\frac{5}{3}}\right)+C\right]_{-1}^{1} \\
& =\left[2 y-\frac{y^{5}}{5}-\frac{3}{5}(\sqrt[3]{y})^{5}+C\right]_{-1}^{1}=\left[2(1)-\frac{(1)^{5}}{5}-\frac{3}{5}(\sqrt[3]{(11)})^{5}+C\right]-\left[2(-1)-\frac{(-1)^{5}}{5}-\frac{3}{5}(\sqrt[3]{(-11)})^{5}+C\right] \\
& =\left[2-\frac{1}{5}-\frac{3}{5}\right]-\left[-2+\frac{1}{5}+\frac{3}{5}\right]=\left[2-\frac{4}{5}\right]-\left[-2+\frac{4}{5}\right]=4-\frac{8}{5}=\frac{20}{5}-\frac{8}{5}=\frac{12}{5}
\end{aligned}
$$

82) $x=y^{3}-y^{2} \quad x=2 y$
on ($-1,0$) Upper $x=y^{3}-y^{2}$
low: $x=2 y$
region, $=\left(y^{3}-y^{2}\right)-(2 y)=\left(y^{3}-y^{2}-2 y\right)$
intersection

$$
\begin{aligned}
& y^{3}-y^{2}=2 y \\
& y^{3}-y^{2}-2 y=0 \\
& y\left(y^{2}-y-2\right)=0 \\
& y(y+1)(y-2)=0
\end{aligned}
$$

on $(0,2)$ Upper: $x=2 y$
lower $x=y^{3}-y^{2}$
region $2=(2 y)-\left(y^{3}-y^{2}\right)=-y^{3}+y^{2}+2 y=-\left(y^{3}-y^{2}-2 y\right)$

$$
\int\left(y^{3}-y^{2}-2 y\right) d y=\frac{y^{4}}{4}-\frac{y^{3}}{3}-y^{2}+C
$$

82) continued

$$
\begin{aligned}
A_{1} & =\int_{-1}^{0}\left(y^{3}-y^{2}-2 y\right) d y=\left[\frac{y^{4}}{4}-\frac{y^{3}}{3}-y^{2}+C\right]_{-1}^{0} \\
& =\left[\frac{(0)^{4}}{4}-\frac{(0)^{3}}{3}-(0)^{2}+C\right]-\left[\frac{(+1)^{4}}{4}-\frac{(-1)^{3}}{3}-(-1)^{2}+C\right] \\
& =[0]-\left[\frac{1}{4}+\frac{1}{3}-1\right]=-\left[\frac{3}{12}+\frac{4}{12}-\frac{12}{12}\right]=-\left[\frac{-5}{12}\right]=\frac{5}{12} \\
A_{2} & =\int_{0}^{2}-\left(y^{3}-y^{2}-2 y\right) d y=\left[-\left(\frac{y^{4}}{4}-\frac{y^{3}}{3}-y^{2}\right)+C\right]_{0}^{2}=\left[\frac{-y^{4}}{4}+\frac{y^{3}}{3}+y^{2}+C\right]_{0}^{2} \\
& =\left[\frac{-(2)^{4}}{4}+\frac{(2)^{3}}{3}+(2)^{2}+C\right]-\left[\frac{(0)^{4}}{4}+\frac{(0)^{3}}{3}+(0)^{2}+C\right]=\left[-4+\frac{8}{3}+4\right]-[0]=\frac{8}{3} \\
A & =A_{1}+A_{2}=\left(\frac{5}{12}\right)+\left(\frac{8}{3}\right)=\frac{5}{12}+\frac{32}{12}=\frac{37}{12}
\end{aligned}
$$

84) $x^{3}-y=0 \quad 3 x^{2}-y=4$

$$
y=x^{3} \quad y=3 x^{2}-4
$$

Upper Curve: $y=x^{3}$
lower curve: $y=3 x^{2}-4$

$$
\begin{aligned}
& A=\int_{-1}^{2}\left(x^{3}-3 x^{2}+4\right) d x=\left[\frac{x^{4}}{4}-x^{3}+4 x+c\right]_{-1}^{2} \\
& \\
& =\left[\frac{(2)^{4}}{4}-(2)^{3}+4(2)+C\right]-\left[\frac{(-1)^{4}}{4}-(-1)^{3}+4(-1)+C\right] \\
& \\
& =[4-8+8]-\left[\frac{1}{4}+1-4\right] \\
& \\
& =[4]-\left[\frac{1}{4}-3\right]=7-\frac{1}{4} \\
& \\
& =\frac{28}{4}-\frac{1}{4}=\frac{27}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { intersection } \\
& x^{3}=3 x^{2}-4 \\
& x^{3}-3 x^{2}+4=0
\end{aligned}
$$

