Definition:

The graph of a differentiable function $y=f(x)$ is
(a) concave up on an open interval I if $\frac{d f}{d x}$ is increasing on I.
(b) concave down on an open interval I if $\frac{d f}{d x}$ is decreasing on I.

The Second Derivative Test for Concavity

Let $y=f(x)$ be twice-differentiable on an interval I.

1. If $\frac{d^{2} f}{d x^{2}}>0$ on I, the graph of $f(x)$ over I is concave up.
2. If $\frac{d^{2} f}{d x^{2}}<0$ on I, the graph of $f(x)$ over I is concave down.

Definition:

A point ($c, f(c)$) where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

At a point of inflection $(c, f(c))$, either $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=c}=0$ or $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=c}$ fails to exist.
Theorem 5 - Second Derivative Test for Local Extrema
Suppose $\frac{d^{2} f}{d x^{2}}$ is continuous on an open interval that contains $x=c$.

1. If $\left.\frac{d f}{d x}\right|_{x=c}=0$ and $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=c}<0$, then $f(x)$ has a local maximum at $x=c$.
2. If $\left.\frac{d f}{d x}\right|_{x=c}=0$ and $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=c}>0$, then $f(x)$ has a local minimum at $x=c$.
3. If $\left.\frac{d f}{d x}\right|_{x=c}=0$ and $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=c}=0$, then the test fails. The function $f(x)$ may have a local maximum, a local minimum, or neither at $x=c$.

Instead of using the Procedure for Graphing $y=f(x)$, on page 248 of your text, I'll be using more detailed procedure shown on next page.

Check the figure that summarizes how the first derivative and second derivative affect the shape of a graph on page 251 of your textbook.

The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because the steps below must be modified.

Step 1:

Determine if the function is rational or polynomial. If the function is a polynomial then the domain is $(-\infty, \infty)$ and skip to step 5

Step 2:

Determine if the rational function is proper or improper. If it is proper (or improper with numerator and denominator of the same degree) then apply limit as $x \rightarrow \pm \infty$ to the function to find the Horizontal Asymptote, and go to step 4.

Step 3:

For the improper fraction with degree of numerator greater than degree of denominator, do a long polynomial division (numerator divided by denominator) to break up the rational expression into a simple polynomial and a fraction at the end. The simple polynomial is your oblique asymptote (not vertical).

Step 4:

Find the vertical asymptotes. If you have a real number solution, then the solution(s)s is/are the vertical asymptote. The domain is all real numbers with values of the asymptotes removed.

Step 5:

Find y-intercept (set $x=0$), if exists.
Step 6:
Find the first and second derivatives if necessary.

Step 7:

Draw 2 lines one for first derivative and the other for second derivative. Each line must be the same amount as the intervals of the domain.

Step 8:

Compute the Critical Points (by setting first derivative equal to 0) and Inflection Points (by setting second derivative equal to 0). If you have real number solution, then label on the lines created in step 7.

Step 9:

Only when a critical number is unique (the value is not a solution of inflection points), apply the second derivative test on the value. With this information we can find if it is a local maximum or minimum and predict the behavior surrounding this critical value. Otherwise, use a full test (take a test point on the interval and compute the value of its first and second derivatives to find the behavior).

Step 10:
Compute the y value of all critical and inflection points and sketch the graph.
To illustrate the steps above, a curve sketching of a polynomial and rational functions are show on following pages (page 2 to page 6).

Example 1: $\quad y=2+3 x^{2}-x^{3}$
Step 1: Function is polynomial. Domain: $(-\infty, \infty)$
Step 5: y-intercept: $y=2+3(0)^{2}-(0)^{3}=0 \Rightarrow y=0$

Step 6:

$$
\frac{d y}{d x}=0+3[2 x]-\left[3 x^{2}\right]=6 x-3 x^{2}
$$

$$
\frac{d^{2} y}{d x^{2}}=6[1]-3[2 x]=6-6 x
$$

Step 7:
$\frac{d y}{d x}$ \qquad
$\frac{d^{2} y}{d x^{2}}$
Step 8:
Critical points
$0=\frac{d y}{d x}=6 x-3 x^{2} \Rightarrow 0=3 x(2-x) \Rightarrow \begin{aligned} 3 x & =0 \\ 0 & =6 x-3 x^{2}\end{aligned} \quad 2-x=0$
$0=6 x-3 x^{2}$
Inflection points

$$
0=\frac{d^{2} y}{d x^{2}}=6-6 x \Rightarrow 0=6(1-x) \Rightarrow \begin{array}{r}
1-x=0 \\
x=1
\end{array}
$$

$\frac{d y}{d x}$

$\frac{d^{2} y}{d x^{2}}$

Step 9:
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=6-6(0)>0$
C.U. local min. $\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=2}=6-6(2)<0$
C.D. local max.

Local min.
Local max.
$\frac{d y}{d x}$

$\frac{d^{2} y}{d x^{2}}$
C.U.
C.D.

Now that we determine all missing information with our knowledge of local minimum and maximum.

Step 10:

$$
\begin{aligned}
& \left.y\right|_{x=0}=2+3(0)^{2}-(0)^{3}=2 \quad(0,2) \\
& \left.y\right|_{x=2}=2+3(2)^{2}-(2)^{3}=2+12-8=6 \quad(2,6) \\
& \left.y\right|_{x=1}=2+3(1)^{2}-(1)^{3}=2+3-1=4 \quad(1,4)
\end{aligned}
$$

Example 2: $\quad y=\frac{x^{2}}{x^{2}+9}$
Steps 1 and 2: Improper rational function with degree of numerator same as degree of denominator.
$\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+9}=\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{9}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{1+\frac{9}{x^{2}}}=\frac{1}{1+0}=\frac{1}{1}=1$
We have a horizontal asymptote of $y=1$

Step 4: $x^{2}+9=0 \quad$ no solution Domain: $(-\infty, \infty)$
Step 5: $y=\frac{(0)^{2}}{(0)^{2}+9}=0$

$$
\frac{d y}{d x}=\frac{\left(x^{2}+9\right)[2 x]-\left(x^{2}\right)[2 x]}{\left(x^{2}+9\right)^{2}}=\frac{2 x\left\{\left(x^{2}+9\right)[1]-\left(x^{2}\right)[1]\right\}}{\left(x^{2}+9\right)^{2}}=\frac{2 x\{9\}}{\left(x^{2}+9\right)^{2}}=\frac{18 x}{\left(x^{2}+9\right)^{2}}
$$

Step 6: $\frac{d^{2} y}{d x^{2}}=\frac{\left\{\left(\left(x^{2}+9\right)^{2}\right)[18]-(18 x)\left[2\left(x^{2}+9\right)^{1}(2 x)\right]\right\}}{\left(\left(x^{2}+9\right)^{2}\right)^{2}}=\frac{18\left(x^{2}+9\right)\left\{\left(x^{2}+9\right)[1]-(x)[4 x]\right\}}{\left(x^{2}+9\right)^{4}}$

$$
=\frac{18\left\{x^{2}+9-4 x^{2}\right\}}{\left(x^{2}+9\right)^{3}}=\frac{18\left\{9-3 x^{2}\right\}}{\left(x^{2}+9\right)^{3}}
$$

Step 7:
$\frac{d y}{d x}$
$\frac{d^{2} y}{d x^{2}}$
Step 8:
Critical points
$0=\frac{d y}{d x}=\frac{18 x}{\left(x^{2}+9\right)^{2}} \Rightarrow 0=\frac{18 x}{\left(x^{2}+9\right)^{2}} \Rightarrow \begin{aligned} 18 x & =0 \\ x & =0\end{aligned}$
Inflection points
$\frac{d y}{d x}$

0
$\frac{d^{2} y}{d x^{2}}$

Step 9:

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{18\left\{9-3(0)^{2}\right\}}{\left((0)^{2}+9\right)^{3}}>0
$$

C.U. local min.

Local min.

$\frac{d y}{d x}$

C.U.

Now that we determine all missing information with our knowledge of local minimum and maximum.

Step 10:
$\left.y\right|_{x=0}=\frac{(0)^{2}}{(0)^{2}+9}=0 \quad(0,0)$
$\left.y\right|_{x=-\sqrt{3}}=\frac{(-\sqrt{3})^{2}}{(-\sqrt{3})^{2}+9}=\frac{3}{3+9}=\frac{3}{12}=\left.\frac{1}{4} \quad\left(-\sqrt{3}, \frac{1}{4}\right) \quad y\right|_{x=\sqrt{3}}=\frac{(\sqrt{3})^{2}}{(\sqrt{3})^{2}+9}=\frac{3}{3+9}=\frac{3}{12}=\frac{1}{4} \quad\left(\sqrt{3}, \frac{1}{4}\right)$

2) $y=\frac{1}{4} x^{4}-2 x^{2}+4 \quad$ domain: $(-\infty, \infty)$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{4}\left[4 x^{3}\right]-2[2 x]+[0]=x^{3}-4 x \\
& \frac{d^{2} y}{d x^{2}}=\left[3 x^{2}\right]-4[1]=3 x^{2}-4
\end{aligned}
$$

critical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=x^{3}-4 x \\
& 0=x^{3}-4 x \\
& 0=x\left(x^{2}-4\right) \\
& 0=(x+2)(x)(x-2) \\
& 0=\frac{d^{2} y}{d x^{2}}=3 x^{2}-4 \\
& \left(0=3 x^{2}-4\right. \\
& \begin{array}{l}
0=3 x^{2}-4 \\
0=(\sqrt{3} x+2)(\sqrt{3} x-2)
\end{array} \\
& 1 \quad \sqrt{3} x+2=0 \quad \sqrt{3} x-2=0 \\
& 1,\left(\frac{2}{\sqrt{3}}, \frac{16}{9}\right)^{x=\frac{-2}{\sqrt{3}}} \quad \quad x=\frac{2}{\sqrt{3}}\left(\frac{2}{\sqrt{3}}, \frac{16}{9}\right) \\
& x-z=0 \\
& x=2 \\
& \left|\frac{d^{2} y}{d x^{2}}\right|_{x=2}=3(2)^{2}-4>0 \\
& \text { C.V. see py "for caleabation } \\
& \text { local min }(2,0) \\
& \text { Increasing: }(-2,0),(2, \infty) \\
& \text { derrasing: }(-\infty,-2),(0,2) \\
& \text { Coneare Up: }\left(-\infty,-\frac{-2}{\sqrt{3}}\right),\left(\frac{2}{\sqrt{3}}, \infty\right) \\
& \frac{d^{2} y}{d x^{2}} \frac{\text { C.U. }, \text { C.D. }}{\frac{-2}{\sqrt{3}}} \frac{\frac{2}{\sqrt{3}}}{} \\
& \text { Comurre Down: }\left(-\frac{2}{53}, \frac{2}{\sqrt{3}}\right)
\end{aligned}
$$

