Theorem 6-L'Hospital Rule:
Suppose that $f(a)=g(a)=0$, that f and g are differentiable on an open interval I containing a, and that $\frac{d g}{d x} \neq 0$
on I if $x \neq a$. Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{\frac{d f}{d x}}{\frac{d g}{d x}}$,
assuming that the limit on the right side of this equation exists.

Using L'Hospital Rule

To find $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}$
by L'Hospital's Rule, We continue to differentiate f and g, so long as we still get the form $\frac{0}{0}$ (or $\frac{ \pm \infty}{ \pm \infty}$) at $x=a$.
But as soon as one or the other of these derivatives is different from zero (or infinity) at $x=a$ we stop differentiating. L'Hospital Rule does not apply when either numerator or denominator has a finite nonzero limit.
Note: L'Hospital Rule only works when we are taking the limit on a single fraction expression.
Indeterminate forms of type (0)($\pm \infty$) $\infty-\infty$:
For these types we must rewrite our expression as a fraction that satisfies the method above in order use L’Hospital Rule.

Indeterminate Powers $0^{0} \quad \infty^{0} \quad 1^{\infty}$

To evaluate these types, use the procedure below:

1) if $f(x)$ is a function where $\lim _{x \rightarrow a} f(x)$ is one of the types $0^{0} \infty^{0} 1^{\infty}$, then let $y=f(x)$
2) apply natural \log on both sides: $\ln y=\ln (f(x))$
3) using the laws of logarithm, change the right hand side into a single fraction to satisfy the method described above "Using L’Hospital Rule"
4) take the limit on this modified expression (this means that we modified the expression and evaluating the limit) and obtain the limit value (let's call is α).
5) the limit value we got in step 4 is not the final answer, it is actually $\ln y=\alpha$. So by inverse function property, we get our actual answer which is $y=e^{\alpha}$ and thus $\lim _{x \rightarrow a} f(x)=e^{\alpha}$

Theorem 7-Cauchy's Mean Value Theorem

Suppose functions f and g are continuous on $[a, b]$ and differentiable throughout (a, b) and also suppose $\frac{d g}{d x} \neq 0$ throughout (a, b). Then there exists a number c in (a, b) at which

$$
\left.\frac{\left.\frac{d f}{d x}\right|_{x=c}}{\frac{d g}{d x}}\right|_{x=c}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

2) $\lim _{x \rightarrow 0} \frac{\sin ^{5} x}{x}=\lim _{x \rightarrow 0} \frac{5 \cos (5 x)}{1}=5 \cos (5(0))=5 \cos (0)=5(1)=5$

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}\left(\frac{5}{5}\right)=\lim _{x \rightarrow 0} 5\left(\frac{\sin (5 x)}{(5 x)}\right)=5\left(\lim _{x \rightarrow 0} \frac{\sin (5 x)}{(5 x)}\right)=5(1)=5
$$

4) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{3}-x-3} \leq \lim _{x \rightarrow 1} \frac{3 x^{2}}{12 x^{2}-1}=\frac{3(1)^{2}}{12(1)^{2}-1}=\frac{3}{121}=\frac{3}{11}$

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{3}-x-3}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)\left(4 x^{2}+4 x+3\right)}=\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{4 x^{2}+4 x+3}=\frac{(1)^{2}+(1)+1}{4(1)^{2}+4(1)+3}=\frac{3}{11}
$$

6)

$$
\begin{aligned}
& \begin{array}{l}
\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{x^{3}+x+1}=\lim _{x \rightarrow \infty} \frac{4 x+3}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{4}{6 x}=0 \\
+\infty
\end{array}=0 \\
& \lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{x^{3}+x+1}=\lim _{x \rightarrow \infty} \frac{\frac{2 x^{2}}{x^{3}}+\frac{3 x}{x^{3}}}{\frac{x^{3}}{x^{3}}+\frac{x}{x^{3}}+\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{2}{x}+\frac{3}{x^{2}}}{1+\frac{1}{x^{2}}+\frac{1}{x^{3}}}=\frac{0+0}{1+0+0}=0
\end{aligned}
$$

8) $\lim _{x \rightarrow-5} \frac{x^{2}-25}{x+5}=\lim _{x \rightarrow-5} \frac{2 x}{1}=\lim _{x \rightarrow-5} 2 x=2(-5)=-10$
9) $\lim _{t \rightarrow-1} \frac{3 t^{3}+3}{4 t^{3}-t+3} \leq \lim _{t \rightarrow-1} \frac{9 t^{2}}{12 t^{2}-1}=\frac{9(-1)^{2}}{12(-1)^{2}-1}=\frac{9}{12-1}=\frac{9}{11}$
10) $\lim _{x \rightarrow \infty} \frac{x-8 x^{2}}{12 x^{2}+5 x} \stackrel{L \infty}{+\infty}<\lim _{x \rightarrow \infty} \frac{1-16 x}{\substack{-\infty \\ 24 x+5}} \leq \lim _{x \rightarrow \infty} \frac{-16}{24}=\frac{-16}{24}=\frac{-2}{3}$

$$
\text { 14) } \lim _{t \rightarrow 0} \frac{\sin ^{0} 5 t}{2 t} \rightleftharpoons \lim _{t \rightarrow 0} \frac{5 \cos (5 t)}{2}=\frac{5 \cos (5(0))}{2}=\frac{5(1)}{2}=\frac{5}{2}
$$

