Definition

A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=\frac{d F}{d x}=f(x)$ for all x in I.

Theorem 8

If F is an antiderivative of f on and interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

Definition

The collection of all antiderivatives of f is called indefinite integral of f with respect to x, and is denoted by $\int f(x) d x$.
The symbol \int is an integral sign. The function f is the integrand of the integral, and x is the variable of integration.

Note: On any integral, $d x$ inform us about what is the variable of the function (the variable that we need to use our rules of integration) and all other letters are constants.
For example:

1) $\quad \int x y t d x$ integrate with respect to x, x is the variable where we apply the rules below, y and t are constants, so $\int x y t d x=y t\left[\frac{x^{2}}{2}\right]+C=\frac{1}{2} x^{2} y t+C$
2) $\quad \int x y t d y$ integrate with respect to y, y is the variable where we apply the rules below, x and t are constants, so $\int x y t d y=x t\left[\frac{y^{2}}{2}\right]+C=\frac{1}{2} x y^{2} t+C$
3) $\quad \int x y t d t$ integrate with respect to t, t is the variable where we apply the rules below,x and y are constants, so $\int x y t d t=x y\left[\frac{t^{2}}{2}\right]+C=\frac{1}{2} x y t^{2}+C$

Instead of listing the Antiderivative formulas on pg. 283 (but still copy them into your notes), I listed a part of the Integration Table from section 8.1 because these formats of the formulas are the ones you will be using on your next course.

$\int k d t=k t+C$ (any number $\left.k\right)$	$\int a^{t} d t=\frac{a^{t}}{\ln a}+C \quad(a>0, a \neq 1)$	$\int \csc ^{2} t d t=-\cot t+C$
$\int t^{n} d t=\frac{t^{n+1}}{n+1}+C \quad(n \neq 1)$	$\int \sin t d t=-\cos t+C$	$\int \sec t \tan t d t=\sec t+C$
$\int \frac{1}{t} d t=\ln \|t\|+C$	$\int \cos t d t=\sin t+C$	$\int \csc t \cot t d t=-\csc t+C$
$\int e^{t} d t=e^{t}+C$	$\int \sec ^{2} t d t=\tan t+C$	$\int \frac{1}{a^{2}+t^{2}} d t=\frac{1}{a} \tan ^{-1}\left(\frac{t}{a}\right)+C$

2-a) $\int 6 x d x=6\left[\frac{x^{2}}{2}\right]+C=3 x^{2}+C$
2-b) $\int x^{7} d x=\left[\frac{x^{8}}{8}\right]+C=\frac{1}{8} x^{8}+C$
2-c) $\int x^{7}-6 x+8 d x=\left[\frac{x^{8}}{8}\right]-6\left[\frac{x^{2}}{2}\right]+8[x]+c=\frac{1}{8} x^{8}-3 x^{2}+8 x+c$

4-a) $\int 2 x^{-3} d x=2\left[\frac{x^{-2}}{-2}\right]+C=-x^{-2}+C=\frac{-1}{x^{2}}+C$
4-b) $\int \frac{x^{-3}}{2}+x^{2} d x=\frac{1}{2}\left[\frac{x^{-2}}{-2}\right]+\left[\frac{x^{3}}{3}\right]+c=\frac{-1}{4 x^{2}}+\frac{1}{3} x^{3}+C$
4-c) $\int\left(-x^{-3}+x-1\right) d x=-\left[\frac{x^{-2}}{-2}\right]+\left[\frac{x^{2}}{2}\right]-[x]+C=\frac{1}{2 x^{2}}+\frac{1}{2} x^{2}-x+C$
$6-a) \int-\frac{2}{x^{3}} d x=\int-2 x^{-3} d x=-2\left[\frac{x^{-2}}{-2}\right]+C=x^{-2}+C=\frac{1}{x^{2}}+C$
6-b) $\int \frac{1}{2 x^{3}} d x=\int \frac{1}{2} x^{-3} d x=\frac{1}{2}\left[\frac{x^{-2}}{-2}\right]+c=\frac{-1}{4} x^{-2}+c=\frac{-1}{4 x^{2}}+c$
6-c) $\int x^{3}-\frac{1}{x^{3}} d x=\int\left(x^{3}-x^{-3}\right) d x=\left[\frac{x^{4}}{4}\right]-\left[\frac{x^{-2}}{-2}\right]+C=\frac{1}{4} x^{4}+\frac{1}{2 x^{2}}+C$

$$
\begin{aligned}
& 8-a) \int \frac{4}{3} \sqrt[3]{x} d x=\int \frac{4}{3} x^{\frac{1}{3}} d x=\frac{4}{3}\left[\frac{x^{\frac{4}{3}}}{\frac{4}{3}}\right]+C=x^{\frac{4}{3}}+C=(\sqrt[3]{x})^{4}+C \\
& 8-d) \int \frac{1}{3 \sqrt[3]{x}} d x=\int \frac{1}{3} x^{-\frac{1}{3}} d x=\frac{1}{3}\left[\frac{x^{\frac{2}{3}}}{\frac{2}{3}}\right]+C=\frac{1}{2} x^{2 / 3}+C=\frac{1}{2}(\sqrt[3]{x})^{2}+C \\
& 8-c) \int \sqrt[3]{x}+\frac{1}{\sqrt[3]{x}} d x=\int\left(x^{\frac{1}{3}}+x^{-\frac{1}{3}}\right) d x=\left[\frac{x^{4 / 3}}{\frac{4}{3}}\right]+\left[\frac{x^{\frac{2}{3}}}{\frac{2}{3}}\right]+C=\frac{3}{4}(\sqrt[3]{x})^{4}+\frac{3}{2}(\sqrt[3]{x})^{2}+C
\end{aligned}
$$

$$
(0-a) \int \frac{1}{2} x^{-\frac{1}{2}} d x=\frac{1}{2}\left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]+C=x^{\frac{1}{2}}+C=\sqrt{x}+C
$$

