Definition:

Let $f(x)$ be a function defined on a closed interval $[a, b]$. We say that a number J is the definite integral of \boldsymbol{f} over $[a, b]$ and that J is the limit of the Riemann sums $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ if the following condition is satisfied:

Given any number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that for every partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ with $\|P\|<\delta$ and any choice of c_{k} in $\left[x_{k-1}, x_{k}\right]$, we have

$$
\left|\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}-J\right|<\varepsilon .
$$

A Formula for the Riemann Sum with Equal-Width Subintervals

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f(a+k \Delta x) \Delta x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right)\left(\frac{b-a}{n}\right) \tag{Equation1}
\end{equation*}
$$

Theorem 1-Integrability of Continuous Functions
If a function f is continuous over the interval $[a, b]$, or if f has at most finitely many jump discontinuities there, then the definite integral $\int_{a}^{b} f(x) d x$ exists and f is integrable over $[a, b]$.

Theorem 2

When f and g are integrable over the interval $[a, b]$, othe definite integral satisfies the rules listed in Table 5.6.

Table 5.6 Rules satisfied by definite integrals

1. Order of Integration: $\quad \int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \quad$ \{a definition $\}$
2. Zero Width Interval: $\quad \int_{a}^{a} f(x) d x=0 \quad$ \{a definition when $f(a)$ exists $\}$
3. Constant Multiple: $\quad \int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \quad$ \{any constant $\left.k\right\}$
4. Sum and Difference: $\quad \int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. Additivity: $\quad \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
6. Max-Min Inequality: If f has maximum value $\max f$ and minimum value $\min f$ on $[a, b]$, then $(\min f)(b-a) \leq \int_{a}^{b} f(x) d x \leq(\max f)(b-a)$.
7. Domination:

If $f(x) \geq g(x)$ on $[a, b]$ then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$.
If $f(x) \geq 0$ on [a, b] then $\int_{a}^{b} f(x) d x \geq 0 . \quad$ \{special case\}

Definition

If $y=f(x)$ is nonnegative and integrable over a closed interval $[a, b]$, then the area under the curve $y=f(x)$ over $[a, b]$ is the integral of f from a to b,

$$
A=\int_{a}^{b} f(x) d x
$$

(Equation 2)

$$
\int_{a}^{b} x d x=\frac{b^{2}}{2}-\frac{a^{2}}{2} \quad a<b
$$

(Equation 3) $\quad \int_{a}^{b} c d x=c(b-a) \quad c$ any constant
(Equation 4)

$$
\int_{a}^{b} x^{2} d x=\frac{b^{3}}{3}-\frac{a^{3}}{3} \quad a<b
$$

Definition

If f is integrable on $[a, b]$, then its average value on $[a, b]$, which is also called its mean, is $\operatorname{av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

The textbook have exercises in this section where we need to evaluate the definite integral. So they list 3 formulas (Equation 2), (Equation 3), and (Equation 4) in order for us to be able to evaluate.

Instead, I believe that it is more efficient if we first cover the section 5.4 and use the Fundamental Theorem of Calculus part 2 to solve the integration exercises given in this section.

Therefore, on my examples, the part of the exercises in this section using Equations 2-4 will be shown using the Fundamental Theorem of Calculus part 2.
2) $\lim _{\|P\| \rightarrow 0} \sum_{k \rightarrow 1}^{n} 2 c_{k}^{3} \Delta x_{k},[-1,0] \Rightarrow \int_{-1}^{0} 2 x^{3} d x$
4) $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(\frac{1}{\epsilon_{l}}\right) \Delta x_{k},[1,4] \Rightarrow \int_{1}^{4} \frac{1}{x} d x$
6) $\lim _{\||P| \rightarrow 0} \sum_{k=1}^{n} \sqrt{4-c_{k}^{2}} \Delta x_{k},[0,1] \Rightarrow \int_{0}^{1} \sqrt{4-x^{2}} d x$
8) $\lim _{\| P l \mid \rightarrow 0} \sum_{k=1}^{n}\left(\tan c_{k}\right) \Delta x_{k},\left[0, \frac{x}{4}\right] \Rightarrow \int_{0}^{\frac{x}{4}} \tan x d x$
10) $\int_{1}^{4} f(x) d x=-1, \int_{7}^{9} f(x) d x=5, \int_{7}^{4} h(x) d x=4$
a) $\int_{1}^{9}-2 f(x) d x=-2 \int_{1}^{9} f(x) d x=-2(-1)=2$
b) $\int_{7}^{9}[f(x)+h(x)] d x=\int_{7}^{9} f(x) d x+\int_{7}^{9} h(x) d x=(5)+(4)=9$
c) $\int_{7}^{4}[2 f(x)-3 h(x)] d x=2 \int_{7}^{9} f(x) d x-3 \int_{7}^{9} h(x) d x=2(5)-3(4)=10-12=-2$
d) $\int_{9}^{1} f(x) d x=-\int_{1}^{4} f(x) d x=-(-1)=1$
e) $\int_{1}^{7} f(x) d x=\int_{1}^{4} f(x) d x-\int_{7}^{4} \ell(x) d x=(-1)-(5)=-6$

甲)

$$
\begin{aligned}
\int_{9}^{1}[h(x)-f(x)] d x & =-\int_{7}^{4}[h(x)-f(x)] d x=-\left\{\int_{7}^{9} h(x) d x-\int_{9}^{4} f(x) d x\right\} \\
& =-\{(4)-(5)\}=-\{-1\}=1
\end{aligned}
$$