16) $\lim _{x \rightarrow 0} \frac{\sin ^{0} x-x}{x^{3}} \doteq \lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}} \xlongequal{0}=\lim _{x \rightarrow 0} \frac{-\sin x}{6 x} \doteq \lim _{x \rightarrow 0}-\frac{\cos x}{6}$

$$
=\frac{-\cos (0)}{6}=\frac{-1}{6}
$$

18) $\lim _{\theta \rightarrow-\frac{\pi}{3}} \frac{3 \theta+\pi}{\sin \left(\theta+\frac{\pi}{3}\right)} \doteq \lim _{\theta \rightarrow \frac{-\pi}{3}} \frac{3}{\cos \left(\theta+\frac{\pi}{3}\right)}=\frac{3}{\cos \left(\left(-\frac{\pi}{3}\right)+\frac{\pi}{3}\right)}=\frac{3}{\cos (0)}=\frac{3}{1}=3$
19) $\lim _{x \rightarrow 1} \frac{x-1}{\ln x-\sin \pi x} \leqslant \lim _{x \rightarrow 1} \frac{1}{\frac{1}{x}-\pi \cos (\pi x)}=\frac{1}{\frac{1}{(1)}-\pi \cos (\pi(1))}=\frac{1}{1-\pi(-1)}=\frac{1}{1+\pi}$
20) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\ln (\csc x)}{\left(x-\frac{\pi}{2}\right)^{2}}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\frac{1}{\operatorname{coc} x}(-\operatorname{coc} x \cot x)}{2\left(x-\frac{\pi}{2}\right)(1)}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cot x}{2\left(x-\frac{\pi}{2}\right)}$
$\stackrel{L}{=} \lim _{x \rightarrow \frac{\pi}{2}} \frac{-\left[-\cos ^{2} x\right]}{2[1]}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\csc ^{2} x}{2}=\frac{\csc ^{2}\left(\frac{\pi}{2}\right)}{2}=\frac{(1)^{2}}{2}=\frac{1}{2}$
21) $\lim _{t \rightarrow 0} \frac{t \sin t}{1-\cos t} \stackrel{\lim _{t \rightarrow 0}}{ } \frac{(t)[\cos t]+(\sin t)[1]}{-[-\sin t]}=\lim _{t \rightarrow 0} \frac{t \cos t+\sin t}{\sin t}$
$\pm \lim _{t \rightarrow 0} \frac{\{(t)[-\sin t]+(\cos t)[1]\}+\cos t}{\cos t}=\lim _{t \rightarrow 0} \frac{-t \sin t+2 \cos t}{\cos t}$

$$
=\frac{-(0) \sin (0)+2 \cos (0)}{\cos (0)}=\frac{-(0)(0)+2(1)}{(1)}=\frac{2}{1}=2
$$

26)

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}^{-}}\left(\frac{\pi}{2}-x\right) \tan x=\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\frac{\pi}{2}-x}{\cot x} \leqslant \lim _{x \rightarrow \frac{\frac{\pi}{2}^{-}}{}} \frac{-1}{-\operatorname{cs}^{2} x} \\
& =\lim _{x \rightarrow \frac{\pi}{2}^{-}} \sin ^{2} x=\sin ^{2}\left(\frac{\pi}{2}\right)=(1)^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 28) } \lim _{\theta \rightarrow 0} \frac{\left(\frac{1}{2}\right)^{\theta}-1}{\theta} \xlongequal{0}=\lim _{\theta \rightarrow 0} \frac{\ln \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{\theta}}{1}=\frac{\ln \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{0}}{1}=\ln \left(\frac{1}{2}\right) \\
& p=\left(\frac{1}{2}\right)^{\theta} \\
& \begin{array}{l:l}
\ln p & =\ln \left(\frac{1}{2}\right)^{\theta} \\
\ln p & \frac{d p}{d \theta}=\ln \left(\frac{1}{2}\right) \\
\frac{d p}{\theta}\left(\frac{1}{2}\right) & =\ln \left(\frac{1}{2}\right) p \\
=\ln \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{\theta}
\end{array}
\end{aligned}
$$

30) $\lim _{x \rightarrow 0} \frac{3^{x}-1}{2^{x}-1} \stackrel{L}{x \rightarrow 0} \lim _{x \rightarrow 0} \frac{(\ln 3) 3^{x}}{(\ln 2) 2^{x}}=\frac{(\ln 3) 3^{(0)}}{(\ln 2) 2^{(0)}}$

$$
\begin{array}{ll}
p=3^{x} & q=2^{x} \\
\ln p=\ln 3^{x} & \ln q=\ln 2^{x} \\
\ln p=x \ln 3 & \ln q=x \ln 2 \\
\frac{1}{p} \frac{d p}{d x}=\ln 3 & \frac{1}{q} \frac{d q}{d x}=\ln 2 \\
\frac{d p}{d x}=(\ln 3) p & \frac{d q}{d x}=(\ln 2) q \\
& =(\ln 3) 3^{x}
\end{array}
$$

$$
=\frac{(\ln 3)(1)}{(\ln 2)(1)}
$$

32)