$10-b) \int-\frac{1}{2} x^{-\frac{3}{2}} d x=\frac{-1}{2}\left[\frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}\right]+C=x^{-\frac{1}{2}}+C=\frac{1}{\sqrt{x}}+C$
10-c) $\int-\frac{3}{2} x^{\frac{-5}{2}} d x=\frac{-3}{2}\left[\frac{x^{-\frac{3}{2}}}{\frac{3}{2}}\right]+C=x^{-\frac{3}{2}}+C=\frac{1}{(\sqrt{x})^{3}}+C$

$$
\begin{aligned}
& \text { 12-a) } \int \frac{1}{3 x} d x=\int\left(\frac{1}{3}\right) \frac{1}{x} d x=\frac{1}{3}[\ln |x|]+C=\frac{1}{3} \ln |x|+C \\
& \text { 12-b) } \int \frac{2}{5 x} d x=\int\left(\frac{2}{5}\right) \frac{1}{x} d x=\frac{2}{5}[\ln |x|]+C=\frac{2}{5} \ln |x|+C \\
& 12-c) \int\left(1+\frac{4}{3 x}-\frac{1}{x^{2}}\right) d x=\int\left(1+\left(\frac{4}{3}\right)\left(\frac{1}{x}\right)-x^{-2}\right) d x \\
& =[x]+\left(\frac{4}{3}\right)[\ln |x|]-\left[\frac{x^{-1}}{-1}\right]+C \\
& =x+\frac{4}{3} \ln |x|+\frac{1}{x}+C \\
& \text { (4-a) } \\
& \text { let } p=\pi x \\
& \frac{d p}{d x}=\pi \Rightarrow d p=\pi d x \\
& =\int \cos (p)(d p)=\sin p+c \\
& =\sin (\pi x)+C \\
& 14-b) \int \frac{\pi}{2} \cos \frac{\pi}{2} x d x=\int \cos \left(\frac{\pi}{2} x\right)\left(\frac{\pi}{2} d x\right) \\
& \text { let } \varphi=\frac{\pi}{2} x \\
& =\int \cos (p)(d p)=\sin p+C \\
& \frac{d \rho}{d x}=\frac{\pi}{2} \Rightarrow d \rho=\frac{\pi}{2} d x \\
& =\sin \left(\frac{\pi}{2} x\right)+C \\
& \text { 14-c) } \int\left(\cos \frac{\pi x}{2}+\pi \cos x\right) d x=\int \cos \left(\frac{\pi}{2} x\right) d x+\int \pi \cos x d x \\
& \int \cos \left(\frac{\pi}{2} x\right) d x=\int \cos p\left(\frac{2}{x} d p\right]_{1}^{1}=\left[\frac{2}{x} \sin \left(\frac{\pi}{2} x\right)\right]+\pi[\sin x]+C \\
& p=\frac{\pi}{2} x \quad=\frac{2}{\pi}[\sin p]+c_{1} \\
& d p=\frac{\pi}{2} d x \quad=\frac{2}{x} \sin \left(\frac{x}{2} x\right)+c_{1} \\
& \frac{2}{\pi} d p=d x
\end{aligned}
$$

16-b) $\int-\frac{3}{2} \csc ^{2} \frac{3 x}{2} d x=\int-\csc ^{2}\left(\frac{3}{2} x\right)\left(\frac{3}{2} d x\right)$

$$
\begin{aligned}
p & =\frac{3}{2} x \\
d p & =\frac{3}{2} d x
\end{aligned}
$$

$$
\begin{aligned}
=\int-\csc ^{2}(p)(d p) & =-[-\cot p]+C \\
& =\cot \left(\frac{3}{2} x\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& 16-c) \int\left(1-8 \csc ^{2} 2 x\right) d x=\int 1 d x-\int 8 \csc ^{2}(2 x) d x \\
& \int 8 \csc ^{2}(2 x) d x
\end{aligned} \begin{aligned}
p=2 x & =\int 4 \csc ^{2}(2 x)(2 d x)^{1}=[x]-[-4 \cot (2 x)]+C \\
& =\int 4 \operatorname{coc}^{2}(p)(d p) \\
& =4[-\cot (p)]+c_{1} \\
& =-4 \cot (2 x)+c_{1}
\end{aligned}
$$