12) $\quad \int_{-3}^{0} g(t) d t=\sqrt{2}$
a) $\int_{0}^{-3} g(t) d t=-\int_{-3}^{0} g(t) d t=-(\sqrt{2})=-\sqrt{2}$
b) $\int_{-3}^{0} g(u) d u=\int_{-3}^{0} g(t) d t=(\sqrt{2})=\sqrt{2}$
c) $\int_{-3}^{0}[-g(x)] d x=-\int_{-3}^{0} g(x) d x=-\int_{-3}^{0} g(t) d t=-(\sqrt{2})=-\sqrt{2}$
d) $\int_{-3}^{0} \frac{g(n)}{\sqrt{2}} d r=\frac{1}{\sqrt{2}} \int_{-3}^{0} g(n) d n=\frac{1}{\sqrt{2}} \int_{-3}^{0} g(x) d t=\frac{1}{\sqrt{2}}(\sqrt{2})=1$
13) $\int_{-1}^{1} h(n) d n=0, \int_{-1}^{3} h(n) d n=6$
a) $\int_{1}^{3} h(n) d n=\int_{-1}^{3} h(n) d n-\int_{-1}^{1} h(n) d n=(6)-(0)=6$
$b)-\int_{3}^{1} h(u) d u=-\left\{-\int_{1}^{3} h(u) d u\right\}=\int_{1}^{3} h(u) d u=\int_{1}^{3} h(n) d n=(6)=6$
14)

$\int_{\frac{1}{2}}^{\frac{3}{2}}(-2 x+4) d x$ generates a trepezoid

$$
\begin{array}{ll}
f(x)=-2 x+4 & a=\rho\left(\frac{3}{2}\right)=-2\left(\frac{3}{2}\right)+4=-3+4=1 \\
h=\left(\frac{3}{2}\right)-\left(\frac{1}{2}\right)=\frac{2}{2}=1 & b=\rho\left(\frac{1}{2}\right)=-2\left(\frac{1}{2}\right)+4=-1+4=3
\end{array}
$$

$$
A=\frac{1}{2}(1)((1)+(3))=\frac{1}{2}(1)(4)=2 \text { units }^{2}
$$

18)

$\int_{-4}^{0} \sqrt{16-x^{2}} d x=\int_{-4}^{0} \sqrt{(4)^{2}-x^{2}} d x$ generater a quaster of acincle

$$
\begin{array}{ll}
\Omega=4 \quad A=\frac{\pi \Omega^{2}}{4} \\
A=\frac{\pi(4)^{2}}{4}=4 \pi \text { units }^{2}
\end{array}
$$

20)

$\int_{-1}^{1}(1-|x|) d x$ generater a ticiangle

$$
\begin{aligned}
& b=2 \quad h=1 \quad A=\frac{1}{2} A l \\
& A=\frac{1}{2}(1)(2)=1 \text { units }^{2}
\end{aligned}
$$

22)

$\int_{-1}^{1}\left(1+\sqrt{1-x^{2}}\right) d x$ generates a semi cincle on top of

$$
\begin{aligned}
& l=2, w=1 ; n=1 \quad \text { a neclangle } \\
& A_{R}=l w=(2)(1)=2 \quad A_{S c}=\frac{\pi n^{2}}{2}=\frac{\pi\left(l^{2}\right.}{2}=\frac{\pi}{2} \\
& A=A_{R}+A_{s c}=(2)+\left(\frac{\pi}{2}\right)=\left(2+\frac{\pi}{2}\right) \text { unitz }^{2}
\end{aligned}
$$

24)

$\int_{0}^{b} 4 x d x,{ }^{b>0}$ generates a triangle abore x-axis

$$
\begin{aligned}
& l=(h)-(0)=b \quad f(x)=4 x \quad h=f(l)=4 b \\
& \int_{0}^{l} 4 x d x=\frac{1}{2} l h=\frac{1}{2}(b)(4 h)=2 b^{2} \text { units }^{2}
\end{aligned}
$$

26)

$\int_{a}^{t} 3 t d t, 0<a<b$ generates a trapegoid

$$
\begin{array}{rl}
l(t)=3 t & A=f(a)=3 a \quad \text { abe } x-a x i s \\
& h=(a)-(a)=(b-a)
\end{array}
$$

$$
\int_{a}^{b-} 3 t d t=\frac{1}{2} h(A+B)=\frac{1}{2}(b-a)((3 a)+(3-b))=\frac{1}{2}(b-a)(3(a+b-1))=\frac{3}{2}(b-a)(b+a)
$$

$$
=\frac{3}{2}\left(b^{2}-a^{2}\right) \text { units }^{2}
$$

28) $f(x)=3 x+\sqrt{1-x^{2}}$
a) $[-1,0]$
tiangla
quater

$$
\begin{aligned}
\int_{-1}^{0}\left(3 x+\sqrt{1-x^{2}}\right) d x & =\int_{-1}^{0} 3 x d x+\int_{-1}^{0} \sqrt{1-x^{2}} d x \\
& =\left\{\frac{1}{2}(1)(3)\right\}+\left\{\frac{\pi(1)^{2}}{4}\right\}=\frac{-3}{2}+\frac{\pi}{4}=\frac{\pi}{4}-\frac{3}{2} \text { units }^{2}
\end{aligned}
$$