$$
\begin{aligned}
& \text { 2) } \lim _{x \rightarrow \infty} \frac{\log _{2} x}{\log _{3}(x+3)}=\lim _{x \rightarrow \infty} \frac{\frac{\ln x}{\ln 2}}{\frac{\ln (x+3)}{\ln 3}}=\lim _{x \rightarrow \infty} \frac{(\ln 3)(\ln x)}{(\ln 2)(\ln (x+3))} \\
& =\left(\frac{\ln 3}{\ln 2}\right) \lim _{x \rightarrow \infty} \frac{\ln x}{\ln (x+3)} \stackrel{L}{=}\left(\frac{\ln 3}{\ln 2}\right) \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x+3}}=\left(\frac{\ln 3}{\ln 2}\right) \lim _{x \rightarrow \infty} \frac{x+\infty}{+\infty} \\
& \pm\left(\frac{\ln 3}{\ln 2}\right) \lim _{x \rightarrow \infty} \frac{1}{1}=\left(\frac{\ln 3}{\ln 2}\right)(1)=\frac{\ln 3}{\ln 2}
\end{aligned}
$$

34)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{\ln \left(e^{x}-1\right)}{\ln x} \xlongequal{L} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{e^{x}-1}\left(e^{x}(1)\right)}{\frac{1}{x}(1)}=\lim _{x \rightarrow 0^{+}} \frac{\frac{e^{x}}{e^{x}-1}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x^{0} e^{x}}{e^{x}-1} \stackrel{L}{=} \lim _{x \rightarrow 0^{+}} \frac{(x)\left[e^{x}(1)\right]+\left(e^{x}\right)[1]}{e^{x}(1)}=\lim _{x \rightarrow 0^{+}} \frac{x e^{x}+e^{x}}{e^{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{e^{x}(x+1)}{e^{x}}=\lim _{x \rightarrow 0^{+}}(x+1)=\left(0^{+}\right)+1=1
\end{aligned}
$$

36) $\lim _{y \rightarrow 0} \frac{\sqrt{a y+a^{2}}-a}{y}=\lim _{y \rightarrow 0} \frac{\left(a y+a^{2}\right)^{\frac{1}{2}}-a}{y} \xlongequal{y} \lim _{y \rightarrow 0} \frac{\left[\frac{1}{2}\left(a y+a^{2}\right)^{-\frac{1}{2}}(a)\right]}{1}$

$$
=\lim _{y \rightarrow 0} \frac{a}{2 \sqrt{a y+a^{2}}}=\frac{a}{2 \sqrt{a(0)+a^{2}}}=\frac{a}{2 \sqrt{a^{2}}}=\frac{a}{2 a}=\frac{1}{2}
$$

38) $\lim _{x \rightarrow 0^{+}} \frac{(-\infty)-(-\infty)}{(\ln x-\ln \sin x)}=\lim _{x \rightarrow 0^{+}} \ln \left(\frac{x}{\sin x}\right)=\ln \left(\lim _{x \rightarrow 0^{+}} \frac{x}{\sin _{0} x}\right)$

$$
\stackrel{L}{\rightleftarrows}\left(\lim _{x \rightarrow 0^{+}} \frac{1}{\cos x}\right)=\ln \left(\frac{1}{\cos \left(0^{+}\right)}\right)=\ln \left(\frac{1}{(1)}\right)=\ln (1)=0
$$

$(+\infty)-(+\infty)$
40)

$$
\text { 10) } \begin{aligned}
& \lim _{x \rightarrow 0^{+}}\left(\frac{3 x+1}{x}-\frac{1}{\sin x}\right)=\lim _{x \rightarrow 0^{+}}\left(\left(\frac{3 x+1}{x}\right)\left(\frac{\sin x}{\sin x}\right)-\frac{1}{\sin x}\left(\frac{x}{x}\right)\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{(3 x+1) \sin x-x}{x \sin x}=\lim _{x \rightarrow 0^{+}} \frac{\{(3 x+1)[\cos x]+(\sin x)[3]\}-[1]}{(x)[\cos x]+(\sin x)[1]} \\
& =\lim _{x \rightarrow 0^{+}} \frac{(3 x+1) \cos x+3 \sin x-1}{x \cos x+\sin x}=\lim _{x \rightarrow 0^{+}} \frac{\{(3 x+1)[-\sin x]+(\cos x)[3]\}+3[\cos x]}{\{(x)[\sin x]+(\cos x)[1]\}+[\cos x]} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-(3 x+1) \sin x+3 \cos x+3 \cos x}{-x \sin x+\cos x+\cos x}=\lim _{x \rightarrow 0^{+}} \frac{6 \cos x-(3 x+1) \sin x}{2 \cos x-x \sin x} \\
& =\frac{6 \cos \left(0^{+}\right)-\left(3\left(0^{+}\right)+1\right) \sin \left(0^{+}\right)}{2 \cos \left(0^{+}\right)-\left(0^{+}\right) \sin \left(0^{+}\right)}=\frac{6(1)-(1)(0)}{2(1)-(0)(0)}=\frac{6}{2}=3
\end{aligned}
$$

42) $\lim _{x \rightarrow 0^{+}}(\csc x-\cot x+\cos x)=\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sin x}-\frac{\cos x}{\sin x}+\cos x\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sin x}-\frac{\cos x}{\sin x}\right)+\lim _{x \rightarrow 0^{+}} \cos x=\lim _{x \rightarrow 0^{+}}\left(\frac{1-\cos x}{\sin x}\right)+\lim _{x \rightarrow 0^{+}} \cos x \\
& =(0)+\cos \left(0^{+}\right)=(0)+(1)=1
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{\sin x}=\lim _{x \rightarrow 0^{+}} \frac{-[-\sin x]}{[\cos x]}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{\cos x}=\frac{\sin \left(0^{+}\right)}{\cos \left(0^{+}\right)}=\frac{0}{1}=0
$$