$$
\begin{aligned}
&18-a) \int \sec x \tan x d x=\sec x+C \\
&18-b) \int 4 \sec 3 x \tan 3 x d x=\int 4 \sec (p) \tan (p)\left(\frac{1}{3} d p\right) \\
&=\int \frac{4}{3} \sec (p) \tan (p) d p \\
&=\frac{4}{3}[\sec p]+C \\
&=\frac{4}{3} \sec (3 x)+C \\
& d p=3 d x \\
& \frac{1}{3} d p=d x \\
&18-c) \int \sec \frac{\pi x}{2} \tan \frac{\pi x}{2} d x=\int \sec (p) \tan (p)\left(\frac{2}{\pi} d p\right) \\
&=\int \frac{2}{\pi} \sec (p) \tan (p) d p \\
& p=\frac{\pi}{2} x \quad=\frac{2}{x}[\sec p]+C \\
&=\frac{2}{\pi} \sec \left(\frac{\pi}{2} x\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20-a) } \int e^{-2 x} d x=\int e^{p}\left(\frac{-1}{2} d p\right)=\int-\frac{1}{2} e^{p} d p \\
& p=-2 x \\
& d p=-2 d x \\
& -\frac{1}{2} d p=d x \\
& =\frac{-1}{2}\left[e^{p}\right]+C \\
& =\frac{-1}{2} e^{-2 x}+C=\frac{-1}{2 e^{2 x}}+C \\
& 20-b x) \int e^{\frac{4 x}{3}} d x=\int e^{p}\left(\frac{3}{4} d p\right)=\int \frac{3}{4} e^{p} d p \\
& p=\frac{4}{3} x \\
& d \rho=\frac{4}{3} d x \\
& =\frac{3}{4}\left[e^{\infty}\right]+C \\
& =\frac{3}{4} e^{\frac{4 \pi}{3}}+C \\
& \frac{3}{4} d p=d x \\
& \text { 20-c) } \int e^{\frac{-x}{5}} d x=\int e^{p}(-5 d p)=\int-5 e^{p} d p \\
& p=\frac{-x}{5} \\
& d p=\frac{-1}{5} d x \\
& =-5\left[e^{p}\right]+C \\
& =-5 e^{\frac{-x}{5}}+C=\frac{-5}{e^{\frac{x}{5}}}+C \\
& -5 d p=d x \\
& 22-a) \int x^{\sqrt{3}} d x=\left[\frac{x^{(\sqrt{3}+1)}}{(\sqrt{3}+1)}\right]+C=\frac{1}{1+\sqrt{3}} x^{(1+\sqrt{3})}+C \\
& 22-b) \int x^{\pi} d x=\left[\frac{x^{(\pi+1)}}{(\pi+1)}\right]+C=\frac{1}{\pi+1} x^{(\pi+1)}+C \\
& \text { 22-C) } \int x^{(\sqrt{2}-1)} d x=\left[\frac{x^{\sqrt{2}}}{\sqrt{2}}\right]+C=\frac{1}{\sqrt{2}} x^{\sqrt{2}}+C
\end{aligned}
$$

$$
\begin{aligned}
24-a) \int\left(x-\left(\frac{1}{2}\right)^{x}\right) d x & =\int x d x-\int\left(\frac{1}{2}\right)^{x} d x \\
& \left.=\left[\frac{x^{2}}{2}\right]-\int \frac{\left(\frac{1}{2}\right)^{x}}{\ln \left(\frac{1}{2}\right)}\right]+C \\
& =\frac{1}{2} x^{2}-\frac{1}{\ln \left(\frac{1}{2}\right)}\left(\frac{1}{2}\right)^{x}+C \\
24-b-) \int\left(x^{2}+2^{x}\right) d x & =\int x^{2} d x+\int 2^{x} d x \\
& =\left[\frac{x^{3}}{3}\right]+\left[\frac{2^{x}}{\ln 2}\right]+C \\
& =\frac{1}{3} x^{3}+\frac{1}{\ln 2} 2^{x}+C \\
24-c) \int\left(\pi^{x}-x^{-1}\right) d x & =\int \pi^{x} d x-\int \frac{1}{x} d x \\
& =\left[\frac{x^{x}}{\ln \pi}\right]-[\ln |x|]+C \\
& =\frac{1}{\ln \pi} \pi^{x}-\ln |x|+C
\end{aligned}
$$

26) $\int(5-6 x) d x=5[x]-6\left[\frac{x^{2}}{2}\right]+C=5 x-3 x^{2}+C$
27) $\int\left(\frac{t^{2}}{2}+4 t^{3}\right) d t=\frac{1}{2}\left[\frac{t^{3}}{3}\right]+4\left[\frac{t^{4}}{4}\right]+c=\frac{1}{6} t^{3}+t^{4}+C$
28)

$$
\begin{aligned}
\int\left(1-x^{2}-3 x^{5}\right) d x & =[x]-\left[\frac{x^{3}}{3}\right]-3\left[\frac{x^{6}}{6}\right]+C \\
& =x-\frac{1}{3} x^{3}-\frac{1}{2} x^{6}+C
\end{aligned}
$$

32)

$$
\begin{aligned}
& \int\left(\frac{1}{5}-\frac{2}{x^{3}}+2 x\right) d x=\int\left(\frac{1}{5}-2 x^{-3}+2 x\right) d x \\
& =\frac{1}{5}[x]-2\left[\frac{x^{-2}}{-2}\right]+2\left[\frac{x^{2}}{2}\right]+C=\frac{1}{5} x+\frac{1}{x^{2}}+x^{2}+C
\end{aligned}
$$

34) $\int x^{\frac{-5}{4}} d x=\left[\frac{x^{\frac{-1}{4}}}{\frac{-1}{4}}\right]+C=-4 x^{\frac{-1}{4}}+C=\frac{-4}{\sqrt[4]{x}}+C$
35)

$$
\begin{aligned}
& \int\left(\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}}\right) d x=\int\left(\frac{1}{2} x^{\frac{1}{2}}+2 x^{\frac{-1}{2}}\right) d x \\
& =\frac{1}{2}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]+2\left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]+C=\frac{1}{3} x^{\frac{3}{2}}+4 x^{\frac{1}{2}}+C=\frac{1}{3}(\sqrt{x})^{3}+4 \sqrt{x}+C
\end{aligned}
$$