$$
\text { 4) } \begin{aligned}
y & =\frac{9}{14} x^{\frac{1}{3}}\left(x^{2}-7\right)=\frac{9}{14}\left(x^{\frac{7}{3}}-7 x^{\frac{1}{3}}\right) \quad \text { domain: }(-\infty, \infty) \\
\frac{d y}{d x} & =\frac{9}{14}\left(\left[\frac{7}{3} x^{\frac{4}{3}}\right]-7\left[\frac{1}{3} x^{\frac{-2}{3}}\right]\right)=\frac{9}{14}\left(\frac{7}{3} x^{\frac{4}{3}}-\frac{7}{3} x^{-2 / 3}\right)=\frac{3}{2}\left(x^{\frac{4}{3}}-x^{-2 / 3}\right) \\
& =\frac{9}{14}\left(\frac{7}{3}\right)\left((\sqrt[3]{x})^{4}-\frac{1}{(\sqrt[3]{x})^{2}}\right)=\frac{3}{2}\left(\frac{(\sqrt[3]{x})^{4}}{1}\left(\frac{(\sqrt[3]{2})^{2}}{(\sqrt[3]{x})^{2}}\right)-\frac{1}{(\sqrt[3]{x})^{2}}\right)=\frac{3}{2}\left(\frac{(\sqrt[3]{x})^{6}-1}{(\sqrt[3]{x})^{2}}\right) \\
& =\frac{3}{2}\left(\frac{x^{2}-1}{(\sqrt[3]{x})^{2}}\right) \\
\frac{d^{2} y}{d x^{2}} & =\frac{3}{2}\left(\left[\frac{4}{3} x^{\frac{1}{3}}\right]-\left[\frac{-2}{3} x^{-\frac{5}{3}}\right]\right)=\frac{3}{2}\left(\frac{4(\sqrt[3]{x})}{3}+\frac{2}{3(\sqrt[3]{x})^{5}}\right) \\
& =\frac{3}{2}\left(\frac{4(\sqrt[3]{x})}{3}\left(\frac{(\sqrt[3]{x})^{5}}{(\sqrt[3]{x})^{5}}\right)+\frac{2}{3(\sqrt[3]{x})^{5}}\right)=\frac{3}{2}\left(\frac{4(\sqrt[3]{x})^{6}+2}{3(\sqrt[3]{x})^{5}}\right)=\frac{2 x^{2}+1}{(\sqrt[3]{x})^{5}}
\end{aligned}
$$

critical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{3}{2}\left(\frac{x^{2}-1}{(\sqrt[3]{x})^{2}}\right) \\
& 0=\frac{3}{2}\left(\frac{x^{2}-1}{(\sqrt[3]{x-2})^{2}}\right) \\
& 0=x^{2}-1 \\
& 0=(x+1)(x-1) \\
& x+1=0 \\
& x=-1 \\
& \left.\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=\frac{2(-1)^{2}+1}{(\sqrt[3]{(-1)})^{5}}<0 \right\rvert\, \frac{d}{d} \\
& \text { CD. }
\end{aligned}
$$ inflection points

$$
\begin{array}{ll}
0=\frac{d^{2} y}{d x^{2}}=\frac{2 x^{2}+1}{(\sqrt[3]{x})^{5}} & \text { denominator }=0 \\
0=\frac{2 x^{2}+1}{(\sqrt[3]{x})^{3}} & (\sqrt[3]{x})^{5}=0 \\
0=2 x^{2}+1 & \sqrt[3]{x}=0 \\
x=0 \quad(0,0)
\end{array}
$$

no solution

$$
x-1=0
$$

$$
x=1
$$

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=\frac{2(1)^{2}+1}{(\sqrt[3]{(1)})^{5}}>0
$$

Local Max ${ }^{\left(-1, \frac{27}{7}\right)}$ local min $\left(1,-\frac{27}{7}\right)$
C. U.

inflection point: $(0,0)$

Increasing: $(-\infty,-1),(1, \infty) \quad$ Concave Up: $(0, \infty)$
decreasing: $(-1,0) \cup(0,1)$ Compare Down: $(-\infty, 0)$
6)

$$
\begin{aligned}
& y=\tan x-4 x \quad-\frac{\pi}{2}<x<\frac{\pi}{2} \\
& \frac{d y}{d x}=\left[\sec ^{2} x(1)\right]-4[1]=\sec ^{2} x-4 \\
& \frac{d^{2} y}{d x^{2}}=[2 \sec x(\sec x \tan x(1))]-[0]=2 \sec ^{2} x \tan x
\end{aligned}
$$

critical paints

$$
\begin{aligned}
& 0=\sec ^{2} x-4 \\
& 0=(\sec x+2)(\\
& \sec x+2=0 \\
& \sec x=-2 \\
& \frac{1}{\cos x}=-2 \\
& \cos x=\frac{-1}{2} \\
& \operatorname{dincon}^{2} \\
& \text { notinn}\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\sec x-2=0 \\
\sec x=2 \\
\frac{1}{\cos x}=2 \\
\cos x=\frac{1}{2}
\end{gathered}
$$

inflection pointer

$$
0=\frac{d y}{d x}=\sec ^{2} x-4
$$

$$
0=(\sec x+2)(\sec x-2)
$$

$$
\begin{aligned}
0= & \frac{d^{2} y}{d x^{2}}=2 \sec ^{2} x \tan x \\
0 & =2 \sec ^{2} x \tan x \\
& 2 \operatorname{sen}^{2} x=0 \mid \tan x=0 \\
& \text { disend } \mid(0,0)
\end{aligned}
$$

see pg 12 for calculation C.D. Local Max $\left(-\frac{\pi}{3}, \frac{4 \pi}{3}-\sqrt{3}\right)$

Increasing: $\left(\frac{-\pi}{2}, \frac{-\pi}{3}\right),\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ Concave $U_{p}\left(0, \frac{\pi}{2}\right)$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{\pi}{2}\left(\begin{array}{l}
1 \\
0
\end{array} \quad \text { CaD. } \quad \frac{\pi}{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
\text { 8) } \begin{aligned}
y & =2 \cos x-\sqrt{2} x \\
\frac{d y}{d x} & =2[-\sin x(1)]-\sqrt{2}[1]=-2 \sin x-\sqrt{2} \\
\frac{d^{2} y}{d x^{2}} & =-2[\cos x(1)]=-2 \cos x
\end{aligned} \quad-\pi \leq \frac{3 \pi}{2} \\
\end{aligned}
$$

critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=-2 \sin x-\sqrt{2} \\
& 0=-2 \sin x-\sqrt{2} \\
& 2 \sin x=-\sqrt{2} \\
& \sin x=\frac{-\sqrt{2}}{2}=\frac{-1}{\sqrt{2}} \\
& x=\frac{-3 \pi}{4} \\
& \left.\frac{d^{2} y}{d x}\right|_{x=\frac{-3 \pi}{4}}=-2 \cos \left(\frac{-3 \pi}{4}\right)=-2\left(\frac{-1}{\sqrt{2}}\right)>0 \quad \text { C.U. local min } \\
& \left.y\right|_{x=\frac{-3 \pi}{4}}=2 \cos \left(\frac{-3 \pi}{4}\right)-\sqrt{2}\left(\frac{-3 \pi}{4}\right)=2\left(\frac{-1}{\sqrt{2}}\right)+\frac{3 \pi \sqrt{2}}{4}=-\sqrt{2}+\frac{3 \pi \sqrt{2}}{4}=\frac{-4 \sqrt{2}}{4}+\frac{3 \pi \sqrt{2}}{4} \\
& =\frac{3 \pi \sqrt{2}-4 \sqrt{2}}{4} \quad\left(\frac{-3 \pi}{4}, \frac{3 \pi \sqrt{2}-4 \sqrt{2}}{4}\right) \\
& x=\frac{-\pi}{4} \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=-\frac{\pi}{4}}=-2 \cos \left(\frac{-\pi}{4}\right)=-2\left(\frac{1}{\sqrt{2}}\right)<0 \quad \text { C. D. Local Max }\left(\frac{-\pi}{4}, \frac{4 \sqrt{2}+\pi \sqrt{2}}{4}\right) \\
& \left.y\right|_{x=-\frac{\pi}{4}}=2 \cos \left(\frac{-\pi}{4}\right)-\sqrt{2}\left(\frac{-\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)+\frac{\pi \sqrt{2}}{4}=\sqrt{2}+\frac{\pi \sqrt{2}}{4}=\frac{4 \sqrt{2}}{4}+\frac{\pi \sqrt{2}}{4}=\frac{4 \sqrt{2}+\pi \sqrt{2}}{4} \\
& x=\frac{5 \pi}{4} \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{5 x}{4}}=-2 \cos \left(\frac{5 \pi}{4}\right)=-2\left(\frac{-1}{\sqrt{2}}\right)>0 \quad \text { C.U. local min } \quad\left(\frac{5 \pi}{4}, \frac{-4 \sqrt{2}-5 \pi \sqrt{2}}{4}\right) \\
& \left.y\right|_{x=\frac{5 \pi}{4}}=2 \cos \left(\frac{5 \pi}{4}\right)-\sqrt{2}\left(\frac{5 \pi}{4}\right)=2\left(\frac{-1}{\sqrt{2}}\right)-\frac{5 \pi \sqrt{2}}{4}=-\sqrt{2}-\frac{5 x \sqrt{2}}{4}=\frac{-4 \sqrt{2}-5 \pi \sqrt{2}}{4} \\
& 0=\frac{d^{2} y}{d x^{2}}=-2 \cos x \Rightarrow 0=-2 \cos x \Rightarrow \cos x=0 \\
& \left|x=\frac{-\pi}{2}: y\right|_{x=\frac{-\pi}{2}}=2 \cos \left(\frac{-\pi}{2}\right)-\sqrt{2}\left(\frac{-\pi}{2}\right)=2(0)+\pi \sqrt{2}=\pi \sqrt{2} \\
& \left(-\frac{\pi}{2}, \pi \sqrt{2}\right) \\
& x=\frac{\pi}{2}:\left.y\right|_{x=\frac{\pi}{2}}=2 \cos \left(\frac{\pi}{2}\right)-\sqrt{2}\left(\frac{\pi}{2}\right)=2(0)-x \sqrt{2}=-\pi \sqrt{2}\left(\frac{\pi}{2},-x \sqrt{2}\right) \\
& 1^{x=\frac{3 \pi}{2} \text { : } \sin c e} \frac{3 \pi}{2} \text { is an endpoint we will not } \\
& \text { get a concavity charge here. } \\
& \text { C.U. local min }
\end{aligned}
$$