44) $\lim _{h \rightarrow 0} \frac{e^{h}-(1+h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{e^{h^{h}-1-h}}{h_{0}^{2}}=\lim _{h \rightarrow 0} \frac{e^{h^{0}}-1}{2 h} \leq \lim _{h \rightarrow 0} \frac{e^{h}}{2}$

$$
=\frac{e^{0}}{2}=\frac{1}{2}
$$

46) $\lim _{x \rightarrow \infty}(+\infty)(0) x^{2} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{+\infty}}{e^{2}} 上 \lim _{x \rightarrow \infty} \frac{2^{+\infty}}{e^{x}} \leq \lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$

$$
\text { 48) } \lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)^{2}}{x \sin x} \simeq \lim _{x \rightarrow 0} \frac{2\left(e^{x}-1\right)^{\prime}\left(e^{x}(1)\right)}{(x)[\cos x]+(\sin x)[1]}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}-2 e^{x}}{x \cos x+\sin x}
$$

$$
\begin{aligned}
& L \lim _{x \rightarrow 0} \frac{2\left[e^{2 x}(2)\right]-2\left[e^{x}(1)\right]}{\{(x)[-\sin x]+(\cos x)[1]\}+[\cos x]}=\lim _{x \rightarrow 0} \frac{4 e^{2 x}-2 e^{x}}{-x \sin x+\cos x+\cos x} \\
& \lim _{4} 4 e^{2 x}-2 e^{x}
\end{aligned}
$$

50)

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x-3 x+x^{2}}{\sin x \sin 2 x}=\lim _{x \rightarrow 0} \frac{[\cos (3 x)(3)]-3[1]+[2 x]}{(\sin x)[\cos (2 x)(2)]+(\sin 2 x)[\cos x]}
$$

$$
=\lim _{x \rightarrow 0} \frac{3 \cos (3 x)-3+2 x}{2 \sin x \cos (2 x)+\cos x \sin (2 x)}
$$

$$
\begin{aligned}
& L \lim _{x \rightarrow 0} \frac{3[-\sin (3 x)(3)]+2[1]}{\{(2 \sin x)[-\sin (2 x)(2)]+(\cos (2 x))[2 \cos x]\}+\{\cos x)[\cos (2 x)(2)]+(\sin (2 x))[-\sin x]} \\
& =\lim _{x \rightarrow 0} \frac{-9 \sin (3 x)+2}{-4 \sin x \sin (2 x)+2 \cos x \cos (2 x)+2 \cos x \cos (2 x)-\sin x \sin (2 x)} \\
& =\lim _{x \rightarrow 0} \frac{-9 \sin (3 x)+2}{4 \cos x \cos (2 x)-5 \sin x \sin (2 x)}=\frac{-9 \sin (3(0))+2}{4 \cos (0) \cos (2(0))-5 \sin (0) \sin (2(0))} \\
& =\frac{-9(0)+2}{4(1)(1)-5(0)(0)}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

52) $\lim _{x \rightarrow 1^{+}} x^{\frac{1}{x-1}} \quad\{$ type $1 \infty\}$

$$
\begin{aligned}
& y=x^{\frac{1}{x-1}} \\
& \ln y=\ln \left(x^{\frac{1}{x-1}}\right) \\
& \ln y=\left(\frac{1}{x-1}\right) \ln x \\
& \ln y=\frac{\ln x}{x-1}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} \frac{\lim _{x-1}^{0}}{0} L \lim _{x \rightarrow 1^{+}} \frac{\left[\frac{1}{x}(1)\right]}{[1]}=\lim _{x \rightarrow 1^{+}} \frac{1}{x} \\
& =\frac{1}{\left(1^{+}\right)}=1 \\
& \ln y=1 \Rightarrow y=e^{\prime}=e^{\therefore} \lim _{x \rightarrow 1^{+}} x^{\frac{1}{x-1}}=e
\end{aligned}
$$

54) $\lim _{x \rightarrow e^{+}}(\ln x)^{\frac{1}{x-e}} \quad\{$ type $1 \infty\}$

$$
\begin{aligned}
y & =(\ln x)^{\frac{1}{x-e}} \\
\ln y & =\ln \left((\ln x)^{\frac{1}{x-e}}\right) \\
\ln y & =\left(\frac{1}{x-e}\right) \ln (\ln x) \\
\ln y & =\frac{\ln (\ln x)}{x-e}
\end{aligned}
$$

$$
\lim _{x \rightarrow e^{+}} \frac{\ln (\ln x)}{x-e} \leqslant \lim _{x \rightarrow e^{+}} \frac{\left[\frac{1}{\ln x}\left(\frac{1}{x}(1)\right)\right]}{[1]}
$$

$$
=\lim _{x \rightarrow e^{+}} \frac{1}{x \ln x}=\frac{1}{\left(e^{+}\right) \ln \left(e^{+}\right)}=\frac{1}{e(1)}=\frac{1}{e}
$$