38) $\int\left(\frac{1}{7}-\frac{1}{y^{5 / 4}}\right) d y=\int\left(\frac{1}{7}-y^{-5 / 4}\right) d y=\frac{1}{7}[y]-\left[\frac{y^{-\frac{1}{4}}}{\frac{-1}{4}}\right]+C$

$$
=\frac{1}{7} y+4 y^{-\frac{1}{4}}+C=\frac{1}{7} y+\frac{4}{\sqrt[4]{y}}+C
$$

40) $\int x^{-3}(x+1) d x=\int\left(x^{-2}+x^{-3}\right) d x=\left[\frac{x^{-1}}{-1}\right]+\left[\frac{x^{-2}}{-2}\right]+C$

$$
=-x^{-1}-\frac{1}{2} x^{-2}+C=\frac{-1}{x}-\frac{1}{2 x^{2}}+C
$$

42)

$$
\begin{aligned}
& \int \frac{4+\sqrt{t}}{t^{3}} d t=\int\left(\frac{4}{t^{3}}+\frac{\sqrt{t}}{t^{3}}\right) d t=\int\left(4 t^{-3}+t^{-5 / 2}\right) d t \\
& =4\left[\frac{t^{-2}}{-2}\right]+\left[\frac{t^{\frac{-3}{2}}}{\frac{-3}{2}}\right]+C=-2 t^{-2}-\frac{2}{3} t^{\frac{-3}{2}}+C \\
& =\frac{-2}{t^{2}}-\frac{2}{3 t^{\frac{3}{2}}}+C=\frac{-2}{t^{2}}-\frac{2}{3(\sqrt{t})^{3}}+C
\end{aligned}
$$

44) $\int(-5 \sin t) d t=-5[-\cos t]+c=5 \cos t+c$
45) $\int 3 \cos 5 \theta d \theta=\int 3 \cos (p)\left(\frac{1}{5} d p\right)=\int \frac{3}{5} \cos (p)(d p)$

$$
\begin{array}{rlr}
p=5 \theta & =\frac{3}{5}[\sin (p)]+C \\
d p=5 d \theta & & =\frac{3}{5} \sin (5 \theta)+C \\
\frac{1}{5} d p=d \theta &
\end{array}
$$

$$
\text { 48) } \int\left(-\frac{\sec ^{2} x}{3}\right) d x=\frac{-1}{3}[\tan x]+c=\frac{-1}{3} \tan x+c
$$

50) $\int \frac{2}{5} \sec \theta \tan \theta d \theta=\frac{2}{5}[\sec \theta]+C=\frac{2}{5} \sec \theta+C$
51) $\int\left(2 e^{x}-3 e^{-2 x}\right) d x=\int 2 e^{x} d x-\int 3 e^{-2 x} d x$

$$
\begin{array}{rlrl}
\int 3 e^{-2 x} d x & =\int 3 e^{p}\left(-\frac{1}{2} d p\right) & =2\left[e^{x}\right]-\left[\frac{-3}{2} e^{-2 x}\right]+C \\
p=-2 x & =\int \frac{-3}{2} e^{p} d p & =2 e^{x}+\frac{3}{2} e^{-2 x}+C \\
d p=-2 d x & =\frac{-3}{2}\left[e^{p}\right]+c_{1} & & =2 e^{x}+\frac{3}{2 e^{2 x}}+C
\end{array}
$$

$$
54) \int(1.3)^{x} d x=\left[\frac{(1.3)^{x}}{\ln (1.3)}\right]+C=\frac{1}{\ln (1.3)}(1.3)^{x}+C
$$

$$
\text { 56) } \int \frac{1}{2}\left(\csc ^{2} x-\operatorname{coc} x \cot x\right) \overline{d x}=\frac{1}{2}\{[-\cot x]-[-\csc x]\}+C
$$

$$
=\frac{1}{2}\{-\cot x+\csc x\}+C=\frac{1}{2} \csc x-\frac{1}{2} \cot x+C
$$

58)

$$
\begin{aligned}
\int(2 \cos 2 x-3 \sin 3 x) d x & =\int 2 \cos 2 x d x-\int 3 \sin 3 x d x \\
& =[\sin (2 x)]-[-\cos (3 x)]+C \\
& =\sin (2 x)+\cos (3 x)+C
\end{aligned}
$$

$$
\begin{array}{rlrl}
\int 2 \cos 2 x d x & =\int \cos (2 x)(2 d x) & \int 3 \sin 3 x d x & =\int \sin (3 x)(3 d x) \\
p=2 x & & =\int \cos (p)(d p) & q=3 x \\
& =\int \sin (q)(d x) \\
d p=2 d x & & =[\sin (p)]+c_{1} & d q=3 d x \\
& =[-\cos (q)]+c_{2} \\
& & =-\sin (2 x)+c_{1}(3 x)+c_{2}
\end{array}
$$

60) $\int \frac{1-\cos 6 t}{2} d t=\int\left(\frac{1}{2}-\frac{1}{2} \cos 6 t\right) d t=\int \frac{1}{2} d t-\int \frac{1}{2} \cos 6 t d t$

$$
\begin{aligned}
\int \frac{1}{2} \cos 6 t d t & =\int \frac{1}{2} \cos (p)\left(\frac{1}{6} d p\right)_{1}^{\prime}=\frac{1}{2}[t]-\left[\frac{1}{12} \sin (6 t)\right]+C \\
p=6 t \quad & =\int \frac{1}{12} \cos (p)(d p) \left\lvert\,=\frac{1}{2} t-\frac{1}{12} \sin (6 t)+C\right. \\
d p=6 d t \quad & =\frac{1}{12}[\sin (p)]+c_{1} \\
\frac{1}{6} d p=d t \quad & =\frac{1}{12} \sin (6 t)+c_{1}
\end{aligned}
$$

62) $\int\left(\frac{2}{\sqrt{1-y^{2}}}-\frac{1}{y^{1 / 4}}\right) d y=\int \frac{2}{\sqrt{1-y^{2}}} d y-\int y^{\frac{-1}{4}} d y$

$$
\begin{array}{ll}
\int \frac{2}{\sqrt{1-y^{2}}} d y=\int 2\left(\frac{1}{\sqrt{(1)^{2}-y^{2}}}\right) d^{\prime} & =\left[2 \sin ^{-1} y\right]-\left[\frac{y^{\frac{3}{4}}}{\frac{3}{4}}\right]+C \\
=2\left[\sin ^{-1}\left(\frac{y}{1}\right)\right]+c_{1} & \left\lvert\,=2 \sin ^{-1} y-\frac{4}{3} y^{\frac{3}{4}}+C\right. \\
=2 \sin ^{-1} y+c_{1} & \left\lvert\,=2 \sin ^{-1} y-\frac{4}{3}(\sqrt[4]{y})^{3}+C\right.
\end{array}
$$