28) continued
b.) $[-1,1]$
triangle triangle
below x-asci above x-sis
quarter circle

$$
\begin{aligned}
\int_{-1}^{1}\left(3 x+\sqrt{1-x^{2}}\right) d x & =\int_{-1}^{1} 3 x d x+\int_{-1}^{1} \sqrt{1-x^{2}} d x=\int_{-1}^{0} 3 x d x+\int_{0}^{1} 3 x d x+\int_{-1}^{1} \sqrt{1-x^{2}} d x \\
& =-\left\{\frac{1}{2}(1)(3)\right\}+\left\{\frac{1}{2}(1)(3)\right\}+\left\{\frac{\pi(1)^{2}}{2}\right\}=\frac{-3}{2}+\frac{3}{2}+\frac{\pi}{2}=\frac{\pi}{2} \text { units }^{2}
\end{aligned}
$$

for examples 30 to 50 , examples written in blue are shown via method of section 5.4; examples written in black are shown using equation of this section (5.3),
30)

$$
\begin{aligned}
\int_{0.5}^{2.5} x d x & =\int_{\frac{1}{2}}^{\frac{5}{2}} x d x=\left[\frac{x^{2}}{2}+C\right]_{\frac{1}{2}}^{\frac{5}{2}}=\left[\frac{\left(\frac{5}{2}\right)^{2}}{2}+C\right]-\left[\frac{\left(\frac{1}{2}\right)^{2}}{2}+C\right] \\
& =\left[\frac{25}{8}\right]-\left[\frac{1}{8}\right]=\frac{24}{8}=3 \\
\int_{0.5}^{2.5} x d x & =\frac{(2.5)^{2}}{2}-\frac{(0.5)^{2}}{2}=\frac{\left(\frac{5}{2}\right)^{2}}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{2}=\frac{25}{8}-\frac{1}{8}=\frac{24}{8}=3
\end{aligned}
$$

32)

$$
\begin{aligned}
\int_{\sqrt{2}}^{5 \sqrt{2}} \Omega d \Omega & =\left[\frac{\Omega^{2}}{2}+C\right]_{\sqrt{2}}^{5 \sqrt{2}}=\left[\frac{(5 \sqrt{2})^{2}}{2}+C\right]-\left[\frac{(\sqrt{2})^{2}}{2}+C\right] \\
& =\left[\frac{25(2)}{2}\right]-\left[\frac{2}{2}\right]=25-1=24 \\
\int_{\sqrt{2}}^{5 \sqrt{2}} \Omega d n & =\frac{(5 \sqrt{2})^{2}}{2}-\frac{(\sqrt{2})^{2}}{2}=\frac{25(2)}{2}-\frac{2}{2}=25-1=24
\end{aligned}
$$

34)

$$
\begin{aligned}
\int_{0}^{0.3} s^{2} d s & =\int_{0}^{\frac{3}{10}} s^{2} d s=\left[\frac{s^{3}}{3}+c\right]_{0}^{\frac{3}{10}}=\left[\frac{\left(\frac{3}{10}\right)^{3}}{3}+c\right]-\left[\frac{(0)^{3}}{3}+c\right] \\
& =\left[\frac{9}{1000}\right]-[0]=\frac{9}{1000}
\end{aligned}
$$

$$
\int_{0}^{0.3} s^{2} d s=\frac{(0.3)^{3}}{3}-\frac{(0)^{3}}{3}=0.009-0=0.009
$$

36)

$$
\text { 6) } \begin{aligned}
\int_{0}^{\frac{\pi}{2}} \theta^{2} d \theta & =\left[\frac{\theta^{3}}{3}+C\right]_{0}^{\frac{\pi}{2}}=\left[\frac{\left(\frac{\pi}{2}\right)^{3}}{3}+C\right]-\left[\frac{(0)^{3}}{3}+C\right] \\
& =\left[\frac{\pi^{3}}{24}\right]-[0]=\frac{\pi^{3}}{24} \\
\int_{0}^{\frac{\pi}{2}} \theta^{2} d \theta & =\frac{\left(\frac{\pi}{2}\right)^{3}}{3}-\frac{(0)^{3}}{3}=\frac{\pi^{3}}{24}-0=\frac{\pi^{3}}{24}
\end{aligned}
$$

38)

$$
\begin{aligned}
\int_{a}^{\sqrt{3}} x d x & =\left[\frac{x^{2}}{2}+C\right]_{a}^{\sqrt{3}}=\left[\frac{(\sqrt{3})^{2}}{2}+C\right]-\left[\frac{(a)^{2}}{2}+C\right] \\
& =\left[\frac{3}{2}\right]-\left[\frac{a^{2}}{2}\right]=\frac{3-a^{2}}{2} \\
\int_{a}^{\sqrt{3}} x d x & =\frac{(\sqrt{3})^{2}}{2}-\frac{(a)^{2}}{2}=\frac{3}{2}-\frac{a^{2}}{2}=\frac{3-a^{2}}{2}
\end{aligned}
$$

40)

$$
\begin{aligned}
\int_{0}^{3 b} x^{2} d x & =\left[\frac{x^{3}}{3}+c\right]_{0}^{3 b}=\left[\frac{(3 b)^{3}}{3}+c\right]-\left[\frac{(0)^{3}}{3}+c\right] \\
& =\left[9 b^{3}\right]-[0]=9 b^{3} \\
\int_{0}^{3 b} x^{2} d x & =\frac{(3 b)^{3}}{3}-\frac{(0)^{3}}{3}=9 b^{3}
\end{aligned}
$$