$$
\begin{aligned}
& \ln y=\frac{1}{e} \Rightarrow y=e^{\frac{1}{e}} \therefore \lim _{x \rightarrow e^{+}}(\ln x)^{\frac{1}{x-e}}=e^{\frac{1}{e}} \\
& \left\{\text { typpe }(\infty)^{0}\right\}
\end{aligned}
$$

$$
y=x^{\frac{1}{\ln x}}
$$

$$
\ln y=\ln \left(x^{\frac{1}{\ln x}}\right)
$$

$$
\lim _{x \rightarrow \infty} 1=1
$$

$$
\begin{aligned}
& \ln y=\ln \left(x^{\frac{1}{\ln x}}\right) \quad x \rightarrow \infty \\
& \ln y=\left(\frac{1}{\ln x}\right) \ln x \quad \ln y=1 \Rightarrow y=e^{\prime}=e \quad \therefore \quad \lim _{x \rightarrow \infty} x^{\frac{1}{\ln x}}=e
\end{aligned}
$$

$$
\ln y=\frac{\ln x}{\ln x}
$$

$$
\ln y=1
$$

$$
\begin{array}{ll}
\text { 58) } \lim _{x \rightarrow 0}\left(e^{x}+x\right)^{\frac{1}{x}} & \left\{\text { type } 1^{\infty}\right\} \\
y=\left(e^{x}+x\right)^{\frac{1}{x}} & \lim _{x \rightarrow 0} \frac{\ln \left(e^{x}+x\right)}{x} \leq \lim _{x \rightarrow 0} \frac{\left[\frac{1}{e^{x}+x}\left(e^{x}(1)+1\right)\right]}{11]} \\
\ln y=\ln \left(\left(e^{x}+x\right)^{\frac{1}{x}}\right) & =\lim _{x \rightarrow 0} \frac{e^{x}+1}{e^{x}+x}=\frac{e^{(0)}+1}{e^{(0)}+(0)}=\frac{1+1}{1+0}=\frac{2}{1}=2 \\
\ln y=\left(\frac{1}{x}\right) \ln \left(e^{x}+x\right) & \ln y=2 \Rightarrow y=e^{2} \quad \therefore \lim _{x \rightarrow 0}\left(e^{x}+x\right)^{\frac{1}{x}}=e^{2} \\
\ln y=\frac{\ln \left(e^{x}+x\right)}{x} &
\end{array}
$$

60) $\lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)^{x}$

$$
\begin{aligned}
& y=\left(1+\frac{1}{x}\right)^{x} \quad \lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(1+x^{-1}\right)}{x^{-1}} \\
& \ln y=\ln \left(\left(1+\frac{1}{x}\right)^{x}\right) \triangleq \lim _{x \rightarrow 0^{+}} \frac{\left[\frac{1}{1+x^{-}}\left(-1 x^{-2}\right)\right]}{\left[-1 x^{-2}\right]}=\lim _{x \rightarrow 0^{+}} \frac{\frac{-1}{x^{2}\left(1+\frac{1}{x}\right)}}{\frac{-1}{x^{2}}} \\
& \ln y=x \ln \left(1+\frac{1}{x}\right) \\
& \ln y=\frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}}\left(\frac{-1}{x^{2}\left(1+\frac{1}{x}\right)}\right)\left(\frac{x^{2}}{-1}\right)=\lim _{x \rightarrow 0^{+}} \frac{1}{1+\frac{1}{x}} \\
&=\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{1}{1}}{\frac{1}{1}+\frac{1}{x}}\right)\left(\frac{x}{\frac{1}{x}}\right)=\lim _{x \rightarrow 0^{+}} \frac{x}{x+1} \\
&=\frac{\left(0^{+}\right)}{\left(0^{+}\right)+1}=0 \quad \therefore \lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)^{x}=1
\end{aligned}
$$

62) $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x+2}\right)^{\frac{1}{x}} \quad\{$ type $\infty 0\}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}+1}{x+2} \leq \lim _{x \rightarrow \infty} \frac{2 x}{1}=\lim _{x \rightarrow \infty} 2 x=+\infty \\
& y=\left(\frac{x^{2}+1}{x+2}\right)^{\frac{1}{x}} \quad \lim _{x \rightarrow \infty} \frac{\ln \left(\frac{x^{2}+1}{x+2}\right)}{x}=\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+1\right)-\ln (x+2)}{x} \\
& \ln y=\ln \left(\left(\frac{x^{2}+1}{x+2}\right)^{\frac{1}{x}}\right) \\
& \ln y=\left(\frac{1}{x}\right) \ln \left(\frac{x^{2}+1}{x+2}\right) \quad \stackrel{L}{x} \lim _{x \rightarrow \infty} \frac{\left[\frac{1}{x^{2}+1}(2 x)\right]-\left[\frac{1}{x+2}(1)\right]}{1} \\
& \ln y=\frac{\ln \left(\frac{x^{2}+1}{x+2}\right)}{x} \quad=\lim _{x \rightarrow \infty}\left(\frac{2 x}{x^{2}+1}-\frac{1}{x+2}\right)=\lim _{x \rightarrow \infty} \frac{2 x}{x^{2}+1}-\lim _{x \rightarrow \infty} \frac{1}{x+2} \\
& =(0)-(0)=0 \quad \therefore \lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x+2}\right)^{\frac{1}{x}}=1
\end{aligned}
$$