64) $\int x^{\sqrt{2}-1} d x=\left[\frac{x^{\sqrt{2}}}{\sqrt{2}}\right]+C=\frac{1}{\sqrt{2}} x^{\sqrt{2}}+C$
65) $\int\left(2+\tan ^{2} \theta\right) d \theta=\int\left(1+1+\tan ^{2} \theta\right) d \theta=\int\left(1+\left(1+\tan ^{2} \theta\right)\right) d \theta$

$$
=\int\left(1+\sec ^{2} \theta\right) d \theta=[\theta]+[\tan \theta]+c=\theta+\tan \theta+c
$$

68)

$$
\begin{aligned}
& \int\left(1-\cot ^{2} x\right) d x=\int\left(1-\left(\csc ^{2} x-1\right)\right) d x=\int\left(1-\csc ^{2} x+1\right) d x \\
&=\int\left(2-\operatorname{coc}^{2} x\right) d x=2[x]-[-\cot x]+C=2 x+\cot x+C
\end{aligned}
$$

70)

$$
\begin{aligned}
& \int \frac{\csc \theta}{\cos \theta-\sin \theta} d \theta=\int \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta}-\sin \theta} d \theta=\int\left(\frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta}-\frac{\sin \theta}{1}}\right)\left(\frac{\frac{\sin \theta}{1}}{\frac{\sin \theta}{1}}\right) d \theta \\
& =\int \frac{1}{1-\sin ^{2} \theta} d \theta=\int \frac{1}{\cos ^{2} \theta} d \theta=\int \sec ^{2} \theta d \theta=[\tan \theta]+C=\tan \theta+C
\end{aligned}
$$

71) $\int(7 x-2)^{3} d x=\frac{(7 x-2)^{4}}{28}+C$

$$
\frac{d}{d x}\left(\frac{(7 x-2)^{4}}{28}+c\right)=\frac{1}{28}\left[4(7 x-2)^{3}(7)\right]+[0]=\frac{1}{28}\left[28(7 x-2)^{3}\right]=(7 x-2)^{3}
$$

72) $\int(3 x+5)^{-2} d x=-\frac{(3 x+5)^{-1}}{3}+C$

$$
\frac{d}{d x}\left(-\frac{(3 x+5)^{-1}}{3}+c\right)=\frac{-1}{3}\left[-1(3 x+5)^{-2}(3)\right]+[0]=(3 x+5)^{-2}
$$

$$
\begin{aligned}
& \text { 74) } \int \csc ^{2}\left(\frac{x-1}{3}\right) d x=-3 \cot \left(\frac{x-1}{3}\right)+C \\
& \frac{d}{d x}\left(-3 \cot \left(\frac{x-1}{3}\right)+C\right)=-3\left[\csc ^{2}\left(\frac{x-1}{3}\right)\left(\frac{1}{3}\right)\right]+[0]=\csc ^{2}\left(\frac{x-1}{3}\right)
\end{aligned}
$$

76) $\int \frac{1}{(x+1)^{2}} d x=\frac{x}{x+1}+C$

$$
\frac{d}{d x}\left(\frac{x}{x+1}+c\right)=\frac{(x+1)[1]-(x)[1]}{(x+1)^{2}}+[0]=\frac{x+1-x}{(x+1)^{2}}=\frac{1}{(x+1)^{2}}
$$

78) $\int x e^{x} d x=x e^{x}-e^{x}+C$

$$
\begin{aligned}
\frac{d}{d x}\left(x e^{x}-e^{x}+c\right) & =\left\{(x)\left[e^{x}(1)\right]+\left(e^{x}\right)\{1]\right\}-\left[e^{x}(1)\right]+[0] \\
& =\left\{x e^{x}+e^{x}\right\}-e^{x}=x e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 80) } \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+C \\
& \frac{d}{d x}\left(\sin ^{-1}\left(\frac{x}{a}\right)+C\right)=\left[\frac{1}{\sqrt{a^{2}-x^{2}}}\right]+[0]=\frac{1}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

$$
\bar{y}=\sin ^{4} \overline{\left(\frac{x}{a}\right)}
$$

$\sin y=\frac{x}{a}$

$$
\left[\cos y \frac{d y}{d x}\right]=\frac{1}{a}[1]
$$

$$
\frac{d y}{d x}=\frac{1}{a \cos y}=\frac{1}{a\left(\frac{\sqrt{a^{2}-x^{2}}}{a}\right)}=\frac{1}{\sqrt{a^{2}-x^{2}}}
$$