by trial andeno we can find $x=2$ in a solution and its factor is $(x-2)=0$

$$
\begin{aligned}
& \frac{x^{2}-x-2}{x^{3}-3 x^{2}+0 x+4} \\
& \frac{-\left(\frac{3}{3}-x^{2}\right)}{-x^{2}+0 x} \\
& \frac{-\left(-x^{2}+2 x\right)}{-2 x+4)} \\
& \frac{(-2 x+4)}{0} \\
& x^{3}-3 x^{2}+4=0 \\
& (x-2)\left(x^{2}-x-2\right)=0 \\
& (x-2)(x+1)(x-2)=0 \\
& (x+1)(x-2)^{2}=0 \\
& x+1=0 \\
& x=1 \quad \begin{array}{l}
(x-2)^{2}=0 \\
x=0 \\
x=2
\end{array}
\end{aligned}
$$

86)

$$
\begin{array}{ll}
x+y^{2}=3 & 4 x+y^{2}=0 \\
x=3-y^{2} & 4 x=-y^{2} \\
& x=\frac{-y^{2}}{4}
\end{array}
$$

Upper Curve: $x=3-y^{2}$
lowh cusve: $x=\frac{-y^{2}}{4}$

$$
\begin{aligned}
& \text { regiar= } \left.\left(3-y^{2}\right)-\left(\frac{-y^{2}}{4}\right)=\left(3-\frac{3}{4} y^{2}\right) \quad \begin{array}{c}
y+c=0 \\
A=-2
\end{array} \right\rvert\, y=2 \\
& A=\int_{-2}^{2}\left(3-\frac{3}{4} y^{2}\right) d y=\left[3 y-\frac{1}{4} y^{3}+c\right]_{-2}^{2}=\left[3(2)-\frac{1}{4}(2)^{3}+c\right]-\left[3(-2)-\frac{1}{4}(-2)^{3}+c\right] \\
& =[6-2]-[-6+2]=[4]-[-4]=8
\end{aligned}
$$

88) $y=8 \cos x \quad y=\sec ^{2} x \quad \frac{-\pi}{3} \leq x \leq \frac{\pi}{3}$

Upper Curve: $y=8 \cos x$
lowe curve: $y=\sec ^{2} x$

$$
\begin{aligned}
A & =\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\left(8 \cos x-\sec ^{2} x\right) d x=[8 \sin x-\tan x+c]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \\
& =\left[8 \sin \left(\frac{\pi}{3}\right)-\tan \left(\frac{\pi}{3}\right)+c\right]-\left[8 \sin \left(\frac{-\pi}{3}\right)-\tan \left(\frac{-\pi}{3}\right)+C\right] \\
& =\left[8\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{\sqrt{3}}{1}\right)\right]-\left[8\left(\frac{-\sqrt{3}}{2}\right)-\left(\frac{-\sqrt{3}}{1}\right)\right] \\
& =[4 \sqrt{3}-\sqrt{3}]-[-4 \sqrt{3}+\sqrt{3}] \\
& =[3 \sqrt{3}]-[-3 \sqrt{3}]=6 \sqrt{3}
\end{aligned}
$$

90) $y=\sin \left(\frac{\pi}{2} x\right) \quad y=x$
on $(-1,0)$, Upper, $y=x$
lower: $y=\sin \left(\frac{\pi}{2} x\right)$
region, $=(x)-\left(\sin \left(\frac{\pi}{2} x\right)\right)=\left(x-\sin \left(\frac{\pi}{2} x\right)\right)$
intersection

$$
\sin \left(\frac{\pi}{2} x\right)=x
$$

by trial and enos the statement is true for $x=0, x=1$, and $x=-1$
on $(0,1)$ Upper: $y=\sin \left(\frac{\pi}{2} x\right)$
lower: $y=x$