$$
=\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

$\overline{(0)}(+\infty)$
64)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x(\ln x)^{2}=\lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{2}}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{2}}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{\left[2(\ln)^{\prime}\left(\frac{1}{x}(1)\right)\right]}{\left[-1 x^{-2}\right]} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{2 \ln x}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}\left(\frac{2 \ln x}{x}\right)\left(\frac{x^{2}}{-1}\right)=\lim _{x \rightarrow 0^{+}}-2 x \ln x_{(0)}^{(-\infty)}=\lim _{x \rightarrow 0^{+}} \frac{-2 \ln x}{\frac{1}{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-2 \ln x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{-2\left[\frac{1}{x}(11)\right]}{\left[-1 x^{-2}\right]}=\lim _{x \rightarrow 0^{+}} \frac{\frac{-2}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}\left(\frac{-2}{x}\right)\left(\frac{x^{2}}{-1}\right) \\
& =\lim _{x \rightarrow 0^{+}} 2 x=2\left(0^{+}\right)=0
\end{aligned}
$$

66)

$(0)(-\infty)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}(\sin x)(\ln x)=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x}=\lim _{x \rightarrow 0^{+}} \frac{\left[\frac{1}{x}(1)\right]}{[-\cos x \cot x(1)]} \\
= & \lim _{x \rightarrow 0^{+}} \frac{-\sin x \tan x}{x}=\lim _{x \rightarrow 0^{+}} \frac{(-\sin x)\left[\sec ^{2} x\right]+(\tan x)[-(\cos x(1))]}{[1]} \\
= & \lim _{x \rightarrow 0^{+}}\left(-\sin x \sec ^{2} x-\cos x \tan x\right)=-\sin \left(0^{+}\right) \sec ^{2}\left(0^{+}\right)-\cos \left(0^{+}\right) \tan \left(0^{+}\right) \\
= & -(0)(1)^{2}-(1)(0)=0
\end{aligned}
$$

68)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{\sin x}}=\lim _{x \rightarrow 0^{+}} \sqrt{\frac{x}{\sin x}}=\sqrt{\lim _{x \rightarrow 0^{+}}\left(\frac{x}{\sin x}\right)} \\
& =\sqrt{\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\frac{\sin x}{x}}\right)}=\sqrt{\frac{1}{\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x}{x}\right)}}=\sqrt{\frac{1}{(1)}}=\sqrt{1}=1
\end{aligned}
$$

70)

$$
\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}=\lim _{x \rightarrow 0^{+}} \frac{\left(\frac{\cos x}{\sin x}\right)}{\left(\frac{1}{\sin x}\right)}=\lim _{x \rightarrow 0^{+}}\left(\frac{\cos x}{\sin x}\right)\left(\frac{\sin x}{1}\right)
$$

$$
=\lim _{x \rightarrow 0^{+}} \cos x=\cos \left(0^{+}\right)=1
$$

72)

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{2^{x}+4^{x}}{5^{x}-2^{x}}=\lim _{x \rightarrow-\infty} \frac{\frac{2^{x}}{2^{x}}+\frac{4^{x}}{2^{x}}}{\frac{5^{x}}{2^{x}}-\frac{2^{x}}{2^{x}}}=\lim _{x \rightarrow-\infty} \frac{1+\frac{4^{x}}{2^{x}}}{\frac{5^{x}}{2^{x}}-1} \\
& =\lim _{x \rightarrow-\infty} \frac{1+\left(\frac{4}{2}\right)^{x}}{\left(\frac{5}{2}\right)^{x}-1}=\lim _{x \rightarrow-\infty} \frac{1+2^{x}}{\left(\frac{5}{2}\right)^{x}-1}=\frac{1+0}{0-1}=\frac{1}{-1}=-1
\end{aligned}
$$

(0) (∞)
74)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x}{e^{\frac{-1}{x}}}=\lim _{x \rightarrow 0^{+}} x e^{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{e^{\frac{1}{x}}}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{e^{x^{-1}}}{x^{-1}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\left[e^{x^{-1}}\left(-1 x^{-2}\right)\right]}{\left[-1-x^{-2}\right]}=\lim _{x \rightarrow 0} \frac{\frac{-e^{\frac{1}{x}}}{x^{2}}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0}\left(\frac{-e^{\frac{1}{x}}}{x^{2}}\right)\left(\frac{x^{2}}{-1}\right) \\
& =\lim _{x \rightarrow 0^{+}} e^{\frac{1}{x}}=+\infty
\end{aligned}
$$

76) a) $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x^{2}-\sin x} \leq \lim _{x \rightarrow 0} \frac{2 x^{-2}-2}{2 x-\cos x}=\lim _{\substack{n \rightarrow 0 \\ \text { not conect }}} \frac{2}{2+\sin x}=\frac{2}{2+0}=1$
b) $\lim _{x \rightarrow 0} \frac{x^{0}-2 x}{x^{2}-\sin x} \leq \lim _{x \rightarrow 0} \frac{2 x^{-2}-2}{2 x-\cos x}=\frac{-2}{0-1}=2$
77) a, b $\quad l(x)=x \quad g(x)=x^{2}$

$$
\frac{d \varphi}{d x}=1 \quad \frac{d g}{d x}=2 x
$$

a)