82) $\int\left(\sin ^{-1} x\right)^{2} d x=x\left(\sin ^{-1} x\right)^{2}-2 x+2 \sqrt{1-x^{2}} \sin ^{-1} x+C$
$y=\sin ^{-1} x$
\Downarrow

$$
\sin y=x=\frac{x}{1} \quad \frac{y}{\sqrt{(1)^{2}-x^{2}}}
$$

$$
\left[\cos y \frac{d y}{d x}\right]=[1]
$$

$$
\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\left(\frac{\sqrt{(1)^{2}-x^{2}}}{1}\right)}=\frac{1}{\sqrt{1-x^{2}}} ; \frac{d}{d x}\left(x\left(\sin ^{-1} x\right)^{2}-2 x+2 \sqrt{1-x^{2}} \sin ^{-1} x+C\right)
$$

$$
=\left\{(x)\left[2\left(\sin ^{-1} x\right)^{\prime}\left(\frac{1}{\sqrt{1-x^{2}}}\right)\right]+\left(\left(\sin ^{-1} x\right)^{2}\right)[1]\right\}-2[1]+\left\{\left(2 \sqrt{1-x^{2}}\right)\left[\frac{1}{\sqrt{1-x^{2}}}\right)+\left(\sin ^{-1} x\right)\left[2\left(\frac{1}{2}\left(1-x^{-2}\right)^{-\frac{1}{2}}(-2 x)\right]\right\}\right.
$$

$$
\begin{equation*}
=\frac{2 x\left(\sin ^{-1} x\right)}{\sqrt{1-x^{2}}}+\left(\sin ^{-1} x\right)^{2}-2+2-\frac{2 x\left(\sin ^{-1} x\right)}{\sqrt{1-x^{2}}}=\left(\sin ^{-1} x\right)^{2} \tag{0}
\end{equation*}
$$

84-a) $\int \tan \theta \sec ^{2} \theta d \theta=\frac{\sec ^{3} \theta}{3}+c$

$$
\begin{aligned}
& \frac{d}{d \theta}\left(\frac{\sec ^{3} \theta}{3}+c\right)=\frac{1}{3}\left[3 \sec ^{2} \theta(\sec \theta \tan \theta(1))\right]+[0] \\
& \left.=\sec ^{3} \theta \tan \theta \quad \cos \theta n g\right) \\
& 84-b) \quad \int \tan \theta \sec ^{2} \theta d \theta=\frac{1}{2} \tan ^{2} \theta+c \\
& \frac{d}{d \theta}\left(\frac{1}{2} \tan ^{2} \theta+c\right)=\frac{1}{2}\left[2 \tan \theta\left(\sec ^{2} \theta(1)\right)\right]+[0]=\tan \theta \sec ^{2} \theta \\
& 84-c) \quad \int \tan \theta \sec ^{2} \theta d \theta=\frac{1}{2} \sec ^{2} \theta+c \\
& \frac{d}{d \theta}\left(\frac{1}{2} \sec ^{2} \theta+c\right)=\frac{1}{2}[2 \sec \theta(\sec \theta \tan \theta(1))]+[0]=\tan \theta \sec ^{2} \theta
\end{aligned}
$$

night

$$
\begin{aligned}
& \text { 86-a) } \quad \int \sqrt{2 x+1} d x=\sqrt{x^{2}+x+c} \\
& \begin{aligned}
\frac{d}{d x}\left(\sqrt{x^{2}+x+c}\right) & =\frac{d}{d x}\left(\left(x^{2}+x+c\right)^{\frac{1}{2}}\right)=\left[\frac{1}{2}\left(x^{2}+x+c\right)^{-\frac{1}{2}}(2 x+1)\right] \\
& =\frac{2 x+1}{2 \sqrt{x^{2}+x+c}} \quad \cos \text { ong }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 86-b) } \int \sqrt{2 x+1} d x=\sqrt{x^{2}+x}+C \\
& \frac{d}{d x}\left(\sqrt{x^{2}+x}+C\right)=\frac{d}{d x}\left(\left(x^{2}+x\right)^{\frac{1}{2}}+C\right)=\left[\frac{1}{2}\left(x^{2}+x\right)^{-\frac{1}{2}}(2 x+1)\right]+[0] \\
& =\frac{2 x+1}{2 \sqrt{x^{2}+x}} \\
& \text { 86-c) } \quad \int \sqrt{2 x+1} d x=\frac{1}{3}(\sqrt{2 x+1})^{3}+C \\
& \frac{d}{d x}\left(\frac{1}{3}(\sqrt{2 x+1})^{3}+C\right)=\frac{d}{d x}\left(\frac{1}{3}(2 x+1)^{\frac{3}{2}}+C\right)=\frac{1}{3}\left[\frac{3}{2}(2 x+1)^{\frac{1}{2}}(2)\right]+[0] \\
& =(2 x+1)^{\frac{1}{2}}=\sqrt{2 x+1}
\end{aligned}
$$

88) $\int \frac{x \cos \left(x^{2}\right)-\sin \left(x^{2}\right)}{x^{2}} d x=\frac{\sin \left(x^{2}\right)}{x}+C$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\sin \left(x^{2}\right)}{x}+c\right) & =\frac{(x)\left[\cos \left(x^{2}\right)(2 x)\right]-\left(\sin \left(x^{2}\right)\right)[1]}{(x)^{2}}+[0] \\
& =\frac{2 x^{2} \cos \left(x^{2}\right)-\sin \left(x^{2}\right)}{x^{2}}
\end{aligned}
$$

wrong
90) $\frac{d y}{d x}=-x, y=1$ when $x=-1$

$$
\begin{aligned}
y(x) & =\int-x d x=-\left[\frac{x^{2}}{2}\right]+C=\frac{-1}{2} x^{2}+C \\
(1) & =\frac{-1}{2}(-1)^{2}+C \quad y(x)=\frac{-1}{2} x^{2}+\frac{3}{2} \\
1 & =\frac{-1}{2}+c \quad
\end{aligned}
$$

$$
\frac{3}{2}=c
$$

puture (b)
92)

$$
\begin{array}{rlr}
\text { 2) } \begin{aligned}
\frac{d y}{d x}=10-x, & y(0)=-1 \\
y(x) & =\int(10-x) d x=10[x]-\left[\frac{x^{2}}{2}\right]+C=10 x-\frac{1}{2} x^{2}+C \\
(-1) & =10(0)-\frac{1}{2}(0)^{2}+C \\
-1 & =c
\end{aligned} \quad y(x)=10 x-\frac{1}{2} x^{2}-1
\end{array}
$$