42)

$$
\begin{aligned}
\int_{0}^{2} 5 x d x & =\left[\frac{5}{2} x^{2}+c\right]_{0}^{2}=\left[\frac{5}{2}(2)^{2}+c\right]-\left[\frac{5}{2}(0)^{2}+c\right] \\
& =[10]-[0]=10 \\
\int_{0}^{2} 5 x d x & =5 \int_{0}^{2} x d x=5\left\{\frac{(2)^{2}}{2}-\frac{(0)^{2}}{2}\right\}=5\{2\}=10
\end{aligned}
$$

44)

$$
\text { 4) } \begin{aligned}
\int_{0}^{\sqrt{2}}(t-\sqrt{2}) d t & =\left[\frac{t^{2}}{2}-\sqrt{2} t+c\right]_{0}^{\sqrt{2}}=\left[\frac{(\sqrt{2})^{2}}{2}-\sqrt{2}(\sqrt{2})+c\right]-\left[\frac{(0)^{2}}{2}-\sqrt{2}(0)+c\right] \\
& =[1-2]-[0]=-1 \\
\int_{0}^{\sqrt{2}}(t-\sqrt{2}) d t & =\int_{0}^{\sqrt{2}} t d t-\int_{0}^{\sqrt{2}} \sqrt{2} d t=\left\{\frac{(\sqrt{2})^{2}}{2}-\frac{(0)^{2}}{2}\right\}-\{\sqrt{2}((\sqrt{2})-(0))\} \\
& =\{1\}-\{2\}=-1
\end{aligned}
$$

46)

$$
\begin{aligned}
\int_{3}^{0}(2 z-3) d z & =\left[z^{2}-3 z+c\right]_{3}^{0}=\left[(0)^{2}-3(0)+c\right]-\left[(3)^{2}-3(3)+c\right] \\
& =[0]-[9-9]=0 \\
\int_{3}^{0}(2 z-3) d z & =-\int_{0}^{3}(2 z-3) d z=-\left\{2 \int_{0}^{3} z d z-\int_{0}^{3} 3 d z\right\} \\
& =-\left\{2\left(\frac{(3)^{2}}{2}-\frac{(0)^{2}}{2}\right)-3((3)-(0))\right\}=-\{9-9\}=-\{0\}=0
\end{aligned}
$$

48)

$$
\left.\begin{array}{l}
\int_{\frac{1}{2}}^{1} 24 \mu^{2} d u
\end{array}=\left[8 u^{3}+C\right]_{\frac{1}{2}}^{1}=\left[8(1)^{3}+c\right]-\left[8\left(\frac{1}{2}\right)^{3}+c\right]=[8]-[1]=7\right] \begin{aligned}
\int_{\frac{1}{2}}^{1} 24 u^{2} d u & =24 \int_{\frac{1}{2}}^{1} u^{2} d u=24\left\{\frac{(1)^{3}}{3}-\frac{\left(\frac{1}{2}\right)^{3}}{3}\right\}=24\left\{\frac{1}{3}-\frac{1}{24}\right\} \\
& =24\left\{\frac{8}{24}-\frac{1}{24}\right\}=24\left\{\frac{7}{24}\right\}=7
\end{aligned}
$$

50)

$$
\begin{aligned}
\int_{1}^{0}\left(3 x^{2}+x-5\right) d x & =\left[x^{3}+\frac{x^{2}}{2}-5 x+c\right]_{1}^{0} \\
& =\left[(0)^{3}+\frac{(0)^{2}}{2}-5(0)+c\right]-\left[(1)^{3}+\frac{(1)^{2}}{2}-5(1)+c\right] \\
& =[0]-\left[1+\frac{1}{2}-5\right]=0-\left(\frac{-7}{2}\right]=\frac{7}{2} \\
\int_{1}^{0}\left(3 x^{2}+x-5\right) d x & =-\int_{0}^{1}\left(3 x^{2}+x^{-5}\right) d x=-\left\{3 \int_{0}^{1} x^{2} d x+\int_{0}^{1} x d x-\int_{0}^{1} 5 d x\right\} \\
& =-\left\{3\left(\frac{(1)^{3}}{3}-\frac{(0)^{3}}{3}\right)+\left(\frac{(1)^{2}}{2}-\frac{(0)^{2}}{2}\right)-5((1)-(0))\right\} \\
& =-\left\{3\left(\frac{1}{3}\right)+\left(\frac{1}{2}\right)-5(1)\right\}=-\left\{1+\frac{1}{2}-5\right\} \\
& =-\left\{\frac{-7}{2}\right\}=\frac{7}{2}
\end{aligned}
$$