$$
\begin{aligned}
& \text { region } 2=\left(\sin \left(\frac{\pi}{2} x\right)\right)-(x)=\left(\sin \left(\frac{\pi}{2} x\right)-x\right)=-\left(x-\sin \left(\frac{\pi}{2} x\right)\right) \\
& \int\left(x-\sin \left(\frac{\pi}{2} x\right)\right) d x=\int x d x-\int \sin \left(\frac{\pi}{2} x\right) d x=\int x d x-\int \sin p\left(\frac{2}{x} d p\right) \\
& \left.p=\frac{\pi}{2} x \quad-\frac{x^{2}}{2}\right]-\left[\frac{2}{\pi}(-\cos p)\right]+C=\frac{x^{2}}{2}+\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)+C \\
& d p
\end{aligned}=\frac{\pi}{2} d x \quad \begin{aligned}
\frac{2}{\pi} & d p=d x \\
A_{1} & =\int_{-1}^{0}\left(x-\sin \left(\frac{\pi}{2} x\right)\right) d x=\left[\frac{x^{2}}{2}+\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)+C\right]_{-1}^{0} \\
& =\left[\frac{10)^{2}}{2}+\frac{2}{\pi} \cos \left(\frac{\pi}{2}(0)\right)+C\right]-\left[\frac{(-1)^{2}}{2}+\frac{2}{\pi} \cos \left(\frac{\pi}{2}(-1)\right)+C\right] \\
& =\left[0+\frac{2}{\pi}(1)\right]-\left[\frac{1}{2}+\frac{2}{\pi}(0)\right]=\frac{2}{\pi}-\frac{1}{2} \\
A_{2} & =\int_{0}^{1}-\left(x-\sin \left(\frac{\pi}{2} x\right)\right) d x=\left[-\left(\frac{x^{2}}{2}+\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)\right)+C\right]_{0}^{1} \\
& =\left[-\left(\frac{(1)^{2}}{2}+\frac{2}{\pi} \cos \left(\frac{\pi}{2}(1)\right)\right)+C\right]-\left[-\left(\frac{10)^{2}}{2}+\frac{2}{\pi} \cos \left(\frac{\pi}{2}(0)\right)\right)+C\right] \\
& =\left[-\left(\frac{1}{2}+\frac{2}{\pi}(0)\right)\right]-\left[-\left(0+\frac{2}{\pi}(1)\right)\right]=\left[-\frac{1}{2}\right]-\left[-\frac{2}{\pi}\right]=\frac{2}{\pi}-\frac{1}{2} \\
A & =A_{1}+A_{2}=\left(\frac{2}{\pi}-\frac{1}{2}\right)+\left(\frac{2}{\pi}-\frac{1}{2}\right)=\frac{4}{\pi}-1=\frac{4-\pi}{\pi}
\end{aligned}
$$

92) $x=\tan ^{2} y \quad x=-\tan ^{2} y \quad \frac{-\pi}{4} \leqslant y \leqslant \frac{\pi}{4}$
by observation, when $y=0$ these functions are both 0 . Now testing at $x=\frac{\pi}{6}$ and $x=\frac{-\pi}{6}$ wecan find that
Upper Curve, $x=\tan ^{2} y$

$$
\begin{aligned}
\text { region } & =\left(\tan ^{2} y\right)-\left(-\tan ^{2} y\right) \\
& =2 \tan ^{2} y
\end{aligned}
$$

lower curve: $x=-\tan ^{2} y$

$$
\begin{aligned}
A & =\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} 2 \tan ^{2} y d y=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 2\left(\sec ^{2} y-1\right) d y=[2(\tan y-y)+C]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\
& =\left[2\left(\tan \left(\frac{\pi}{4}\right)-\left(\frac{\pi}{4}\right)\right)+C\right]-\left[2\left(\tan \left(\frac{-\pi}{4}\right)-\left(-\frac{\pi}{4}\right)\right)+C\right] \\
& =\left[2\left((1)-\frac{\pi}{4}\right)\right]-\left[2\left((-1)+\frac{\pi}{4}\right)\right]=\left[2-\frac{\pi}{2}\right]-\left[-2+\frac{\pi}{2}\right]=4-\pi
\end{aligned}
$$

q4) $y=\sec ^{2}\left(\frac{x}{3} x\right) \quad y=x^{\frac{1}{3}} \quad-1 \leq x \leq 1$
Upper Curve: $y=\sec ^{2}\left(\frac{\pi}{3} x\right)$ lower curve: $y=x^{\frac{1}{3}}$