8) continued

Since this function is evaluates on a closed interval we must check the endpoints for extrema.

$$
\begin{aligned}
& \left.y\right|_{x=-x}=2 \cos (-\pi)-\sqrt{2}(-x)=2(-1)+\pi \sqrt{2}=\pi \sqrt{2}-2 \quad(-\pi, \pi \sqrt{2}-2) \text { Soul max } \\
& \left.y\right|_{x=\frac{3 \pi}{2}}=2 \cos \left(\frac{3 \pi}{2}\right)-\sqrt{2}\left(\frac{3 \pi}{2}\right)=2(0)-3 \pi \sqrt{2}=-3 \pi \sqrt{2} \quad\left(\frac{3 \pi}{2},-3 \pi \sqrt{2}\right) \text { local min }
\end{aligned}
$$

Increasing: $\left(\frac{-3 \pi}{4}, \frac{-\pi}{4}\right),\left(\frac{5 \pi}{4}, \frac{3 \pi}{2}\right)$ Concave Up: $\left(-\pi, \frac{-\pi}{2}\right),\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ decreasing: $\left(-\pi, \frac{-3 \pi}{4}\right),\left(\frac{-\pi}{4}, \frac{5 \pi}{4}\right) \quad$ Concave Down $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
2) continued

$$
\begin{aligned}
& \left.y\right|_{x=-2}=\frac{1}{4}(-2)^{4}-2(-2)^{2}+4=4-8+4=0 \quad(-2,0) \\
& \left.y\right|_{x=0}=\frac{1}{4}(0)^{4}-2(0)^{2}+4=4 \quad(0,4) \\
& \left.y\right|_{x=2}=\frac{1}{4}(2)^{4}-2(2)^{2}+4=4-8+4=0 \quad(2,0) \\
& \left.y\right|_{x=\frac{-2}{\sqrt{3}}}=\frac{1}{4}\left(\frac{-2}{\sqrt{3}}\right)^{4}-2\left(\frac{-2}{\sqrt{3}}\right)^{2}+4=\frac{4}{9}-\frac{8}{3}+4=\frac{4}{9}-\frac{24}{9}+\frac{36}{9}=\frac{16}{4} \quad\left(\frac{-2}{\sqrt{3}}, \frac{16}{9}\right) \\
& \left.y\right|_{x=\frac{2}{\sqrt{3}}}=\frac{1}{4}\left(\frac{2}{\sqrt{3}}\right)^{4}-2\left(\frac{2}{\sqrt{3}}\right)^{2}+4=\frac{4}{9}-\frac{8}{3}+4=\frac{4}{9}-\frac{24}{9}+\frac{36}{9}=\frac{16}{9} \quad\left(\frac{2}{\sqrt{3}}, \frac{16}{9}\right)
\end{aligned}
$$

4) continued

$$
\begin{aligned}
& y=\frac{9}{14} x^{\frac{1}{3}}\left(x^{2}-7\right)=\frac{9}{14}(\sqrt[3]{x})\left(x^{2}-7\right) \\
& \left.y\right|_{x=0}=\frac{9}{14}(\sqrt[3]{(0)})\left((0)^{2}-7\right)=0 \quad(0,0) \\
& \left.y\right|_{x=-1}=\frac{9}{14}(\sqrt[3]{(-1)})\left((-1)^{2}-7\right)=\frac{9}{14}(-1)(-6)=\frac{27}{7} \quad\left(-1, \frac{27}{7}\right) \\
& \left.y\right|_{x=1}=\frac{9}{14}(\sqrt[3]{(1)})\left((1)^{2}-7\right)=\frac{9}{14}(1)(-6)=\frac{-27}{7} \quad\left(1,-\frac{27}{7}\right)
\end{aligned}
$$

6) continued

$$
\begin{aligned}
& \left.y\right|_{0}=\tan (0)-4(0)=(0)-0=0 \quad(0,0) \\
& \left.y\right|_{x=\frac{\pi}{3}}=\tan \left(\frac{\pi}{3}\right)-4\left(\frac{\pi}{3}\right)=\left(\frac{\sqrt{3}}{1}\right)-\frac{4 \pi}{3}=\sqrt{3}-\frac{4 \pi}{3} \quad\left(\frac{\pi}{3}, \sqrt{3}-\frac{4 \pi}{3}\right) \\
& \left.y\right|_{x=\frac{-\pi}{3}}=\tan \left(\frac{-\pi}{3}\right)-4\left(\frac{-\pi}{3}\right)=\left(\frac{-\sqrt{3}}{1}\right)+\frac{4 \pi}{3}=\frac{4 \pi}{3}-\sqrt{3} \quad\left(\frac{-\pi}{3}, \frac{4 \pi}{3}-\sqrt{3}\right)
\end{aligned}
$$

10) $y=6-2 x-x^{2}$ domain: $(-\infty, \infty)$

$$
\begin{aligned}
& \frac{d y}{d x}=[0]-2\{1]-[2 x]=-2-2 x i \\
& \frac{d^{2} y}{d x^{2}}=[0]-2[1]=-2
\end{aligned}
$$

$\frac{d y}{d x} \frac{\text { INC } \overbrace{-1}^{\text {Loup }} \text { mex }}{-1}$ dec
critical points : inflection point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=-2-2 x \\
& 0=-2-2 x \\
& 2 x=-2 \\
& x=-1 \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=-2<0
\end{aligned}
$$

$$
0=\frac{d^{2} y}{d x^{2}} \neq 2
$$

none

C.D. Local Max

$$
\left.y\right|_{x=-1}=6-2(-1)-(-1)^{2}=6+2-1=7(-1,7)
$$

12) $y=x(6-2 x)^{2}$ domain: $(-\infty, \infty)$

$$
\begin{aligned}
& y=x\left(36-24 x+4 x^{2}\right)=36 x-24 x^{2}+4 x^{3} \\
& \frac{d y}{d x}=36[1]-24[2 x]+4\left[3 x^{2}\right]=36-48 x+12 x^{2}=12\left(3-4 x+x^{2}\right) \\
& \frac{d^{2} y}{d x^{2}}=[0]-48[1]+12[2 x]=-48+24 x=24(x-2)
\end{aligned}
$$

inflection point

$$
\begin{array}{rlrl}
0 & =\frac{d^{2} y}{d x^{2}}=24(x-2) & \left.y\right|_{x=2} & =(2)(6-2(2))^{2}=2(6-4)^{2}=2(2)^{2} \\
0 & =24(x-2) & =8 \quad(2,8) \\
0 & =x-2 \\
x & =2
\end{array}
$$

vitical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=12\left(3-4 x+x^{2}\right) \\
& 0=12\left(3-4 x+x^{2}\right) \\
& 0=3-4 x+x^{2} \\
& 0=(1-x)(3-x)
\end{aligned}
$$

$$
\begin{aligned}
& 1-x=0 \Rightarrow x=1 \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=2 \psi((1)-2)=2 \psi(-1)<0 \quad \text { C.D. }
\end{aligned}
$$

Local Max $(1,16)$

$$
\left.y\right|_{x=1}=(1)(6-2(1))^{2}=(1)(4)^{2}=16
$$

$$
3-x=0 \Rightarrow x=3
$$

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=3}=24((3)-2)=24(1)>0
$$

local min

$$
\begin{equation*}
\left.y\right|_{x=3}=(3)(6-2(3))^{2}=(3)(0)^{2}=0 \tag{3,0}
\end{equation*}
$$

12) continued

13) $y=1-9 x-6 x^{2}-x^{3} \quad$ domain: $(-\infty, \infty)$

$$
\begin{aligned}
& \frac{d y}{d x}=[0]-9[1]-6[2 x]-\left[3 x^{2}\right]=-9-12 x-3 x^{2}=-3\left(x^{2}+4 x+3\right) \\
& \frac{d^{2} y}{d x^{2}}=[0]-12[1]-3[2 x]=-12-6 x=-6(x+2)
\end{aligned}
$$

inflection point

$$
\begin{array}{rlrl}
0 & =\frac{d^{2} y}{d x^{2}}=-6(x+2) & \left.y\right|_{x=-2} & =1-9(-2)-6(-2)^{2}-(-2)^{3} \\
0 & =-6(x+2) & & =1+18-24+8=3 \\
0 & =x+2 \Rightarrow x=-2 & (-2,3)
\end{array}
$$

critical points

$$
x+3=0 \Rightarrow x=-3
$$

$$
\begin{aligned}
& 0=\frac{d y}{d x}=-3\left(x^{2}+4 x+3\right) \\
& 0=-3\left(x^{2}+4 x+3\right) \\
& 0=x^{2}+4 x+3 \\
& 0=(x+3)(x+1)
\end{aligned}
$$

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=3}=-6((-3)+2)=-6(-1)>0 \text { c.U. }
$$

local min

$$
(-3,1)
$$

$$
\begin{aligned}
& \text { local min } \\
& \left.y\right|_{x=-3}=1-9(-3)-6(-3)^{2}-(-3)^{3}=1+27-54+27=1
\end{aligned}
$$

$$
x+1=0 \Rightarrow x=-1
$$

$$
\begin{align*}
& x+1=0 \Rightarrow x=-1 \tag{-1,5}\\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=-6((-1)+2)=-6(1)<0 \text { CD. }
\end{align*}
$$

Local Max
$\left.y\right|_{x=-1}=1-9(-1)-6(-1)^{2}-(-1)^{3}=1+9-6+1=5$
14) continued

16) $y=1-(x+1)^{3}$
domain: $(-\infty, \infty)$

$$
\frac{d y}{d x}=[0]-\left[3(x+1)^{2}(1)\right]=-3(x+1)^{2} \quad \frac{d^{2} y}{d x^{2}}=-3\left[2(x+1)^{1}(1)\right]=-6(x+1)
$$

critical point inflection point
"full test" $x=0$

$$
\begin{array}{ll}
0=\frac{d y}{d x}=-3(x+1)^{2} & 0=\frac{d^{2} y}{d x^{2}}-6(x+1) \\
0=-3(x+1)^{2} & 0=-6(x+1) \\
0=(x+1)^{2} & 0=x+1 \\
0=x+1 & x=-1
\end{array}
$$

$$
\frac{d^{2} y}{d x^{2}} \frac{C \cdot U .}{-1} \text { CD. }
$$

at $x=-2$:
$x=-1$ is an inflection point with slope 0

$$
\left.\frac{d y}{d x}\right|_{x=-2}=-3((-2)+1)^{2}=-3(-1)^{2}<0 \text { dec. }
$$

$$
\left.y\right|_{x=-1}=1-((-1)+1)^{3}=1-(0)^{3}=1 \quad(-1,1)
$$

$\left.\frac{d^{2} y}{d x^{2}}\right|_{x x-2}=-6((-2)+1)=-6(-1)>0$ c.u.
at $x=0$:

$$
\begin{aligned}
& \left.\frac{d y}{d x}\right|_{x=0}=-3((0)+1)^{2}=-3(1)^{2}<0 \text { de. } \\
& \left.\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=-6(10)+1\right)=-6(1)<0 \quad \text { C.D. }
\end{aligned}
$$