52) $y=\pi x^{2} \quad[0, b] \quad f(x)=y=\pi x^{2}$

$$
\begin{aligned}
& \Delta x=\frac{(b)-(0)}{n}=\frac{b}{n} \quad x_{k}=a+k \Delta x=(0)+k\left(\frac{l}{n}\right)=\frac{b k}{n} \\
& l\left(x_{k}\right)=\pi\left(\frac{b k}{n}\right)^{2}=\frac{\pi b^{2}}{n^{2}} k^{2} \\
& R_{n}=\sum_{k=1}^{n} l\left(x_{k}\right) \Delta x=\sum_{k=1}^{n}\left(\frac{\pi b^{2}}{n^{2}} k^{2}\right)\left(\frac{b}{n}\right)=\frac{\pi b^{3}}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =\frac{\pi b^{3}}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right)=\frac{\pi k^{3}}{6}\left(\frac{n(n+1)(2 n+1)}{n^{3}}\right)=\frac{\pi k^{3}}{6}\left(\frac{n\left(2 n^{2}+3 n+1\right)}{n^{3}}\right) \\
& =\frac{\pi b^{3}}{6}\left(\frac{2 n^{3}+3 n^{2}+n}{n^{3}}\right)=\frac{\pi b^{3}}{6}\left(\frac{2 n^{3}}{n^{3}}+\frac{3 n^{2}}{n^{3}}+\frac{n}{n^{3}}\right)=\frac{\pi k^{3}}{6}\left(2+\frac{3}{n}+\frac{1}{n^{2}}\right) \\
& \int_{0}^{b} \pi x^{2} d_{x}=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} l\left(x_{k}\right) \Delta x=\lim _{n \rightarrow \infty}\left(\frac{\left.\pi k^{2} b^{2}\right)\left(\frac{b}{n}\right)}{}=\lim _{n \rightarrow \infty}\left(\frac{\pi b^{3}}{6}\left(2+\frac{3}{n}+\frac{1}{n^{2}}\right)\right)=\frac{\pi b^{3}}{6}(2+0+0)=\frac{\pi b^{3}}{3}\right.
\end{aligned}
$$

54) $y=\frac{x}{2}+1 \quad[0, d] \quad f(x)=\frac{x}{2}+1$

$$
\begin{aligned}
& \Delta x=\frac{(k)-(0)}{n}=\frac{b}{n} \quad x_{k}=a+k \Delta x=(0)+k\left(\frac{k}{n}\right)=\frac{b k}{n} \\
& l\left(x_{k}\right)=\frac{\left(\frac{k-k}{n}\right)}{2}+1=\frac{b}{2 n} k+1 \\
& R_{n}=\sum_{k=1}^{n} l\left(x_{k}\right) \Delta x=\sum_{k=1}^{n}\left(\frac{b}{2 n} k+1\right)\left(\frac{b}{n}\right)=\sum_{k=1}^{n}\left(\frac{b^{2}}{2 n^{2}} k+\frac{b}{n}\right) \\
& =\sum_{k=1}^{n} \frac{b^{2}}{2 n^{2}} k+\sum_{k=1}^{n} \frac{b}{n}=\frac{b^{2}}{2 n^{2}} \sum_{k=1}^{n} k+\frac{b}{n} \sum_{k=1}^{n} 1=\frac{b^{2}}{2 n^{2}}\left(\frac{n(n+1)}{2}\right)+\frac{b}{n}(n) \\
& =\frac{b^{2}}{2(2)}\left(\frac{n(n+1)}{n^{2}}\right)+b=\frac{b^{2}}{4}\left(\frac{n^{2}+n}{n^{2}}\right)+b=\frac{b^{2}}{4}\left(\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}\right)+b \\
& =\frac{b^{2}}{4}\left(1+\frac{1}{n}\right)+b
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{b}\left(\frac{x}{2}+1\right) d x & =\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{h=1}^{n} f\left(x_{k}\right) \Delta x \\
& =\lim _{n \rightarrow \infty}\left(\frac{b}{2 n} k+1\right)\left(\frac{b}{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{b^{2}}{4}\left(1+\frac{1}{n}\right)+b\right) \\
& =\frac{b^{2}}{4}(1+0)+b=\frac{b^{2}}{4}+b
\end{aligned}
$$

56) $f(x)=\frac{-x^{2}}{2} \quad[0,3] \quad$ ar $(l)=\frac{1}{l-a} \int_{0}^{b} f(x) d x$

$$
\begin{aligned}
\operatorname{av}(1) & =\frac{1}{(3)-(0)} \int_{0}^{3} \frac{-x^{2}}{2} d_{x}=\frac{1}{3}\left[\frac{-x^{3}}{6}+C\right]_{0}^{3}=\frac{1}{3}\left\{\left[\frac{-(3)^{3}}{6}+c\right]-\left[\frac{-(0)^{3}}{6}+C\right]\right\} \\
& =\frac{1}{3}\left\{\left[\frac{-(3)^{3}}{6}\right]-[0]\right\}=\frac{1}{3}\left\{\frac{-(3)^{3}}{6}\right\}=\frac{-3}{2}
\end{aligned}
$$

58) $f(x)=3 x^{2}-3 \quad[0,1]$

$$
\begin{aligned}
\operatorname{ar}(f) & =\frac{1}{(1)-(0)} \int_{0}^{1}\left(3 x^{2}-3\right) d x=\frac{1}{1}\left[x^{3}-3 x+c\right]_{0}^{1} \\
& =\frac{1}{1}\left\{\left[(1)^{3}-3(1)+c\right]-\left[(0)^{3}-3(0)+c\right]\right\}=\frac{1}{1}\{[1-3]-[0]\}=\frac{1}{1}\{-2\}=-2
\end{aligned}
$$