94)

$$
\begin{array}{ll}
\text { 94) } \begin{array}{ll}
\frac{d y}{d x}=9 x^{2}-4 x+5 & y(-1)=0 \\
y(x) & =\int\left(9 x^{2}-4 x+5\right) d x=9\left[\frac{x^{3}}{3}\right]-4\left[\frac{x^{2}}{2}\right]+5[x]+c=3 x^{3}-2 x^{2}+5 x+c \\
(0)=3(-1)^{3}-2(-1)^{2}+5(-1)+c \\
0 & =-3-2 \cdot 5+c \\
0 & =-10+c
\end{array} \quad y(x)=3 x^{3}-2 x^{2}+5 x+10
\end{array}
$$

$$
10=c
$$

96) $\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}=\frac{1}{2} x^{-\frac{1}{2}} \quad y(4)=0$

$$
\begin{array}{ll}
y(x) & =\int \frac{1}{2} x^{-\frac{1}{2}} d x=\frac{1}{2}\left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]+C=\sqrt{x}+C \\
(0)=\sqrt{(4)}+c & \\
0 & =2+c \\
-2 & =C
\end{array} y(x)=\sqrt{x}-2
$$

98) $\frac{d s}{d t}=\cos t+\sin t$

$$
s(\pi)=1
$$

$$
s(t)=\int(\cos t+\sin t) d t=[\sin t]+[-\cos t]+C=\sin t-\cos t+C
$$

$$
(1)=\sin (x)-\cos (x)+c
$$

$$
1=(0)-(-1)+c
$$

$$
s(t)=\sin t-\cos t+0
$$

$$
1=1+c
$$

$$
=\sin t-\cos t
$$

102) $\frac{d v}{d t}=8 t+\csc ^{2} t \quad v\left(\frac{\pi}{2}\right)=-7$

$$
\begin{aligned}
& v(t)=\int\left(8 t+\operatorname{coc}^{2} t\right) d t=8\left[\frac{t^{2}}{2}\right]+[-\cot t]+C=4 t^{2}-\cot t+c \\
& (-7)=4\left(\frac{\pi}{2}\right)^{2}-\cot \left(\frac{\pi}{2}\right)+c \\
& -7=4\left(\frac{\pi^{2}}{4}\right)-(0)+c \quad v(t)=4 t^{2}-\cot t-7-\pi^{2} \\
& -7=\pi^{2}+c \\
& -7-\pi^{2}=c
\end{aligned}
$$

$$
\begin{aligned}
& \text { 100) } \frac{d \Omega}{d \theta}=\cos \pi \theta \quad \Omega(0)=1 \\
& \Omega(\theta)=\int \cos (\pi \theta) d \theta=\int \cos (p)\left(\frac{1}{x} d p\right)=\int \frac{1}{\pi} \cos (p)(d p) \\
& p=\pi \theta \\
& =\frac{1}{\pi}[\sin (p)]+C=\frac{1}{\pi} \sin (\pi \theta)+C \\
& d \rho=\pi d \theta \\
& \text { (1) }=\frac{1}{\pi} \sin (\pi(0))+C \\
& \frac{1}{\pi} d p=d \theta \quad 1=\frac{1}{\pi} \sin (0)+c \\
& 1=\frac{1}{\pi}(0)+c \quad \Omega(\theta)=\frac{1}{\pi} \sin (\pi \theta)+1
\end{aligned}
$$

$$
\text { (04) } \begin{aligned}
& \frac{d v}{d t}=\frac{8}{1+t^{2}}+\sec ^{2} t \quad v(0)=1 \\
& v(t)=\int\left(\frac{8}{1+t^{2}}+\sec ^{2} t\right) d t=\int \frac{8}{(1)^{2}+t^{2}} d t+\int \sec ^{2} t d t \\
&=8\left[\frac{1}{1} \tan ^{-1}\left(\frac{t}{1}\right)\right]+[\tan t]+C=8 \tan ^{-1} t+\tan t+C \\
&(1)=8 \tan ^{-1}(0)+\tan (0)+C \\
& 1=8(0)+(0)+c \\
& 1=C
\end{aligned}
$$

106) $\frac{\partial^{2} y}{d x^{2}}=0 \quad y^{\prime}(0)=\left.\frac{d y}{d x}\right|_{x=0}=2 \quad y(0)=0$