$$
\begin{aligned}
& \text { region }=\left(\sec ^{2}\left(\frac{\pi}{3} x\right)\right)-\left(x^{\frac{1}{3}}\right)=\left(\sec ^{2}\left(\frac{\pi}{3} x\right)-x^{\frac{1}{3}}\right) \quad \rho=\frac{\pi}{3} x \\
& \int\left(\sec ^{2}\left(\frac{\pi}{3} x\right)-x^{\frac{1}{3}}\right) d x=\int \sec ^{2}\left(\frac{\pi}{3} x\right) d x-\int x^{\frac{1}{3}} d x \quad d p=\frac{\pi}{3} d x \Rightarrow \frac{3}{\pi} d p=d x \\
&= \int \sec ^{2} p\left(\frac{3}{\pi} d p\right)-\int x^{\frac{1}{3}} d x=\left[\frac{3}{\pi} \tan p\right]-\left[\frac{x^{\frac{4}{3}}}{\frac{4}{3}}\right]+C=\frac{3}{\pi} \tan \left(\frac{\pi}{3} x\right)-\frac{3}{4}(\sqrt[3]{x})^{4}+C \\
& A= \int_{-1}^{1}\left(\sec ^{2}\left(\frac{\pi}{3} x\right)-x^{\frac{1}{3}}\right) d x=\left[\frac{3}{\pi} \tan \left(\frac{\pi}{3} x\right)-\frac{3}{4}(\sqrt[3]{x})^{4}+C\right]_{-1}^{1} \\
&= {\left[\frac{3}{\pi} \tan \left(\frac{\pi}{3}(1)\right)-\frac{3}{4}(\sqrt[3]{4})^{4}+C\right]-\left[\frac{3}{\pi} \tan \left(\frac{\pi}{3}(-1)\right)-\frac{3}{4}(\sqrt[3]{(-1)})^{4}+C\right] } \\
&= {\left[\frac{3}{\pi}\left(\frac{\sqrt{3}}{1}\right)-\frac{3}{4}(1)\right)^{7}-\left[\frac{3}{\pi}\left(\frac{-\sqrt{3}}{1}\right)-\frac{3}{4}(-1)^{4}\right]=\frac{3 \sqrt{3}}{\pi}-\frac{3}{4}+\frac{3 \sqrt{3}}{\pi}+\frac{3}{4}=\frac{6 \sqrt{3}}{\pi} }
\end{aligned}
$$

96)

$$
\begin{array}{ll}
x-y^{\frac{1}{3}}=0 & x-y^{\frac{1}{5}}=0 \\
x=y^{\frac{1}{3}} & x=y^{\frac{1}{5}}
\end{array}
$$

intersection $y^{\frac{1}{3}}=y^{\frac{1}{5}}$ by diservation the intrusutiong
on $(-1,0)$: Upper: $x=y \frac{1}{3}$ paintsoccuss when $y=0, y=1$, and $y=-1$

$$
\text { negion, }=\left(y^{\frac{1}{3}}\right)-\left(y^{\frac{1}{3}}\right)=\left(y^{\frac{1}{3}}-y^{\frac{1}{5}}\right)=-\left(y^{\frac{1}{5}}-y^{\frac{1}{3}}\right)
$$

$$
\text { on }(0,1) \text { : Uppen: } x=y^{\frac{1}{5}}
$$

$$
\text { lowh: } x=y^{\frac{1}{3}}
$$

$$
\text { regien }=\left(y^{\frac{1}{5}}\right)-\left(y^{\frac{1}{3}}\right)=\left(y^{\frac{1}{5}}-y^{\frac{1}{3}}\right)
$$

$$
\int\left(y^{\frac{1}{5}}-y^{\frac{1}{3}}\right) d y=\left[\frac{y^{\frac{5}{5}}}{\frac{6}{5}}\right]-\left[\frac{y^{\frac{4}{3}}}{\frac{4}{3}}\right]+C=\frac{5}{6}(\sqrt[5]{y})^{6}-\frac{3}{4}(\sqrt[3]{y})^{4}+C
$$

$$
A_{1}=\int_{-1}^{0}-\left(y^{\frac{1}{3}}-y^{\frac{1}{3}}\right) d y=\left[\left[\frac{5}{16}(\sqrt[5]{y})^{6}-\frac{3}{4}(\sqrt[3]{y})\right)+C\right]_{-1}^{0}
$$