60) $f(t)=t^{2}-t \quad[-2,1]$

$$
\begin{aligned}
\operatorname{ar}(\varphi) & =\frac{1}{(1)-(-2)} \int_{-2}^{1}\left(t^{2}-t\right) d t=\frac{1}{1+2}\left[\frac{t^{3}}{3}-\frac{t^{2}}{2}+C\right]_{-2}^{1} \\
& =\frac{1}{3}\left\{\left[\frac{(1)^{3}}{3}-\frac{(1)^{2}}{2}+C\right]-\left[\frac{(-2)^{3}}{3}-\frac{(-2)^{2}}{2}+C\right]\right\}=\frac{1}{3}\left\{\left[\frac{1}{3}-\frac{1}{2}\right]-\left[\frac{-8}{3}-2\right]\right\} \\
& =\frac{1}{3}\left\{\frac{1}{3}-\frac{1}{2}+\frac{8}{3}+2\right\}=\frac{1}{3}\left\{\frac{9}{3}-\frac{1}{2}+2\right\}=\frac{1}{3}\left\{3-\frac{1}{2}+2\right\}=\frac{1}{3}\left\{5-\frac{1}{2}\right\} \\
& =\frac{1}{3}\left\{\frac{10}{2}-\frac{1}{2}\right\}=\frac{1}{3}\left\{\frac{9}{2}\right\}=\frac{3}{2}
\end{aligned}
$$

62) $h(x)=-|x|$

$$
\begin{aligned}
& \text { a) }[-1,0] \\
& \begin{aligned}
\operatorname{ar}(h) & =\frac{1}{(0)-(-1)} \int_{-1}^{0}-|x| d x=\frac{1}{(0)-(-1) \mid} \int_{-1}^{0}-(-x) d x=\frac{1}{0+1} \int_{-1}^{0} x d x=\frac{1}{1}\left\{\frac{x^{2}}{2}+c\right]_{-1}^{0} \\
& \left.=\frac{1}{1}\left\{\left[\frac{(0)^{2}}{2}+c\right]-\left[\frac{(-1)^{2}}{2}+c\right]\right\}\right\}=\frac{1}{1}\left\{[0]-\left[\frac{1}{2}\right]\right\}=\frac{1}{1}\left\{-\frac{1}{2}\right\}=\frac{-1}{2}
\end{aligned}
\end{aligned}
$$

b) $[0,1]$

$$
\begin{aligned}
\operatorname{ar}(\boldsymbol{h}) & =\frac{1}{(1)-(0)} \int_{0}^{1}-|x| d x=\frac{1}{(1)-(0)} \int_{0}^{1}-(x) d x=\frac{1}{1-0} \int_{0}^{1}-x d x=\frac{1}{1}\left[\frac{-x^{2}}{2}+c\right]_{0}^{1} \\
& =\frac{1}{1}\left\{\left[\frac{-(1)^{2}}{2}+c\right]-\left[\frac{-(0)^{2}}{2}+c\right]\right\}=\frac{1}{1}\left\{\left[\frac{-1}{2}\right]-[0]\right\}=\frac{1}{1}\left\{\frac{-1}{2}\right\}=\frac{-1}{2}
\end{aligned}
$$

c) $[-1,1]$

$$
\text { av }(R)=\frac{1}{(1)-(-1)} \int_{-1}^{1}-|x| d x=\frac{1}{(1)-(-1)}\left(\int_{-1}^{0}-|x| d x+\int_{0}^{1}-|x| d x\right)=\frac{1}{2}\left(\left\{-\frac{1}{2}\right\}+\left\{-\frac{1}{2}\right\}\right)=\frac{1}{2}(-1)=-\frac{1}{2}
$$

$$
\text { 64) } \int_{0}^{2}(2 x+1) d x \Rightarrow f(x)=2 x+1 \quad[0,2]
$$

$$
\Delta x=\frac{(2)-(0)}{n}=\frac{2}{n} \quad x_{k}=a+k \Delta x=(0)+k\left(\frac{2}{n}\right)=\frac{2 k}{n}
$$

$$
f\left(x_{k}\right)=2\left(\frac{2 k}{n}\right)+1=\frac{4}{n} t+1
$$

$$
R_{n}=\sum_{k=1}^{n} \rho\left(x_{k}\right) \Delta x=\sum_{k=1}^{n}\left(\frac{4}{n} k+1\right)\left(\frac{2}{n}\right)=\sum_{k=1}^{n}\left(\frac{8}{n^{2}} k+\frac{2}{n}\right)=\frac{8}{n^{2}} \sum_{k=1}^{n} k+\frac{2}{n} \sum_{k=1}^{n} 1
$$

$$
=\frac{8}{n^{2}}\left(\frac{n(n+1)}{2}\right)+\frac{2}{n}(n)=\frac{8}{2}\left(\frac{n(n+1)}{n^{2}}\right)+2=4\left(\frac{n^{2}+n}{n^{2}}\right)+2
$$

$$
=4\left(\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}\right)+2=4\left(1+\frac{1}{n}\right)+2=4+\frac{4}{n}+2=6+\frac{4}{n}
$$

$$
\int_{0}^{2}(2 x+1) d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{n=1}^{n} f\left(x_{k}\right) \Delta x=\lim _{x \rightarrow \infty} \sum_{x=1}^{n}\left(\frac{4}{n} k+1\right)\left(\frac{2}{n}\right)
$$

$$
=\lim _{n \rightarrow \infty}\left(6+\frac{4}{n}\right)=6+0=6
$$

66) $\int_{-1}^{0}\left(x-x^{2}\right) d x \Rightarrow \ell(x)=x-x^{2} \quad[-1,0]$