18) $y=-x^{4}+6 x^{2}-4=x^{2}\left(6-x^{2}\right)-4$ domain: $(-\infty, \infty)$

$$
\begin{aligned}
& \frac{d y}{d x}=-\left[4 x^{3}\right]+6[2 x]-[0]=-4 x^{3}+12 x=-4 x\left(x^{2}-3\right) \\
& \frac{d^{2} y}{d x^{2}}=-4\left[3 x^{2}\right]+12[1]=-12 x^{2}+12=-12\left(x^{2}-1\right)
\end{aligned}
$$

critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=-4 x\left(x^{2}-3\right) \\
& 0=-4 x\left(x^{2}-3\right) \\
& 0=(x+\sqrt{3})(-4 x)(x-\sqrt{3}) \\
& \begin{array}{c|c|l}
x+\sqrt{3}=0 & -4 x=0 & x-\sqrt{3}=0 \\
x=-\sqrt{3} & x=0 & x=\sqrt{3}
\end{array}
\end{aligned}
$$

inflection point

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=-12\left(x^{2}-1\right) \\
& 0=-12\left(x^{2}-1 y\right. \\
& 0=+12(x+1)(x-1) \\
& x+1=0 \mid x-1=0 \\
& x=-1 \mid x=1
\end{aligned}
$$

at $x=-\sqrt{3}:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-\sqrt{3}}=-12\left((-\sqrt{3})^{2}-1\right)=-12(3-1)<0 \quad$ C. D. Local Max

$$
\left.y\right|_{x=-\sqrt{3}}=(-\sqrt{3})^{2}\left(6-(-\sqrt{3})^{2}\right)-4=(3)(6-3)-4=(3)(3)-4=5 \quad(-\sqrt{3}, 5)
$$

at $x=0 ;\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=-12\left((0)^{2}-1\right)=-12(-1)>0 \quad$ c.u. Local min

$$
\left.y\right|_{x=0}=(0)^{2}\left(6-(0)^{2}\right)-4=0-4=-4 \quad(0,-4)
$$

18) continued
at $x=\sqrt{3}:\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=\sqrt{3}}=-12\left((\sqrt{3})^{2}-1\right)=-12(3-1)<0 \quad$ C. D. Local Max

$$
\left.y\right|_{x=\sqrt{3}}=(\sqrt{3})^{2}\left(6-(\sqrt{3})^{2}\right)-4=(3)(6-3)-4=(3)(3)-4=5 \quad(\sqrt{3}, 5)
$$

$$
\begin{aligned}
&\left.y\right|_{x=1}=(-1)^{2}\left(6-(-1)^{2}\right)-4 \\
&=(1)(6-1)-4 \\
&=5-4=1 \\
&(-1,1)
\end{aligned}
$$

$$
\begin{aligned}
\left.y\right|_{x_{01}} & =(1)^{2}\left(6-(1)^{2}\right)-4 \\
& =(1)(6-1)-4 \\
& =5-4=1
\end{aligned}
$$

20) $y=x^{4}+2 x^{3}=x^{3}(x+2)$ domain: $(-\infty, \infty)$

$$
\begin{aligned}
& \frac{d y}{d x}=\left[4 x^{3}\right]+2\left[3 x^{2}\right]=4 x^{3}+6 x^{2}=2 x^{2}(2 x+3) \\
& \frac{d^{2} y}{d x^{2}}=4\left[3 x^{2}\right]+6[2 x]=12 x^{2}+12 x=12 x(x+1)
\end{aligned}
$$

critical points

$$
\left.\begin{aligned}
& 0=\frac{d y}{d x}=2 x^{2}(2 x+3) \\
& 0=2 x^{2}(2 x+3) \\
& 2 x^{2}=0 \\
& x^{2}=0 \\
& x=0
\end{aligned} \right\rvert\, \begin{array}{cc}
2 x+3=0 \\
x=-\frac{3}{2}
\end{array}
$$

inflectismpoints

$$
\begin{aligned}
& 0=\frac{d^{2} y}{x^{2}}=12 x(x+1) \\
& 0=12 x(x+1) \\
& 12 x=0 \\
& x=0 \\
& x+1=0 \\
& x=-1
\end{aligned}
$$

20) continued

$$
\begin{aligned}
& x=\frac{-3}{2}: \\
&\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-\frac{3}{2}}=12\left(\frac{-3}{2}\right)\left(\left(\frac{-3}{2}\right)+1\right) \\
&=12\left(\frac{-3}{2}\right)\left(\frac{-1}{2}\right)>0
\end{aligned}
$$

C. U.

local min $\left(\frac{-3}{2}, \frac{-27}{16}\right)$

$$
\begin{aligned}
\left.y\right|_{x=\frac{-3}{2}} & =\left(\frac{-3}{2}\right)^{3}\left(\left(\frac{-3}{2}\right)+2\right) \\
& =\left(\frac{-27}{8}\right)\left(\frac{1}{2}\right)=\frac{-27}{16}
\end{aligned}
$$

at $x=1$;

$$
\left.\left.\frac{d y}{d x}\right|_{x=1}=2(1)^{2}(2(1)+3)>0 \text { INC }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=1}=12(1)(1)+1\right)>0 \text { C.O. }
$$

$x=0$ is an inflection point with slope 0 .

$$
\left.y\right|_{x=0}=(0)^{3}((0)+2)=0 \quad(0,0)
$$

22) $y=x\left(\frac{x}{2}-5\right)^{4}$
domain: $(-\infty, \infty)$

$$
\begin{aligned}
\frac{\partial y}{\partial x} & =(x)\left[4\left(\frac{x}{2}-5\right)^{3}\left(\frac{1}{2}\right)\right]+\left(\left(\frac{x}{2}-5\right)^{4}\right)[1]=\left(\frac{x}{2}-5\right)^{3}\left\{(x)[2]+\left(\frac{x}{2}-5\right)(1]\right\} \\
& =\left(\frac{x}{2}-5\right)^{3}\left\{\frac{5 x}{2}-5\right\}=\left(\frac{5 x}{2}-5\right)\left(\frac{x}{2}-5\right)^{3}=5\left(\frac{x}{2}-1\right)\left(\frac{x}{2}-5\right)^{3} \\
\frac{d^{2} y}{\partial x^{2}} & =\left(\frac{5 x}{2}-5\right)\left[3\left(\frac{x}{2}-5\right)^{2}\left(\frac{1}{2}\right)\right]+\left(\left(\frac{x}{2}-5\right)^{3}\right)\left[\frac{5}{2}\right] \\
& =\left(\frac{x}{2}-5\right)^{2}\left\{\left(\frac{5 x}{2}-5\right)\left[\frac{3}{2}\right]+\left(\frac{x}{2}-5\right)\left[\frac{5}{2}\right]\right\}=\left(\frac{x}{2}-5\right)^{2}\left\{\frac{15 x}{4}-\frac{15}{2}+\frac{5 x}{4}-\frac{25}{2}\right\} \\
& =\left(\frac{x}{2}-5\right)^{2}\left\{\frac{20 x}{4}-\frac{40}{2}\right\}=\{5 x-20\}\left(\frac{x}{2}-5\right)^{2}=5(x-4)\left(\frac{x}{2}-5\right)^{2}
\end{aligned}
$$

vitical pointo

$$
\begin{aligned}
& 0=\frac{d y}{d x}=5\left(\frac{x}{2}-1\right)\left(\frac{x}{2}-5\right)^{3} \\
& 0=5\left(\frac{x}{2}-1\right)\left(\frac{x}{2}-5\right)^{3} \\
& \frac{x}{2}-1=0 \quad \left\lvert\, \begin{array}{l}
\left(\frac{x}{2}-5\right)^{3}=0 \\
\frac{x}{2}=1
\end{array} \begin{array}{l}
\left(\frac{x}{2}-5\right)=0 \\
x=2
\end{array} \begin{array}{l}
\frac{x}{2}=5 \\
x=10
\end{array}\right.
\end{aligned}
$$

inflection point

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=5(x-4)\left(\frac{x}{2}-5\right)^{2} \\
& 0=5(x-4)\left(\frac{x}{2}-5\right)^{2} \\
& x-4=0 \quad \begin{array}{l}
\left(\frac{x}{2}-5\right)^{2}=0 \\
x=4 \quad\left(\frac{x}{2}-5\right)=0 \\
\frac{x}{2}=5 \\
x=10
\end{array}
\end{aligned}
$$

22) continued

$$
\text { at } x=2:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=2}=5((2)-4)\left(\frac{(2)}{2}-5\right)^{2}=5(-2)(-4)^{2}<0 \quad \text { C.D. }
$$

Local Max $\left.y\right|_{x=2}=(2)\left(\frac{(2)}{2}-5\right)^{4}=(2)(-4)^{4}=512 \quad(2,512)$

$$
\left.y\right|_{x=4}=(4)\left(\frac{(4)}{2}-5\right)^{4}=(4)(-3)^{4}=324 \quad(4,324)
$$

at $x=12$:

$$
\begin{aligned}
& \left.\frac{d y}{d x}\right|_{x=12}=5\left(\frac{(12)}{2}-1\right)\left(\frac{(12)}{2}-5\right)^{3}=5(5)(1)^{3}>0 \text { INC. } \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=12}=5((12)-4)\left(\frac{(12)}{2}-5\right)^{2}=5(8)(1)^{2}>0 \text { C.U. }
\end{aligned}
$$

$x=10$ is a local minimum

$$
\left.y\right|_{x=10}=(10)\left(\frac{(10)}{2}-5\right)^{4}=(10)(0)^{4}=0 \quad(0,0)
$$