$$
=\left[\left(\frac{5}{6}(\sqrt[5]{(0)})^{6}-\frac{3}{4}(\sqrt[3]{(0)})^{4}+c\right]-\left[-\left[\frac{5}{6}(\sqrt[5]{(-1)})^{6}-\frac{3}{4}(\sqrt[3]{(-1)})^{4}\right)+c\right]\right.
$$

$$
=[0]-\left[\left[\frac{5}{6}(1)-\frac{3}{4}(1)\right)\right]=-\left[\frac{-5}{6}+\frac{3}{4}\right]=-\left[\frac{-10}{12}+\frac{9}{12}\right]=-\left[\frac{-1}{12}\right]=\frac{1}{12}
$$

$$
\begin{aligned}
A_{2} & =\int_{0}^{1}\left(y^{\frac{1}{5}}-y^{\frac{1}{3}}\right) d y=\left[\frac{5}{6}(\sqrt[5]{y})^{6}-\frac{3}{4}(\sqrt[3]{y})^{4}+C\right]_{0}^{1} \\
& =\left[\frac{5}{6}(\sqrt[5]{(1)})^{6}-\frac{3}{4}(\sqrt[3]{(1)})^{4}+C\right]-\left[\frac{5}{6}(\sqrt[5]{(0)})^{6}-\frac{3}{4}(\sqrt[3]{(0)})^{4}+C\right] \\
& =\left[\frac{5}{6}(1)-\frac{3}{4}(1)\right]-[0]=\frac{5}{6}-\frac{3}{4}=\frac{10}{12}-\frac{9}{12}=\frac{1}{12} \\
A & =A_{1}+A_{2}=\left(\frac{1}{12}\right)+\left(\frac{1}{12}\right)=\frac{2}{12}=\frac{1}{6}
\end{aligned}
$$

98) $y=\sin x \quad y=\cos x \quad$ in $Q I$

Upper Carve: $y=\cos x$
$\left.\begin{array}{l}\sin x=\cos x \\ \frac{\sin x}{\cos x}=1\end{array}\right\}$ in $Q I_{x=\frac{\pi}{4}}$
lower curve: $y=\sin x$
intersection
$\tan x=1$
on left y-axis: $x=0$

$$
\begin{aligned}
\text { region } & =(\cos x)-(\sin x) \\
& =(\cos x-\sin x)
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x=[\sin x+\cos x+c]_{0}^{\frac{\pi}{4}} \\
& =\left[\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)+c\right]-[\sin (0)+\cos (0)+c]=\left[\left(\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}\right)\right]-[(0)+(1)] \\
& =\left[\frac{2}{\sqrt{2}}\right]-[1]=\sqrt{2}-1
\end{aligned}
$$

100) $y=\tan x \quad x$-axis: $y=0 \quad-\frac{\pi}{4} \leq x \leq \frac{\pi}{3}$

On $\left(\frac{-\pi}{4}, 0\right)$: Upper: $y=0$ lower: $y=\tan x$ region, $=(0)-(\tan x)=-\tan x$ on $\left(0, \frac{\pi}{3}\right)$: Upper $y=\tan x$ Laver $y=0 \quad$ region $\left.2=(\tan x)-10\right)=\tan x$

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x=\int \frac{1}{\cos x}(\sin x d x)=\int \frac{1}{p}(-1 \mid p)=-\ln |p|+C
$$

$\phi=\cos x \quad d p=-\sin x d x \Rightarrow-1 d p=\sin x d x \quad=-\ln |\cos x|+C$