$$
\begin{aligned}
& \Delta x=\frac{(0)-(-1)}{n}=\frac{1}{n} \quad x_{k}=a+k \Delta x=(-1)+k\left(\frac{1}{n}\right)=-1+\frac{1}{n} k=\frac{1}{n} k-1 \\
& l\left(x_{k}\right)=\left(\frac{1}{n} k-1\right)-\left(\frac{1}{n} k-1\right)^{2}=\left(\frac{1}{n} k-1\right)-\left(\frac{1}{n^{2}} k^{2}-\frac{2}{n} k+1\right)=\frac{-1}{n^{2}} k^{2}+\frac{3}{n} k-2 \\
& R_{n}=\sum_{k=1}^{n} l\left(x_{k}\right) \Delta x=\sum_{k=1}^{n}\left(\frac{-1}{n^{2}} k^{2}+\frac{3}{n} k-2\right)\left(\frac{1}{n}\right)=\sum_{k=1}^{n}\left(\frac{-1}{n^{3}} k^{2}+\frac{3}{n^{2}} k-\frac{2}{n}\right) \\
& =\frac{-1}{n^{3}} \sum_{k=1}^{n} k^{2}+\frac{3}{n^{2}} \sum_{k=1}^{n} k-\frac{2}{n} \sum_{k=1}^{n} 1=\frac{-1}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right)+\frac{3}{n^{2}}\left(\frac{n(n+1)}{2}\right)-\frac{2}{n}(n) \\
& =\frac{-1}{6}\left(\frac{n\left(2 n^{2}+3 n+1\right)}{n^{3}}\right)+\frac{3}{2}\left(\frac{n^{2}+n}{n^{2}}\right)-2=\frac{-1}{6}\left(\frac{2 n^{3}+3 n^{2}+n}{n^{3}}\right)+\frac{3}{2}\left(\frac{n^{2}+n}{n^{2}}\right)-2 \\
& =\frac{-1}{6}\left(\frac{2 n^{3}}{n^{3}}+\frac{3 n^{2}}{n^{3}}+\frac{n}{n^{3}}\right)+\frac{3}{2}\left(\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}\right)-2=\frac{-1}{6}\left(2+\frac{3}{n}+\frac{1}{n^{2}}\right)+\frac{3}{2}\left(1+\frac{1}{n}\right)-2
\end{aligned}
$$

66) continued

$$
\begin{aligned}
\int_{-1}^{0}\left(x-x^{2}\right) d x & =\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \varphi\left(x_{k}\right) \Delta x=\lim _{n \rightarrow \infty}\left(\frac{-1}{n^{2}} k^{2}+\frac{3}{n} k-2\right)\left(\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{-1}{6}\left(2+\frac{3}{x}+\frac{1}{n^{2}}\right)+\frac{3}{2}\left(1+\frac{1}{n}\right)-2\right) \\
& =\frac{-1}{6}(2+0+0)+\frac{3}{2}(1+0)-2=\frac{-2}{6}+\frac{3}{2}-2=\frac{-2}{6}+\frac{9}{6}-\frac{12}{6}=\frac{-5}{6}
\end{aligned}
$$

68) $\int_{-1}^{1} x^{3} d x \Rightarrow l(x)=x^{3} \quad[-1,1]$

$$
\begin{aligned}
\Delta x & =\frac{(1)-(-1)}{n}=\frac{2}{n} \quad x_{k}=a+k \Delta x=(-1)+k\left(\frac{2}{n}\right)=\frac{2}{n} k-1 \\
f\left(x_{k}\right) & =\left(\frac{2}{n} k-1\right)^{3}=\left(\frac{2}{n} k-1\right)\left(\frac{4}{n^{2}} k^{2}-\frac{4}{n} k+1\right) \\
& =\frac{8}{n^{3}} k^{3}-\frac{8}{n^{2}} k^{2}+\frac{2}{n} k-\frac{4}{n^{2}} k^{2}+\frac{4}{n} k-1=\frac{8}{n^{3}} k^{3}-\frac{12}{n^{2}} k^{2}+\frac{6}{n} k-1 \\
R_{n} & =\sum_{k=1}^{n} l\left(x_{k}\right) \Delta x=\sum_{k=1}^{n}\left(\frac{8}{n^{3}} k^{3}-\frac{12}{n^{2}} k^{2}+\frac{6}{n} k-1\right)\left(\frac{2}{n}\right)=\sum_{k=1}^{n}\left(\frac{16}{n^{4}} k^{3}-\frac{24}{n^{3}} b^{2}+\frac{12}{n^{2}} k-\frac{2}{n}\right) \\
& =\frac{16}{n^{4}} \sum_{k=1}^{n} k^{3}-\frac{24}{n^{3}} \sum_{k=1}^{n} k^{2}+\frac{12}{n^{2}} \sum_{k=1}^{n} k-\frac{2}{n} \sum_{k=1}^{n} 1 \\
& =\frac{16}{n^{4}}\left(\left(\frac{n(n+1)}{2}\right)^{2}\right)-\frac{24}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right)+\frac{12}{n^{2}}\left(\frac{n(n+1}{2}\right)-\frac{2}{n}(n) \\
& =\frac{16}{n^{4}}\left(\left(\frac{n^{2}+n}{2}\right)^{2}\right)-\frac{24}{n^{3}}\left(\frac{n\left(2 n^{2}+3 n+1\right)}{6}\right)+\frac{12}{n^{2}}\left(\frac{n^{2}+n}{2}\right)-2 \\
& =\frac{16}{n^{4}}\left(\frac{n^{4}+2 n^{3}+n^{2}}{4}\right)-\frac{24}{n^{3}}\left(\frac{2 n^{3}+3 n^{2}+n}{6}\right)+\frac{12}{n^{2}}\left(\frac{n^{2}+n}{2}\right)-2 \\
& =\frac{16}{4}\left(\frac{n^{4}+2 n^{3}+n^{2}}{n^{4}}\right)-\frac{24}{6}\left(\frac{2 n^{3}+3 n^{2}+n}{n^{3}}\right)+\frac{12}{2}\left(\frac{n^{2}+n}{n^{2}}\right)-2 \\
& =4\left(\frac{n^{4}}{n^{4}}+\frac{2 n^{3}}{n^{4}}+\frac{n^{2}}{n^{4}}\right)-4\left(\frac{2 n^{3}}{n^{3}}+\frac{3 n^{2}}{n^{3}}+\frac{n}{n^{3}}\right)+6\left(\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}\right)-2 \\
& =4\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)-4\left(2+\frac{3}{n}+\frac{1}{n^{2}}\right)+6\left(1+\frac{1}{n}\right)-2
\end{aligned}
$$