$$
\begin{aligned}
& \frac{d y}{d x}=\int 0 d x=C_{1} \quad(2)=C_{1} \\
& y(x)=\int 2 d x=2[x]+C_{2}=2 x+C_{2} \\
& (0)=2(0)+C_{2} \quad y(x)=2 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { 108) } \frac{d^{2} s}{d t^{2}}=\frac{3 t}{8}=\left.\frac{3}{8} t \quad \frac{d s}{d t}\right|_{t=4}=3 \quad \begin{array}{l}
s(4)=4 \\
\frac{d s}{d t}=\int \frac{3}{8} t d t=\frac{3}{8}\left[\frac{t^{2}}{2}\right]+C_{1}=\frac{3}{16} t^{2}+C_{1} \quad \\
(3)=\frac{3}{16}(4)^{2}+c_{1} \\
3=\frac{3}{16}(16)+c_{1}
\end{array} \Rightarrow \begin{array}{l}
3=3+c_{1} \\
\frac{d s}{d t}=\frac{3}{16} t^{2}+0=\frac{3}{16} t^{2}
\end{array} \\
& A(t)=\int \frac{3}{16} t^{2} d t=\frac{3}{16}\left[\frac{t^{3}}{3}\right]+C_{2}=\frac{1}{16} t^{3}+C_{2} \\
& (4)=\frac{1}{16}(4)^{3}+C_{2} \\
& 4=4+c_{2} \quad \Rightarrow 0=c_{2} \quad s(t)=\frac{1}{16} t^{3}+0=\frac{1}{16} t^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 110) } \frac{d^{3} \theta}{d t^{3}}=0 \quad \theta^{\prime \prime}(0)=\left.\frac{d^{2} \theta}{d t^{2}}\right|_{x=0}=-2 \quad \theta^{\prime}(0)=\left.\frac{d \theta}{d t}\right|_{x=0}=\frac{-1}{2} \quad \theta(0)=\sqrt{2} \\
& \frac{d^{2} \theta}{d t^{2}}=\int 0 d t=C_{1} \quad(-2)=C_{1} \quad \frac{d^{2} \theta}{d t^{2}}=-2 \\
& \frac{d \theta}{d t}=\int-2 d t=-2(t]+C_{2}=-2 t+C_{2} \quad\left(-\frac{1}{2}\right)=-2(0)+C_{2} \\
& \frac{d \theta}{d t}=-2 t-\frac{1}{2} \\
& \theta(t)=\int\left(-2 t-\frac{1}{2}\right) d t=-2\left[\frac{t^{2}}{2}\right]-\frac{1}{2}[t]+C_{3}=-t^{2}-\frac{1}{2} t+C_{3} \\
& (\sqrt{2})=-(0)^{2}-\frac{1}{2}(0)+C_{3} \\
& \theta(t)=-t^{2}-\frac{1}{2} t+\sqrt{3} \\
& \sqrt{2}=c_{3} \\
& \text { 112) } y^{(4)}=\frac{d^{4} y}{d x^{4}}=-\cos x+8 \sin 2 x \\
& y^{\prime \prime \prime}(0)=\left.\frac{d^{3} y}{d x^{3}}\right|_{x=0}=0 \quad y^{\prime \prime}(0)=\overline{d^{2} y}=\left.\overline{d x^{2}}\right|_{x=0}=1 \\
& \frac{d^{3} y}{d x^{3}}=\int(-\cos x+8 \sin 2 x) d x \\
& =-[\sin x]+8\left[\frac{-\cos 2 x}{2}\right]+C_{1}=-\sin x-4 \cos 2 x+C_{1} \\
& (0)=-\sin (0)-4 \cos 2(0)+c_{1} \\
& 0=-(0)-\psi(1)+c_{1} \\
& \frac{d^{3} y}{d x^{3}}=-\sin x-4 \cos 2 x+4 \\
& \frac{d^{2} y}{d x^{2}}=\int(-\sin x-4 \cos 2 x+4) d x=-[-\cos x]-4\left[\frac{\sin 2 x}{2}\right]+4[x]+C_{2} \\
& =\cos x-2 \sin 2 x+4 x+c_{2} \\
& (1)=\cos (0)-2 \sin 2(0)+4(0)+C_{2} \quad \frac{d^{2} y}{d x^{2}}=\cos x-2 \sin 2 x+4 x+0 \\
& 1=(1)-2(0)+(0)+c_{2} \quad=\cos x-2 \sin 2 x+4 x \\
& 1=1+C_{2} \\
& 0=C_{2}
\end{aligned}
$$

112) continued

$$
\begin{aligned}
\frac{d y}{d x} & =\int(\cos x-2 \sin 2 x+4 x) d x=[\sin x]-2\left[\frac{-\cos 2 x}{2}\right]+4\left[\frac{x^{2}}{2}\right]+c_{3} \\
& =\sin x+\cos 2 x+2 x^{2}+c_{3}
\end{aligned}
$$

$$
\begin{array}{rlrl}
(1) & =\sin (0)+\cos 2(0)+2(0)^{2}+C_{3} \\
1 & =(0)+(1)+(0)+C_{3} & \frac{d y}{d x} & =\sin x+\cos 2 x+2 x^{2}+0 \\
0 & =C_{3} & & =\sin x+\cos 2 x+2 x^{2}
\end{array}
$$

$$
\begin{aligned}
y(x) & =\int\left(\sin x+\cos 2 x+2 x^{2}\right) d x=[-\cos x]+\left[\frac{\sin 2 x}{2}\right]+2\left[\frac{x^{3}}{3}\right]+C_{4} \\
& =-\cos x+\frac{1}{2} \sin 2 x+\frac{2}{3} x^{3}+C_{4} \\
(3) & =-\cos (0)+\frac{1}{2} \sin 2(0)+\frac{2}{3}(0)^{3}+C_{4} \\
3 & =-(1)+\frac{1}{2}(0)+\frac{2}{3}(0)+C_{4} \quad y(x)=-\cos x+\frac{1}{2} \sin 2 x+\frac{2}{3} x^{3}+4 \\
4 & =C_{4}
\end{aligned}
$$

(14) a) i) $\frac{d^{2} y}{d x^{2}}=6 x$
ii) passes $(0,1) \Rightarrow y(0)=1$
has horizontal tangent line $\left.\frac{d y}{d x}\right|_{x=0}=0$

$$
\begin{aligned}
\frac{d y}{d x} & =\int 6 x d x=6\left[\frac{x^{2}}{2}\right]+C_{1}=3 x^{2}+C_{1} \\
(0) & =3(0)^{2}+C_{1} \quad \frac{d y}{d x}=3 x^{2}+0=3 x^{2} \\
0 & =C_{1} \\
y(x) & =\int 3 x^{2} d x=3\left[\frac{x^{3}}{3}\right]+C_{2}=x^{3}+C_{2} \\
(1) & =(0)^{3}+C_{2} \quad y(x)=x^{3}+1 \\
1 & =C_{2} \quad
\end{aligned}
$$

b) Only one, because any other possible function would be different from $y(x)=x^{3}+1$. by a constant must be none due to the initial conditions.