$$
\begin{aligned}
& (a, d)=(-2,0) \\
& l(0)=(0)=0 \quad l(-2)=(-2)=-\left.2 \quad \frac{d \varphi}{d x}\right|_{x=c}=1 \\
& g(0)=(0)^{2}=0 \quad g(-2)=(-2)^{2}=\left.4 \quad \frac{d g}{d x}\right|_{x=c}=2(c)=2 c \\
& \frac{1=\left.\frac{d f}{d x}\right|_{x=c}}{2 c=\left.\frac{d g}{d x}\right|_{x=c}}=\frac{l(0)-l(-2)}{g(0)-g(-2)}=\frac{(0)-(-2)}{(0)-(4)}=\frac{2}{-4}=\frac{-1}{2}=\frac{1}{-2} \\
& \frac{1}{2 c}=\frac{1}{-2} \Rightarrow \begin{array}{l}
2 c=-2 \\
c=-1
\end{array}
\end{aligned}
$$

78) continued
b) (a, b) asbitrary

$$
\begin{gathered}
l(b)=(b)=b \quad l(a)=(a)=\left.a \quad \frac{d l}{d x}\right|_{x=c}=1 \\
g(b)=(b)^{2}=b^{2} \quad g(a)=(a)^{2}=\left.a^{2} \quad \frac{d g}{d x}\right|_{x=c}=2(c)=2 c \\
\frac{1=\left.\frac{d l}{d x}\right|_{x=c}}{2 c=\left.\frac{d g}{d x}\right|_{x=c}}=\frac{l(b)-l(a)}{g(b)-g(a)}=\frac{(b)-(a)}{\left(b^{2}\right)-\left(a^{2}\right)}=\frac{b-a}{b^{2}-a^{2}}=\frac{b-a}{(b+a)(b-a)}=\frac{1}{b+a} \\
\frac{1}{2 c}=\frac{1}{b+a} \Rightarrow \quad \begin{array}{l}
2 c=b+a \\
c=\frac{b+a}{2}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \text { c) } f(x)=\frac{x^{3}}{3}-4 x \quad g(x)=x^{2} \quad(a, b)=(0,3) \\
& \frac{\partial \varphi}{\partial x}=\frac{1}{3}\left[3 x^{2}\right]-4[1]=x^{2}-4 \quad \frac{\partial y}{\partial x}=[2 x]=2 x \\
& \rho(3)=\frac{(3)^{3}}{3}-4(3)=9-12=-3 \quad \rho(0)=\frac{(0)^{3}}{3}-4(0)=\left.0 \quad \frac{d P}{d x}\right|_{x=c}=(c)^{2}-4=c^{2}-4 \\
& g(3)=(3)^{2}=9 \quad g(0)=(0)^{2}=\left.0 \quad \frac{d g}{d x}\right|_{x=0}=2(c)=2 c \\
& \frac{c^{2}-4=\left.\frac{d f}{d x}\right|_{x=c}}{2 c=\left.\frac{d g}{d x}\right|_{x=c}}=\frac{l(3)-l(0)}{g(3)-g(0)}=\frac{(-3)-(0)}{(9)-(0)}=\frac{-3}{9}=\frac{-1}{3} \\
& \frac{c^{2}-4}{2 c}=\frac{-1}{3} \\
& 3\left(c^{2}-4\right)=-1(2 c) \\
& 3 c^{2}+2 c-12=0 \\
& c=\frac{-(2) \pm \sqrt{(2)^{2}-4(3)(-12)}}{2(3)} \text {; } \\
& c=\frac{-2 \pm 2 \sqrt{37}}{2(3)}=\frac{2(-1 \pm \sqrt{37})}{2(3)} \\
& \begin{array}{l}
3\left(c^{2}-4\right)=-1(2 c \\
3 c^{2}-12=-2 c
\end{array} \\
& C=\frac{-2 \pm \sqrt{4(1+36)}}{2(3)} \\
& \left|c=\frac{-1-\sqrt{37}}{3}\right| c=\frac{-1+\sqrt{37}}{3}
\end{aligned}
$$

86) a) $y=x^{\frac{1}{x}}$

$$
\begin{aligned}
& \ln y=\ln \left(x^{\frac{1}{x}}\right) \\
& \ln y=\frac{\ln x}{x} \\
& {\left[\frac{1}{y} \frac{d y}{d x}\right]=\frac{(x)\left[\frac{1}{x}(1)\right]-(\ln x)[1]}{x^{2}}} \\
& \frac{d y}{d x}=\left\{\frac{1-\ln x}{x^{2}}\right\} y=\left\{\frac{1-\ln x}{x^{2}}\right\} x^{\frac{1}{x}} \\
& \begin{aligned}
& \text { at } x=1:\left.\frac{d y}{d x}\right|_{x=1}=\left\{\frac{1-\ln (1)}{(1)^{2}}\right\}(1)^{\frac{1}{(1)}}=\left\{\frac{1-0}{1}\right\}(1)>0 \text { INCl: } \begin{aligned}
& \text { max value: } \\
& \text { at } x=3: \frac{1}{d}=(e)^{\frac{1}{(e)}} \\
&=\left\{\frac{1-\ln (3)}{(3)}\right\}(3)^{\frac{1}{(3)}}<0
\end{aligned} \\
&=e^{\frac{1}{e}}
\end{aligned} \\
& \text { at } x=3 ;\left.\frac{d y}{d x}\right|_{x=3}=\left\{\frac{1-\ln (3)}{(3)^{2}}\right\}(3)^{\frac{1}{(3)}}<0 \text { dec. } \\
& \frac{d y}{d x} \circ \underbrace{e}_{e} \quad \begin{array}{c}
x=e=e \\
\text { max value: }
\end{array} \\
& 0=\frac{d y}{d x}=\left\{\frac{1-\ln x}{x^{2}}\right\} x^{\frac{1}{x}} \\
& 0 \neq x^{\frac{1}{x}} \left\lvert\,\left\{\frac{1-\ln x}{x^{2}}\right\}=0\right. \\
& \text { disband } \\
& 1-\ln x=0 \\
& 1=\ln x \\
& { }_{x=e^{\prime}}=e \\
& \text { iNC. dee. }
\end{aligned}
$$