$$
\begin{aligned}
A_{1} & =\int_{-\frac{\pi}{4}}^{0}-\tan x d x=[-(-\ln |\cos x|)+C]_{-\frac{\pi}{4}}^{0}=[-(-\ln |\cos (0)|)+c]-\left[-\left(\left.-\ln \left|\cos \left(-\frac{\pi}{4}\right)\right| \right\rvert\,+c c\right]\right. \\
& =[-(-\ln |(1)|)]-\left[-\left(-\ln \left|\left(\frac{1}{\sqrt{2}}\right)\right|\right)\right]=[-(0)]-\left[\left(\ln \left(\frac{1}{\sqrt{2}}\right)\right)\right]=-[\ln 1-\ln \sqrt{2}]=\ln \sqrt{2} \\
A_{2} & =\int_{0}^{\frac{\pi}{3}} \tan x d x=[-\ln |\cos x|+C]_{0}^{\frac{\pi}{3}}=\left[-\ln \left|\cos \left(\frac{\pi}{3}\right)\right|+C\right]-[-\ln |\cos (0)|+c] \\
& =\left[-\ln \left|\left(\frac{1}{2}\right)\right|\right]-[-\ln |(1)|]=[-(\ln 1-\ln 2)]-[0]=\ln 2 \\
A_{1} & =A_{1}+A_{2}=(\ln \sqrt{2})+(\ln 2)=\ln 2^{\frac{1}{2}}+\ln 2=\frac{1}{2} \ln 2+\ln 2=\frac{3}{2} \ln 2
\end{aligned}
$$

102) Upper Curve: $y=e^{\frac{x}{2}} \quad$ lowe curve: $y=e^{\frac{-x}{2}}$ itersecte at $x=0$ and on the right $x=2 \ln 2$

$$
\begin{aligned}
& \text { region }=\left(e^{\frac{x}{2}}\right)-\left(e^{\frac{-x}{2}}\right)=\left(e^{\frac{x}{2}}-e^{\frac{-x}{2}}\right) \\
& \int\left(e^{\frac{x}{2}}-e^{\frac{-x}{2}}\right) d x=\int e^{\frac{x}{2}} d x-\int e^{\frac{-x}{2}} d x=\int e^{p}(2 d \rho)-\int e^{q}(-2 d q) \\
& p=\frac{x}{2} \quad q=\frac{-x}{2} d x \quad=\left(2 e^{p}\right)-\left(-2 e^{x}\right)+C \\
& \begin{array}{l}
d p=\frac{1}{2} d x \quad d q=\frac{-1}{2} d x \\
2 d p=d x \quad-2 d q=d_{x}
\end{array}=2 e^{\frac{x}{2}}+2 e^{\frac{-x}{2}}+C=2 e^{\frac{x}{2}}+\frac{2}{e^{\frac{x}{2}}}+C \\
& A=\int_{0}^{2 \ln 2}\left(e^{\frac{x}{2}}-e^{\frac{-x}{2}}\right) d x=\left[2 e^{\frac{x}{2}}+\frac{2}{e^{\frac{x}{2}}}+c\right]_{0}^{2 \ln 2} \\
& =\left[2 e^{\frac{(2 \ln 2)}{2}}+\frac{2}{\left.\left.\left.e^{\frac{(2 \ln 2)}{2}}+c\right]-\left[2 e^{\frac{(0)}{2}}+\frac{2}{e^{\frac{(0)}{2}}}+c\right] .\right] .\right] .}\right. \\
& =\left[2 e^{\ln 2}+\frac{2}{e^{\ln 2}}\right]-\left[2 e^{0}+\frac{2}{e^{0}}\right]=\left[2(2)+\frac{2}{(2)}\right]-\left[2(1)+\frac{2}{(1)}\right] \\
& =[4+1]-[2+2]=5-4=1
\end{aligned}
$$

104) Upper Curve; $y=2^{1-x}$ lower care: $y=0 \quad-1 \leqslant x \leqslant 1$

$$
\begin{aligned}
& \text { Region }=\left(2^{1-x}\right)-(0)=2^{1-x} \quad \int 2^{1-x} d x=\int 2^{p}(-1 d p)=-1\left[\frac{2^{\varphi}}{\ln 2}\right]+C \\
& p=1-x \Rightarrow d p=-1 d x \Rightarrow-1 d p=d x=\frac{-1}{\ln 2} 2^{1-x}+C \\
& A=\int_{-1}^{1} 2^{1-x} d x=\left[\frac{-1}{\ln 2} 2^{1-x}+C\right]_{-1}^{1}=\left[\frac{-1}{\ln 2} 2^{1-(1)}+C\right]-\left[\frac{-1}{\ln 2} 2^{1-(-1)}+C\right] \\
& =\left[\frac{-1}{\ln 2} 2^{0}\right]-\left[\frac{-1}{\ln 2} 2^{2}\right]=\left[\frac{-1}{\ln 2}\right]-\left[\frac{-4}{\ln 2}\right]=\frac{-1}{\ln 2}+\frac{4}{\ln 2}=\frac{3}{\ln 2}
\end{aligned}
$$