24)

$$
\begin{array}{ll}
y=x-\sin x & 0 \leq x \leq 2 \pi \\
\frac{d y}{d x}=[1]-[\cos x(1)]=1-\cos x & \frac{d^{2} y}{d x^{2}}=[0]-[-\sin x(1)]=\sin x
\end{array}
$$

viticalpoint inflection point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=1-\cos x \\
& 0=\frac{\partial^{2} y}{\partial x^{2}}=\sin x \\
& \frac{d y}{d x} \text { of INC. } \quad \mathrm{J}_{2 x} \\
& 0=1-\cos x \\
& 0=\sin x \\
& \cos x=1 \\
& x=0|x=\pi| x=2 x \\
& \frac{\partial^{2} y}{d x^{2}} 0\left[\frac{\text { CU. }}{x}+\quad \text { CoO. }\right]_{2} x \\
& x=0 \mid x=2 \pi \\
& \text { at } \left.x=\frac{\pi}{2} ;\left.\quad \frac{d y}{d x}\right|_{x=\frac{\pi}{2}}=1-\cos \left(\frac{\pi}{2}\right)=1-10\right)=1>0 \text { INC. } \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{y}{2}}=\sin \left(\frac{\pi}{2}\right)=1>0 \quad \text { CU. } \\
& \left.y\right|_{x=0}=(0)-\sin (0)=(0)-(0)=0 \quad(0,0) \text { local /abs min } \\
& \left.y\right|_{x=\pi}=(\pi)-\sin (\pi)=\pi-(0)=\pi \quad(\pi, \pi) \\
& \left.\left.y\right|_{x=2 \pi}=(2 \pi)-\sin (2 \pi)=2 \pi-10\right)=(2 \pi, 2 \pi) \text { Local /ils Max }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 26) } y=\frac{4}{3} x-\tan x & \frac{-\pi}{2}<x<\frac{\pi}{2} \\
\frac{d y}{d x}=\frac{4}{3}[1]-\left[\sec ^{2} x(1)\right]=\frac{4}{3}-\sec ^{2} x & \frac{d^{2} y}{d x^{2}}=[0]-[2 \sec x(\sec x \tan x(1))]=-2 \sec ^{2} x \tan x
\end{array}
$$

critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{4}{3}-\sec ^{2} x \\
& 0=\frac{4}{3}-\sec ^{2} x \\
& 0=\left(\frac{2}{\sqrt{3}}+\sec x\right)\left(\frac{2}{\sqrt{3}}-\sec x\right) \\
& \left.\frac{2}{\sqrt{3}}+\sec x=0 \right\rvert\, \frac{2}{\sqrt{3}}-\sec x \\
& \sec x=\frac{-2}{\sqrt{3}} \left\lvert\, \begin{array}{ccc}
\sec x=\frac{2}{\sqrt{3}} \\
\psi \\
\left.\cos x=\frac{-\sqrt{3}}{2} \right\rvert\, \cos x=\frac{\sqrt{3}}{2} \\
\operatorname{disen} d & \left.x=\frac{-x}{6} \right\rvert\, x=\frac{\pi}{6} \\
\operatorname{xot} \sin \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)
\end{array}\right.
\end{aligned}
$$

inflection point

$$
0=\frac{d^{2} y}{d x^{2}}=-2 \sec ^{2} x \tan x \quad \frac{d y}{d x}-\frac{\pi}{2}\left(\frac{-1}{-\frac{y}{3}} \quad \frac{1}{8}\right) \frac{\pi}{2}
$$

$$
\begin{array}{l|l}
-2 \sec ^{2} x=0 & \tan x=0 \\
\sec ^{2} x=0 & x=0
\end{array}
$$

$\begin{array}{lll}\sec ^{2} x=0 \\ \sec x=0 & x=0 & \left.y\right|_{x=0}=\frac{4}{3}(0)-\tan (0)=0-0=0\end{array}$

$$
\begin{aligned}
& \text { at } x=\frac{-\pi}{6}:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{-\pi}{6}}=-2 \sec ^{2}\left(\frac{-\pi}{6}\right) \tan \left(\frac{-\pi}{6}\right)=-2\left(\frac{2}{\sqrt{3}}\right)^{2}\left(\frac{-1}{\sqrt{3}}\right)>0 \\
& \text { C.U. local min } \quad\left(\frac{-\pi}{6}, \frac{1}{\sqrt{3}}-\frac{2 \pi}{9}\right) \\
& \left.y\right|_{x=\frac{-\pi}{6}}=\frac{4}{3}\left(\frac{-\pi}{6}\right)-\tan \left(\frac{-\pi}{6}\right)=-\frac{2 \pi}{9}-\left(\frac{-1}{\sqrt{3}}\right)=\frac{-2 \pi}{9}+\frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
\text { at } x=\frac{\pi}{6}:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{\pi}{6}}=-2 \sec ^{2}\left(\frac{\pi}{6}\right) \tan \left(\frac{\pi}{6}\right)=-2\left(\frac{2}{\sqrt{3}}\right)^{2}\left(\frac{1}{\sqrt{3}}\right)<0
$$

C.D. Local Max $\left(\frac{\pi}{6}, \frac{2 \pi}{9}-\frac{1}{\sqrt{3}}\right)$

$$
\left.y\right|_{x=\frac{\pi}{6}}=\frac{4}{3}\left(\frac{\pi}{6}\right)-\tan \left(\frac{\pi}{6}\right)=\frac{2 \pi}{9}-\left(\frac{1}{\sqrt{3}}\right)=\frac{2 \pi}{9}-\frac{1}{\sqrt{3}}
$$

$$
\begin{aligned}
& \text { 28) } y=\cos x+\sqrt{3} \sin x \quad 0 \leqslant x \leqslant 2 \pi \\
& \frac{d y}{d x}=[-\sin x(1)]+\sqrt{3}[\cos x(1)]=-\sin x+\sqrt{3} \cos x \\
& \frac{d^{2} y}{d x^{2}}=-[\cos x(1)]+\sqrt{3}[-\sin x(1)]=-\cos x-\sqrt{3} \sin x
\end{aligned}
$$

critical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=-\sin x+\sqrt{3} \cos x \\
& 0=-\sin x+\sqrt{3} \cos x \\
& \sin x=\sqrt{3} \cos x \\
& \frac{\sin x}{\cos x}=\sqrt{3} \\
& \tan x=\sqrt{3}=\frac{\sqrt{3}}{1} \\
& x=\frac{\pi}{3} \quad x=\frac{4 \pi}{3}
\end{aligned}
$$

inflection point

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=-\cos x-\sqrt{3} \sin x \\
& 0=-\cos x-\sqrt{3} \sin x \\
& \sqrt{3} \sin x=-\cos x \\
& \frac{\sin x}{\cos x}=\frac{-1}{\sqrt{3}} \\
& \tan x=\frac{-1}{\sqrt{3}} \\
& \left.x=\frac{5 \pi}{6} \quad \right\rvert\, x=\frac{11 \pi}{6}
\end{aligned}
$$

$$
\text { at } x=\left.\frac{\pi}{3} i \quad \frac{d^{2} y}{d x^{2}}\right|_{x=\frac{\pi}{3}}=-\cos \left(\frac{\pi}{3}\right)-\sqrt{3} \sin \left(\frac{\pi}{3}\right)=-\left(\frac{1}{2}\right)-\sqrt{3}\left(\frac{\sqrt{3}}{2}\right)<0
$$

C.D. Local max $\left(\frac{\pi}{3}, 2\right)$

$$
\left.y\right|_{x=\frac{\pi}{3}}=\cos \left(\frac{y}{3}\right)+\sqrt{3} \sin \left(\frac{\pi}{3}\right)=\left(\frac{1}{2}\right)+\sqrt{3}\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{2}+\frac{3}{2}=\frac{4}{2}=2
$$

28) continued

$$
\begin{aligned}
& \text { at } x=\frac{4 \pi}{3}:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{4 y}{3}}=-\cos \left(\frac{4 \pi}{3}\right)-\sqrt{3} \sin \left(\frac{4 \pi}{3}\right)=-\left(\frac{-1}{2}\right)-\sqrt{3}\left(\frac{-\sqrt{3}}{2}\right)>0 \\
& \quad \text { c.U. local min } \quad\left(\frac{4 \pi}{3}-2\right) \\
& \left.y\right|_{x=\frac{4 \pi}{3}}=\cos \left(\frac{4 \pi}{3}\right)+\sqrt{3} \sin \left(\frac{4 \pi}{3}\right)=\left(\frac{-1}{2}\right)+\sqrt{3}\left(\frac{-\sqrt{3}}{2}\right)=\frac{-1}{2}-\frac{3}{2}=\frac{-4}{2}=-2 \\
& \text { at } x=\frac{5 \pi}{6}:\left.y\right|_{x=\frac{\pi y}{6}}=\cos \left(\frac{5 \pi}{6}\right)+\sqrt{3} \sin \left(\frac{5 \pi}{6}\right)=\left(\frac{-\sqrt{3}}{2}\right)+\sqrt{3}\left(\frac{1}{2}\right)=0 \quad\left(\frac{5 \pi}{6}, 0\right) \\
& \text { at } x=\frac{11 \pi}{6}:\left.y\right|_{x=\frac{11 \pi}{6}}=\cos \left(\frac{11 \pi}{6}\right)+\sqrt{3} \sin \left(\frac{11 \pi}{6}\right)=\left(\frac{\sqrt{3}}{2}\right)+\sqrt{3}\left(\frac{-1}{2}\right)=0\left(\frac{11 \pi}{6}, 0\right)
\end{aligned}
$$

endpoints:
$x=0 \quad$ local min

$$
\left.y\right|_{x=0}=\cos (0)+\sqrt{3} \sin (0)=(1)+\sqrt{3}(0)=1 \quad(0,1)
$$

$x=2 \pi \quad$ Local Max

$$
\left.y\right|_{x=2 \pi}=\cos (2 \pi)+\sqrt{3} \sin (2 \pi)=(1)+\sqrt{3}(0)=1 \quad(2 \pi, 1)
$$

86) $y=\frac{x^{2}-49}{x^{2}+5 x-14}=\frac{(x+7)(x-7)}{(x+7)(x-2)}=\frac{x-7}{x-2}$
V.A.: $x^{2}+5 x-14=0 \quad$ domains $(-\infty,-7) \cup(-7,2) \cup(2, \infty)$

$$
(x+7)(x-2)=0
$$

$$
x+7=0 \quad x-2=0
$$

$$
x=-7 \quad x=2
$$

not V.A. becanse V.A.
nuenertos in m when $x=-7^{\text {mincing point. }}$
H.A.:

$$
\begin{aligned}
y & =\lim _{x \rightarrow \infty} \frac{x^{2}-44}{x^{2}+5 x-14}=\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}-\frac{49}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{5 x}{x^{2}}-\frac{14}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{1-\frac{49}{x^{2}}}{1+\frac{5}{x} \cdot \frac{14}{x^{2}}}=\frac{1-0}{1+0-0}=\frac{1}{1}=1
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{d y}{d x}=\frac{(x-2)[1]-(x-7)[1]}{(x-2)^{2}}=\frac{x-2-x+7}{(x-2)^{2}}=\frac{5}{(x-2)^{2}}=5(x-2)^{2} \\
\frac{d^{2} y}{d x^{2}}=5\left[-2(x-2)^{-3}(1)\right]=\frac{-10}{(x-2)^{3}}
\end{array}\right\} x \neq-7
$$