68) continued

$$
\begin{aligned}
\int_{-1}^{1} x^{3} d x & =\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{n=1}^{n} f\left(x_{k}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{8}{n^{1}} t^{3}-\frac{12}{n^{2}} k^{2}+\frac{6}{n} k-1\right)\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(4\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)-4\left(2+\frac{3}{n^{2}}+\frac{1}{n^{2}}\right)+6\left(1+\frac{1}{n^{2}}\right)-2\right) \\
& =4(1+0+0)-4(2+0+0)+6(1+0)-2=4-8+6-2=0
\end{aligned}
$$

70) $\int_{0}^{1}\left(3 x-x^{3}\right) d x \Rightarrow l(x)=3 x-x^{3} \quad[0,1]$

$$
\begin{aligned}
& \Delta x=\frac{(1)-(0)}{n}=\frac{1}{n} \quad x_{k}=a+k \Delta x=(0)+k\left(\frac{1}{n}\right)=\frac{1}{n} k \\
& l\left(x_{k}\right)=3\left(\frac{1}{n} k\right)-\left(\frac{1}{n} k\right)^{3}=\frac{3}{n} k-\frac{1}{n^{3}} k^{3} \\
& R_{n}=\sum_{k=1}^{n} l\left(x_{k}\right) \Delta x=\sum_{k=1}^{n}\left(\frac{3}{n} k-\frac{1}{n^{3}} k^{3}\right)\left(\frac{1}{n}\right)=\sum_{k=1}^{n}\left(\frac{3}{n^{2}} k-\frac{1}{n^{4}} k^{3}\right) \\
& =\frac{3}{n^{2}} \sum_{k=1}^{n} k-\frac{1}{n^{4}} \sum_{k=1}^{n} k^{3}=\frac{3}{n^{2}}\left(\frac{n(n+1)}{2}\right)-\frac{1}{n^{4}}\left(\left(\frac{n(n+1)}{2}\right)^{2}\right) \\
& =\frac{3}{n^{2}}\left(\frac{n^{2}+n}{2}\right)-\frac{1}{n^{4}}\left(\frac{n^{2}\left(n^{2}+2 n+1\right)}{4}\right)=\frac{3}{2}\left(\frac{n^{2}+n}{n^{2}}\right)-\frac{1}{4}\left(\frac{n^{4}+2 n^{3}+n^{2}}{n^{4}}\right) \\
& =\frac{3}{2}\left(\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}\right)-\frac{1}{4}\left(\frac{n^{4}}{n^{4}}+\frac{2 n^{3}}{n^{4}}+\frac{n^{2}}{n^{4}}\right)=\frac{3}{2}\left(1+\frac{1}{n}\right)-\frac{1}{4}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right) \\
& \int_{0}^{1}\left(3 x-x^{3}\right) d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} l\left(x_{k}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{3}{n} k-\frac{1}{n^{3}} k^{3}\right)\left(\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{2}\left(1+\frac{1}{n}\right)-\frac{1}{4}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)\right) \\
& =\frac{3}{2}(1+0)-\frac{1}{4}(1+0+0)=\frac{3}{2}-\frac{1}{4}=\frac{6}{4}-\frac{1}{4}=\frac{5}{4}
\end{aligned}
$$

80) $\sec x \geq 1+\frac{x^{2}}{2}$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

U

$$
\begin{aligned}
& \sec x-\left(1+\frac{x^{2}}{2}\right) \geq 0 \text { on }\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \\
& \Downarrow \\
& \int_{0}^{1}\left\{\sec x-\left(1+\frac{x^{2}}{2}\right)\right\} d x \geq 0 \quad \text { since }[0,1] \text { is contained in }\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \\
& \Downarrow \\
& \int_{0}^{1} \sec x d x-\int_{0}^{1}\left(1+\frac{x^{2}}{2}\right) d x \geq 0 \\
& \Downarrow \\
& \int_{0}^{1} \sec x d x \geq \int_{0}^{1}\left(1+\frac{x^{2}}{2}\right) d x \\
& \psi \\
& \int_{0}^{1} \sec x d x \geq \frac{7}{6}
\end{aligned}
$$

Lo a lower bound is $\frac{7}{6}$.