cuticul points
critical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\left\{\frac{1-2 \ln x}{x^{3}}\right\} x^{\frac{1}{x^{2}}} \\
& 0 \neq x^{\frac{1}{x^{2}}} \left\lvert\,\left\{\frac{1-2 \ln x}{x^{3}}\right\}=0\right. \\
& \text { discant } \left\lvert\, \begin{array}{l}
1-2 \ln x=0 \\
1=2 \ln x \\
\frac{1}{2}=\ln x \\
\forall \\
x=e^{\frac{1}{2}}=\sqrt{e}
\end{array}\right.
\end{aligned}
$$

$$
\frac{d y}{d x} \circ\left(\frac{I N C .}{\frac{1}{\sqrt{e}}}\right.
$$

at $x=1:\left.\frac{d y}{d x}\right|_{x=1}=\left\{\frac{1-2 \ln (1)}{(1)^{3}}\right\}(1)^{\frac{1}{(1)^{2}}}>0$ INC
max value:

$$
\begin{aligned}
& \text { max value: } \begin{aligned}
\left.y\right|_{x=\sqrt{e}} & =(\sqrt{e})^{\frac{1}{(\sqrt{e})^{2}}}=(\sqrt{e})^{\frac{1}{e}} \\
& =e^{\frac{1}{2 e}}
\end{aligned}
\end{aligned}
$$

86) continued
c) $y=x^{\frac{1}{x^{n}}}$
$\ln y=\ln \left(x^{\frac{1}{x^{n}}}\right)$
$\ln y=\frac{\ln x}{x^{n}}$
$\left[\frac{1}{y} \frac{d y}{d x}\right]=\frac{\left(x^{n}\right)\left[\frac{1}{x}(1)\right]-(\ln x)\left[n x^{n-1}\right]}{\left(x^{n}\right)^{2}}$ $\frac{1}{y} \frac{d y}{d x}=\frac{x^{n-1}-n x^{n-1} \ln x}{x^{2 x}}$

$$
\frac{d y}{d x}=\left\{\frac{x^{n-1}(1-n \ln x)}{x^{2 n}}\right\} y=\left\{\frac{1-n \ln x}{x^{n+1}}\right\} x^{\frac{1}{x^{n}}}
$$

at $x=1:\left.\frac{d y}{d x}\right|_{x=1}=\left\{\frac{1-x h(1)}{(1)^{n+1}}\right\}(1)^{\frac{1}{(1)^{n}}}>0$ INC.
at $x=2 ;\left.\frac{d y}{d x}\right|_{x=2}=\left\{\frac{1-n \ln (2)}{(2)^{x+1}}\right\}(2)^{\frac{1}{(2)^{2}}}<0$ dec.
critical points

$$
\begin{aligned}
& \theta=\frac{d y}{d x}=\left\{\frac{1-n \ln x}{x^{n+1}}\right\} x^{\frac{1}{x^{n}}} \\
& \begin{array}{l|l}
0 \neq x^{\frac{1}{x^{n}}} & \left\{\frac{1-n \ln x}{x^{n+1}}\right\}=0 \\
\text { discard } & 1-n \ln x=0 \\
1=n \ln x \\
\frac{1}{n}=\ln x \\
\Downarrow \\
x=e^{\frac{1}{n}}=\sqrt[n]{e}
\end{array}
\end{aligned}
$$

max value:

$$
\begin{aligned}
& \text { max value: } \\
& \begin{aligned}
x=\sqrt[n]{e} & =(\sqrt[n]{e})^{\frac{1}{(\sqrt{e})^{n}}}=(\sqrt[n]{e})^{\frac{1}{e}} \\
& =e^{\frac{1}{n e}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \lim _{x \rightarrow \infty} \frac{1}{x^{\frac{1}{x^{n}}}} \overline{n-p o s i t i v e ~ i n t e g a r ~} \\
& \ln y=\frac{\ln x}{x^{n}} \\
& \lim _{x \rightarrow \infty} \frac{\ln x}{x^{n}} \leq \lim _{x \rightarrow \infty} \frac{\left[\frac{1}{x}(1)\right]}{\left[n x^{n-1}\right]}=\lim _{x \rightarrow \infty} \frac{1}{n\left(x^{n-1}\right)(x)} \\
& =\lim _{x \rightarrow \infty} \frac{1}{n x^{n}}=0 \\
& \ln y=0 \Rightarrow y=e^{0}=1
\end{aligned}
$$

$\therefore \lim _{x \rightarrow \infty} x^{\frac{1}{x^{n}}}=1$ for n-positive integer