$\frac{d^{2} y}{d x^{2}} \frac{c_{1} u_{1}}{-7}+$
viticab point
at $x=-8: \quad 0=\frac{d y}{d x}=\frac{5}{(x-2)^{2}}$ no solation

$$
\left.\frac{\partial y}{d x}\right|_{x=-8}=\frac{5}{((-8)-2)^{2}}>0 \text { INC. }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=-8}=\frac{-10}{((-8)-2)^{3}}>0 \text { C.U. }
$$

at $x=0$:

$$
\left.\frac{d y}{d x}\right|_{x=0}=\frac{S}{((0)-2)^{2}}>0 \text { INC. }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{-10}{((0)-2)^{3}}>0 \quad \text { C.U. }
$$

86) continued

$$
\begin{aligned}
& \text { at } x=3, \\
& \left.\frac{d \dot{y}}{d x}\right|_{x=3}=\frac{5}{((3)-2)^{2}}>0 \text { INC. }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=3}=\frac{-10}{((3)-2)^{3}}<0 \text { C.D. }
\end{aligned}
$$

at $x=-7:\left.\quad y\right|_{x=-7}=\frac{(-7)-7}{(-7)-2}=\frac{-14}{-9}=\frac{14}{9} \quad\left(-7, \frac{14}{9}\right)^{\prime}$

Cblique asymptote:

$$
y=\frac{x^{2}-4 x}{2 x}=\frac{1}{2} x+\frac{(-4)}{2 x}=\frac{1}{2} x-\frac{2}{x}
$$

$$
\begin{aligned}
& 2 x \sqrt{\frac{\left(x^{2}\right)}{\frac{1}{2} x}} \frac{y=\frac{1}{2} x}{0+0 x-4} \\
& \frac{d y}{d x} \\
& =\frac{(2 x)[2 x]-\left(x^{2}-4\right)[2]}{(2 x)^{2}}=\frac{4 x^{2}-2 x^{2}+8}{4 x^{2}}=\frac{2 x^{2}+8}{4 x^{2}} \\
& \\
& =\frac{2\left(x^{2}+4\right)}{4 x^{2}}=\frac{x^{2}+4}{2 x^{2}}
\end{aligned}
$$

88) continued

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{\left(2 x^{2}\right)[2 x]-\left(x^{2}+4\right)[4 x]}{\left(2 x^{2}\right)^{2}}=\frac{4 x\left\{\left(x^{2}\right)[1]-\left(x^{2}+4\right)[1]\right\}}{4 x^{4}} \\
& =\frac{x^{2}-x^{2}-4}{x^{3}}=\frac{-4}{x^{3}} \\
& \text { "full test" } \\
& x=-1 \quad x=1 \\
& \frac{\partial y}{d x} \longrightarrow \text { INC } O H \\
& \frac{d^{2} y}{d x^{2}} \xrightarrow{c \cdot U_{1}} 0+
\end{aligned}
$$

critical point
$0=\frac{d y}{d x}=\frac{x^{2}+4}{2 x^{2}}$ no solution
inflection point
$0=\frac{d^{2} y}{d x^{2}}=\frac{-4}{x^{3}}$ no solution
at $x=-1 ;\left.\quad \frac{d y}{d x}\right|_{x=1}=\frac{(-1)^{2}+4}{2(-1)^{2}}>0$ INC. $\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=-1}=\frac{-4}{(-1)^{3}}>0$ C.U.
at $x=1:\left.\quad \frac{d y}{d x}\right|_{x=1}=\frac{(1)^{2}-4}{2(1)^{2}}>0$ INC. $\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=1}=\frac{-4}{(1)^{3}}<0$ C.D.
y-int: none
at $x=2$

$$
\left.\begin{array}{l}
\left.y\right|_{x=2}=\frac{(-2)^{2}-4}{2(-2)}=\frac{4-4}{-4}=0 \\
(-2,0) \\
\text { at } x=2 \\
\left.y\right|_{x=2}=\frac{(2)^{2}-4}{2(2)}=\frac{4-4}{4}=0 \\
(2,0)
\end{array}\right\} x-\operatorname{jan} t .
$$

90) $y=\frac{x^{2}}{x^{2}-1}$
V. $A_{1}: x^{2}-1=0$

$$
\begin{aligned}
& : \begin{array}{l}
x^{2}-1=0 \\
(x+1)(x-1)=0 \\
x+1=0 \\
x=-1
\end{array}{ }^{x-1=0} \\
& x=1
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{\left(x^{2}-1\right)[2 x]-\left(x^{2}\right)[2 x]}{\left(x^{2}-1\right)^{2}}=\frac{2 x^{3}-2 x-2 x^{3}}{\left(x^{2}-1\right)^{2}}=\frac{-2 x}{\left(x^{2}-1\right)^{2}}
$$

$$
\frac{d^{2} y}{\partial x^{2}}=\frac{\left(\left(x^{2}-1\right)^{2}\right)[-2]-(-2 x)\left[2\left(x^{2}-1\right)(2 x)\right]}{\left(\left(x^{2}-1\right)^{2}\right)^{2}}=\frac{2\left(x^{2}-1\right)\left\{\left(x^{2}-1\right)[-1]-(-2 x)[2 x]\right\}}{\left(x^{2}-1\right)^{4}}
$$

$$
=\frac{2\left\{-x^{2}+1+4 x^{2}\right\}}{\left(x^{2}-1\right)^{3}}=\frac{2\left\{3 x^{2}+1\right\}}{\left(x^{2}-1\right)^{3}}
$$

critical point inflection point at $x=0$:

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{-2 x}{\left(x^{2}-1\right)^{2}} \\
& 0=\frac{d^{2} y}{d x^{2}}=\frac{2\left\{3 x^{2}+1\right\}}{\left(x^{2}-1\right)^{3}} \\
& 0=\frac{-2 x}{\left(x^{2}-1\right)^{2}} \\
& 0=\frac{2\left\{3 x^{2}+1\right\}}{\left(x^{2}-1\right)^{3}} \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{2\left\{3(0)^{2}+1\right\}}{\left((0)^{2}-1\right)^{3}}<0 \text { CaD. } \\
& \text { Local Max }(0,0) \\
& 0=-2 x \\
& 0=3 x^{2}+1 \\
& x=0 \\
& \text { no solution } \\
& \left.\frac{d^{2} y}{d x^{2}}-C_{1} \cdot U_{1}\right)-1\left(C_{C} \cdot 1(\right.
\end{aligned}
$$

90) continued

$$
\begin{aligned}
& \text { at } x=-2: \\
& \left.\frac{d y}{d x}\right|_{x=-2}=\frac{-2(-2)}{\left.(-2)^{2}-1\right)^{2}}>0 \text { INC }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=-2}=\frac{2\left\{3(-2)^{2}+1\right\}}{\left((-2)^{2}-1\right)^{3}}>0 \quad \text { C.U. } \\
& \left.y\right|_{x=-2}=\frac{(-2)^{2}}{(-2)^{2}-1}=\frac{4}{4-1}=\frac{4}{3} \quad\left(-2, \frac{4}{3}\right) \\
& \text { at } x=2: \\
& \left.\frac{d y}{d x}\right|_{x=2}=\frac{-2(2)}{\left((2)^{2}-1\right)^{2}}<0 \text { dec. }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=2}=\frac{2\left\{3(2)^{2}+1\right\}}{\left((2)^{2}-1\right)^{3}}>0 \quad \text { C.U. } \\
& \left.y\right|_{x=2}=\frac{(2)^{2}}{(2)^{2}-1}=\frac{4}{4-1}=\frac{4}{3} \quad\left(2, \frac{4}{3}\right)
\end{aligned}
$$

y-int: $y=\frac{(0)^{2}}{(0)^{2}-1}=0$
x-at: $0=\frac{x^{2}}{x^{2}-1} \Rightarrow 0=x^{2} \Rightarrow 0=x$

$$
\left.\begin{array}{l}
\text { q2) } \begin{array}{rl}
\left.y=\frac{x^{2}-4}{x^{2}-2} \quad \begin{array}{r}
\text { VA. }: x^{2}-2=0 \\
(x+\sqrt{2})(x-\sqrt{2})=0 \\
x+\sqrt{2}=0 \\
x=-\sqrt{2}
\end{array} \right\rvert\, \begin{array}{l}
x-\sqrt{2}=0 \\
x=\sqrt{2}
\end{array}
\end{array} \quad \text { domain: }(-\infty,-\sqrt{2}) \cup(-\sqrt{2}, \sqrt{2}) \cup(\sqrt{2}, \infty)
\end{array}\right\} \begin{aligned}
& \text { HA. }: y=\lim _{x \rightarrow \infty} \frac{x^{2}-4}{x^{2}-2}=\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}-\frac{4}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{2}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1-\frac{4}{x^{2}}}{1-\frac{2}{x^{2}}}=\frac{1-0}{1-0}=\frac{1}{1}=1 \\
& \frac{d y}{d x}=\frac{\left(x^{2}-2\right)[2 x]-\left(x^{2}-4\right][2 x]}{\left(x^{2}-2\right)^{2}}=\frac{2 x\left\{\left(x^{2}-2\right)[1]-\left(x^{2}-4\right)[1]\right\}}{\left(x^{2}-2\right)^{2}} \\
&=\frac{2 x\left\{x^{2}-2-x^{2}+4\right\}}{\left(x^{2}-2\right)^{2}}=\frac{2 x\{2\}}{\left(x^{2}-2\right)^{2}}=\frac{4 x}{\left(x^{2}-2\right)^{2}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{\left(\left(x^{2}-2\right)^{2}\right)[4]-(4 x)\left[2\left(x^{2}-2\right)^{\prime}(2 x)\right]}{\left(\left(x^{2}-2\right)^{2}\right)^{2}}=\frac{4\left(x^{2}-2\right)\left\{\left(x^{2}-2\right)[1]-(x)[4 x]\right\}}{\left(x^{2}-2\right)^{4}} \\
&=\frac{4\left\{x^{2}-2-4 x^{2}\right\}}{\left(x^{2}-2\right)^{3}}=\frac{4\left\{-3 x^{2}-2\right\}}{\left(x^{2}-2\right)^{3}}=\frac{-4\left\{3 x^{2}+2\right\}}{\left(x^{2}-2\right)^{3}}
\end{aligned}
$$

Vitical point
inflection point

$$
\begin{array}{ll}
0=\frac{d y}{d x}=\frac{4 x}{\left(x^{2}-2\right)^{2}} & 0=\frac{d^{2} y}{d x^{2}}=\frac{-4\{ }{\left(x^{2}\right.} \\
0=\frac{4 x}{\left(x^{2}-2\right)^{2}} & \text { at } x=0 \\
0=4 x & \left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{-4\left\{3(0)^{2}+2\right.}{\left((0)^{2}-2\right)^{3}} \\
x=0 & \left.y\right|_{x=0}=\frac{(0)^{2}-4}{(0)^{2}-2}=\frac{-4}{-2}=2
\end{array}
$$

$$
0=\frac{d^{2} y}{d x^{2}}=\frac{-4\left\{3 x^{2}+2\right\}}{\left(x^{2}-2\right)^{3}} \text { no solution }
$$

$$
\begin{aligned}
& \text { at } x=0 \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{-4\left\{3(0)^{2}+2\right\}}{\left((0)^{2}-2\right)^{3}}>0 \text { C.U. local min } \text {. So } y-i n t \text { " }
\end{aligned}
$$

$(0,2)$ "also y-int"
dy "fuel test" $x=-2$
"full test" $x=2$ $\left.\frac{d y}{d x} \xrightarrow{\text { dec. }}\right)-\sqrt{2}\left(\frac{\text { dec }{\underset{0}{\text { loud }}}_{\substack{\text { lin }}}^{1} \text { in e }}{2}(t\right.$ $\frac{d^{2} y}{d x^{2}} \xrightarrow{C . D .}-\sqrt{2}\left(\begin{array}{c} \\ \end{array}\right)($ C. D.
92) continued

$$
\text { at } x=-2:\left.\frac{d y}{\partial x}\right|_{x=-2}=\frac{4(-2)}{\left((-2)^{2}-2\right)^{2}}<0 \text { dec. }\left.\frac{\partial^{2} y}{\partial x^{2}}\right|_{x=-2}=\frac{-4\left\{3(-2)^{2}+2\right\}}{\left((-2)^{2}-2\right)^{3}}<0 \text { C.D. }
$$

$$
\left.y\right|_{x=-2}=\frac{(-2)^{2}-4}{(-2)^{2}-2}=\frac{4-4}{4-2}=\frac{0}{2}=0 \quad(-2,0) \quad \text { "alsace } x-\text { int." }
$$

$$
\text { at } x=2:\left.\frac{d y}{d x}\right|_{x=2}=\frac{4(2)}{\left((2)^{2}-2\right)^{2}}>0 \text { INC }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=2}=\frac{-4\left\{3(2)^{2}+2\right\}}{\left((2)^{2}-2\right)^{3}}<0 \text { C.D. }
$$

$\left.y\right|_{x=2}=\frac{(2)^{2}-4}{(2)^{2}-2}=\frac{4-4}{4-2}=\frac{0}{2}=0 \quad(2,0) \quad$ "also $x-$ int"

94) $y=-\frac{x^{2}-4}{x+1}=\frac{-\left(x^{2}-4\right)}{x+1}=\frac{-x^{2}+4}{x+1}$
V.A.: $\begin{gathered}x+1=0 \\ x=-1\end{gathered} \quad$ domain: $(-\infty,-1) \cup(-1, \infty)$

Oblique asymptote

$$
\begin{gathered}
x+1 \frac{-x+1}{\frac{-x^{2}+0 x+4}{}} \\
\frac{-\left(-x^{2}-x\right)}{+x+4} \\
\frac{-(x+1)}{+3}
\end{gathered}
$$

$$
y=\frac{-x^{2}+4}{x+1}=-x+1+\frac{(+3)}{x+1}
$$

$$
y=-x+1
$$

94) continued

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{(x+1)[-2 x]-\left(-x^{2}+4\right)[1]}{(x+1)^{2}}=\frac{-2 x^{2}-2 x+x^{2}-4}{(x+1)^{2}}=\frac{-x^{2}-2 x-4}{(x+1)^{2}} \\
& \begin{aligned}
\frac{d^{2} y}{\partial x^{2}} & =\frac{\left((x+1)^{2}\right)[-2 x-2]-\left(-x^{2}-2 x-4\right)\left[2(x+1)^{\prime}(1)\right]}{\left((x+1)^{2}\right)^{2}} \\
& =\frac{-2(x+1)\left\{(x+1)[x+1]-\left(x^{2}+2 x+4\right)[1]\right\}}{(x+1)^{4}}=\frac{-2\left\{x^{2}+2 x+1-x^{2}-2 x-4\right\}}{(x+1)^{3}} \\
& =\frac{-2\{-3\}}{(x+1)^{3}}=\frac{6}{(x+1)^{3}}
\end{aligned}
\end{aligned}
$$

critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{-x^{2}-2 x-4}{(x+1)^{2}} \\
& 0=\frac{-x^{2}-2 x-4}{(x+1)^{2}} \\
& 0=-x^{2}-2 x-4 \\
& 0=x^{2}+2 x+4 \text { none }
\end{aligned}
$$

no solution

inflection point	y-int:
$y=\frac{-(0)^{2}+4}{(0)+1}=\frac{4}{r}=4$	

$$
0=\frac{d^{2} y}{d x^{2}}=\frac{6}{(x+1)^{3}} \quad(0,4)
$$

no solution x-int:

$$
0=\frac{-x^{2}+4}{x+1}
$$

none

$$
0=-x^{2}+4
$$

$$
x^{2}-4=0
$$

$$
(x+2)(x-2)=0
$$

$$
\left|\begin{array}{l|l}
x+2=0 \\
x & x-2 \\
& (-2,0)
\end{array}\right| \begin{aligned}
& x-2=0 \\
& x=2 \\
& (2,0)
\end{aligned}
$$

$x=0$
$\left.\frac{d y}{d x}-\frac{d e c .}{}\right)-1(-$ dee.

$$
\begin{equation*}
\left.\frac{\partial^{2} y}{\partial x^{2}}-C_{1} D_{1}\right)-1(\tag{CU.}
\end{equation*}
$$

94) Continued

$$
\begin{aligned}
& \text { at } x=-2:\left.\frac{d y}{d x}\right|_{x=-2}=\frac{-(-2)^{2}-2(-2)-4}{((-2)+1)^{2}}=\frac{-4+4-4}{(-1)^{2}}<0 \text { dec. } \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=-2}=\frac{6}{((-2)+1)^{3}}=\frac{6}{(-1)^{3}}<0 \text { C.D. } \\
& \text { at } x=2:\left.\frac{d y}{d x}\right|_{x=2}=\frac{-(2)^{2}-2(2)-4}{((2)+1)^{2}}=\frac{-4-4-4}{(3)^{2}}<0 \text { dec }\left.\frac{d^{2} y}{d x^{2}}\right|_{x=2}=\frac{6}{((2)+1)^{3}}>0 \text { C.U. . }
\end{aligned}
$$

96) $y=-\frac{x^{2}-x+1}{x-1}=\frac{-x^{2}+x-1}{x-1} \quad$ V.A.: $x-1=0 \quad$ domain: $(-\infty, 1) \cup(1, \infty)$

Oblique asymptote

$$
\begin{aligned}
x-1 & \frac{-x}{-x^{2}+x-1} \\
& \frac{-\left(-x^{2}+x\right)}{0-1} \\
\frac{d y}{d x} & =\frac{(x-1)[-2 x+1]-\left(-x^{2}+x-1\right)[1]}{(x-1)^{2}}=\frac{-2 x^{2}+3 x-1+x^{2}-x+1}{(x-1)^{2}}=\frac{-x^{2}+2 x}{(x-1)^{2}} \\
& =\frac{x(2-x)}{(x-1)^{2}}
\end{aligned}
$$

96) continued

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\left((x-1)^{2}\right)[-2 x+2]-\left(-x^{2}+2 x\right)\left[2(x-1)^{\prime}(1)\right]}{\left((x-1)^{2}\right)^{2}} \\
& =\frac{2(x-1)\left\{(x-1)[-x+1]-\left(x^{2}+2 x\right)[1]\right\}}{(x-1)^{4}}=\frac{2\left\{-x^{2}+2 x-1+x^{2}-2 x\right\}}{(x-1)^{3}} \\
& =\frac{2\{-1\}}{(x-1)^{3}}=\frac{-2}{(x-1)^{3}}
\end{aligned}
$$

critical points inflection point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{x(2-x)}{(x-1)^{2}} \\
& 0=\frac{x(2-x)}{(x-1)^{2}} \\
& 0=x(2-x) \\
& x=0 \left\lvert\, \begin{array}{l}
2-x=0 \\
x=2
\end{array}\right.
\end{aligned}
$$

$$
0=\frac{d^{2} y}{\partial x^{2}}=\frac{-2}{(x-1)^{3}}
$$

...no solution

$$
x-\text { int: }
$$

$$
0=\frac{-x^{2}+x-1}{x-1} \Rightarrow \begin{aligned}
& x^{2}-x+1=0
\end{aligned}
$$

$$
\begin{aligned}
x-1 \\
0=-x^{2}+x-1
\end{aligned} \Rightarrow \text { no solute }
$$

$\frac{\partial^{2} y}{\partial x^{2}} \longrightarrow$ C.U. $) 1($ \qquad
at $x=0:\left.\quad \frac{\partial^{2} y}{\partial x^{2}}\right|_{x=0}=\frac{-2}{((0)-1)^{3}}>0$ C.U. local min

$$
\left.y\right|_{x=0}=\frac{-(0)^{2}+(0)-1}{(0)-1}=\frac{-1}{-1}=1 \quad(0,1) \quad \text { "also } y \text {-int" }
$$

96) continued
at $x=2:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=2}=\frac{-2}{(2 x-1)^{3}}<0 \quad$ C.D. . bocal Max $\left.y\right|_{x=2}=\frac{-(2)^{2}+(2)-1}{(2)-1}=\frac{-4+2-1}{1}=\frac{-3}{1}=-3 \quad(2,-3)$
 $x=1$

$$
\begin{aligned}
& \text { 98) } y=\frac{x^{3}+x-2}{x-x^{2}} \\
& \text { when } x=1 \quad x^{3}+x-2=0 \\
& \text { so }(x-1) \text { is a flactow of } x^{3}+x-2 \\
& y=\frac{(x-1)\left(x^{2}+x+2\right)}{x(1-x)}=\frac{(x-1)\left(x^{2}+x+2\right)}{-x(x-1)} \left\lvert\, \begin{array}{l}
1 \\
\frac{x^{2}+x+2}{x^{3}+0 x^{2}+x-2} \\
-\left(x^{3}-x^{2}\right)
\end{array}\right. \\
& \frac{-\left(x^{3}-x^{2}\right)}{+x^{2}+x} \\
& y=\frac{x^{2}+x+2}{-x}=\frac{-x^{2}-x-2}{x} \quad x \neq 11 \\
& \frac{-\left(x^{2}-x\right)}{+2 x-2} \\
& \text { V.A. } x-x^{2}=0,=\frac{-x^{2}}{x}-\frac{x}{x}-\frac{2}{x}=-x-1-\frac{2}{x}=-x-1-2 x^{-1}-\frac{(2 x-2)}{0} \\
& x(1-x)=0^{1} \cdots \operatorname{domain}:(-\infty, 0) \cup(0,1) \cup(1, \infty) \\
& x=0 \left\lvert\, \begin{array}{l}
1-x=0 \\
x=1 \\
\text { missing point }
\end{array}\right. \\
& \left.y\right|_{x=1}=\frac{-(1)^{2}-(1)-2}{(1)}=\frac{-1-1-2}{1}=\frac{-4}{1}=-\psi \\
& (1,-4)
\end{aligned}
$$

98) continued

$$
\left.\begin{array}{l}
\frac{d y}{d x}=-[1]-[0]-2\left[-1 x^{-2}\right]=-1+2 x^{-2}=-1+\frac{2}{x^{2}}=\frac{2}{x^{2}}-1 \\
\frac{d^{2} y}{d x^{2}}=[0]+2\left[-2 x^{-3}\right]=-4 x^{-3}=\frac{-4}{x^{3}}
\end{array}\right\} x \neq 1
$$

critical point inflection point ' Oblique asymptote

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{2}{x^{2}}-1 \\
& \left.0=\frac{\partial^{2} y}{\partial x^{2}}=\frac{-4}{x^{3}} \quad \right\rvert\,-x^{2}+x \sqrt{x^{3}+0 x^{2}+x-2} \\
& 0=\frac{2}{x^{2}}-1 \\
& 1=\frac{2}{x^{2}} \\
& x^{2}=2 \\
& x^{2}-2=0 \\
& \begin{array}{c|c}
\text { no solution } & \frac{-\left(x^{3}-x^{2}\right)}{+x^{2}+x} \\
\text { none } & \frac{-\left(x^{2}-x\right)}{+2 x-2}
\end{array} \\
& y=\frac{x^{3}+x-2}{x-x^{2}}=-x-1+\frac{(+2 x-2)}{x-x^{2}} \\
& (x+\sqrt{2})(x-\sqrt{2})=0 \\
& x+\sqrt{2}=0 \mid x-\sqrt{2}=0 \quad y=-x-1 \\
& \begin{array}{cc}
x=-\sqrt{2} \mid x=\sqrt{2} \\
\text { focal }
\end{array} \quad \text { "full test" }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial x^{2}} \xrightarrow{C . U .}+1+C\left(C-C . C_{1}\right.
\end{aligned}
$$

98) continued
at $x=-\sqrt{2} ;\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=-\sqrt{2}}=\frac{-4}{(-\sqrt{2})^{3}}>0$ C.U. Local Max

$$
\left.y\right|_{x=-\sqrt{2}}=\frac{-(-\sqrt{2})^{2}-(-\sqrt{2})-2}{(-\sqrt{2})}=\frac{-2+\sqrt{2}-2}{-\sqrt{2}}=\frac{-4+\sqrt{2}}{-\sqrt{2}}=2 \sqrt{2}-1 \quad(-\sqrt{2}, 2 \sqrt{2}-1)
$$

at $x=\sqrt{2}:\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=\sqrt{2}}=\frac{-4}{(\sqrt{2})^{3}}<0$ C.D. local min

$$
\begin{aligned}
& \left.y\right|_{x=\sqrt{2}}=\frac{-(\sqrt{2})^{2}-(\sqrt{2})-2}{(\sqrt{2})}=\frac{-2-\sqrt{2}-2}{\sqrt{2}}=\frac{-4-\sqrt{2}}{\sqrt{2}}=-2 \sqrt{2}-1 \quad(\sqrt{2},-2 \sqrt{2}-1) \\
& \text { at } x=\frac{1}{2}:\left.\frac{d y}{d x}\right|_{x=\frac{1}{2}}=\frac{2}{\left(\frac{1}{2}\right)^{2}}-1=\frac{2}{\left(\frac{1}{4}\right)}-1=8-1>0 \text { INC. } \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{1}{2}}=\frac{-4}{\left(\frac{1}{2}\right)^{3}}=\frac{-4}{\left(\frac{1}{8}\right)}<0 \quad \text { C.D. }
\end{aligned}
$$

100) $y=\frac{x-1}{x^{2}(x-2)}=\frac{x-1}{x^{3}-2 x^{2}}$

VA: $x^{2}(x-2)=0$

$x^{2}=0$	$\begin{array}{c}x-2=0 \\ x=0\end{array}$
$x=2$	

domain, $(-\infty, 0) \cup(0,2) \cup(2, \infty)$

$$
\begin{aligned}
\text { H.A: }: y=\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}-2 x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{3}}-\frac{1}{x^{3}}}{\frac{x^{3}}{x^{3}}-\frac{2 x^{2}}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-\frac{1}{x^{3}}}{1-\frac{2}{x}}=\frac{0-0}{1-0}=0 \\
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(x^{3}-2 x^{2}\right)[1]-(x-1)\left[3 x^{2}-4 x\right]}{\left(x^{3}-2 x^{2}\right)^{2}}=\frac{\left(x^{3}-2 x^{2}\right)-\left(3 x^{3}-7 x^{2}+4 x\right)}{\left(x^{3}-2 x^{2}\right)^{2}} \\
& =\frac{-2 x^{3}+5 x^{2}-4 x}{\left(x^{3}-2 x^{2}\right)^{2}}=\frac{x\left(-2 x^{2}+5 x-4\right)}{\left(x^{2}(x-2)\right)^{2}}=\frac{x\left(-2 x^{2}+5 x-4\right)}{x^{4}(x-2)^{2}}=\frac{-2 x^{2}+5 x-4}{x^{3}(x-2)^{2}} \\
& =\frac{2\left(x^{3}-2 x^{2}\right)\left\{\left(x^{3}-2 x^{2}\right)\left(-3 x^{2}+5 x-2\right]-\left(-2 x^{3}+5 x^{2}-4 x\right)\left[3 x^{2}-4 x\right]\right\}}{\left(x^{3}-2 x^{2}\right) 4} \\
& =\frac{\left(\left(x^{3}-2 x^{2}\right)^{2}\right)\left[-6 x^{2}+10 x-4\right]-\left(-2 x^{3}+5 x^{2}-4 x\right)\left[2\left(x^{3}-2 x^{2}\right)^{4}\left(3 x^{2}-4 x\right)\right]}{\left.\left(x^{3}-2 x^{2}\right)^{2}\right)^{2}} \\
& =\frac{2\left\{\left(-3 x^{5}+5 x^{4}-2 x^{3}+6 x^{4}-10 x^{3}+4 x^{2}\right)-\left(-6 x^{5}+15 x^{4}-12 x^{3}+8 x^{4}-20 x^{3}+16 x^{2}\right)\right\}}{\left(x^{3}-2 x^{2}\right)^{3}} \\
& =\frac{2\left\{\left(-3 x^{5}+11 x^{4}-12 x^{3}+4 x^{2}\right)-\left(-6 x^{5}+23 x^{4}-32 x^{3}+16 x^{2}\right)\right\}}{\left(x^{2}(x-2)\right)^{3}} \\
& =\frac{2\left\{3 x^{5}-12 x^{4}+20 x^{3}-12 x^{2}\right\}}{x^{6}(x-2)^{3}}=\frac{2 x^{2}\left\{3 x^{3}-12 x^{2}+20 x-12\right\}}{x^{6}(x-2)^{3}} \\
& =\frac{2\left\{3 x^{3}-12 x^{2}+20 x-12\right\}}{x^{4}(x-2)^{3}}
\end{aligned}
\end{aligned}
$$

100) continued

Critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{-2 x^{2}+5 x-4}{x^{3}(x-2)^{2}} \\
& 0=\frac{-2 x^{2}+5 x-4}{x^{3}(x-2)^{2}} \\
& 0=-2 x^{2}+5 x-4 \\
& 2 x^{2}-5 x+4=0 \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(4)}}{2(2)}=\frac{5 \pm \sqrt{25-32}}{4}
\end{aligned}
$$

no solution
inflection point

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=\frac{2\left\{3 x^{3}-12 x^{2}+20 x-12\right\}}{x^{4}(x-2)^{3}} \\
& 0=\frac{2\left\{3 x^{3}-12 x^{2}+20 x-12\right\}}{x^{4}(x-2)^{3}} \\
& 0=2\left\{3 x^{3}-12 x^{2}+20 x-12\right\} \\
& 0=3 x^{3}-12 x^{2}+20 x-12
\end{aligned}
$$

the solution is not a rational number to see below:

$$
\begin{aligned}
& \text { at } x=1:\left.\frac{d^{2} z}{d x^{2}}\right|_{x=1} \\
& \text { at } x=\frac{2\left\{3(1)^{3}-12(1)^{2}+20(1)-12\right\}}{\left.(1)^{4}(11)-2\right)^{3}}=\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{3}{2}} \\
& =\frac{2\{3-12+20-12\}}{(1)(-1)^{3}}=\frac{\left.2\{-13)^{3}-12\left(\frac{3}{2}\right)^{2}+20\left(\frac{3}{2}\right)-12\right\}}{\left(\frac{3}{2}\right)^{4}\left(\left(\frac{3}{2}\right)-2\right)^{3}}=\frac{2\left\{\frac{81}{8}-27+30-12\right\}}{\left(\frac{81}{16}\right)\left(\frac{-1}{2}\right)^{3}} \\
& \\
& \\
& =\frac{2\left\{\frac{81}{9}-9\right\}}{\left(\frac{81}{16}\right)\left(\frac{-1}{8}\right)}=\frac{2\left\{\frac{9}{8}\right\}}{\left(\frac{81}{16}\right)\left(\frac{-1}{8}\right)}<0 \quad \text { C.D. }
\end{aligned}
$$

By Intermediate Value Theorem for Continuous Junctions on pg 97 , we know that there is a value c in $\left[1, \frac{3}{2}\right]$ such that $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=c}=0$. There is an inflection point.
100) continued
to show the actual real number solution of $0=3 x^{3}-12 x^{2}+20 x-12$, 2 used MAPLE softurne.
; tee are ${ }^{2}$ additional i roots that are
$x=\frac{4}{3}-\frac{\sqrt[3]{2+2 \sqrt{17}}}{3}+\frac{4}{3(\sqrt[3]{2+2 \sqrt{17}})} \approx 1.223223466:$ Complex Number.
full test" $x=1 \quad x=-1$

at $x=1:\left.\frac{d y}{d x}\right|_{x=1}=\frac{-2(1)^{2}+5(1)-4}{\left.(1)^{3}(11)-2\right)^{2}}=\frac{-1}{(1)(-1)^{2}}<0$ dec.
at $x=3:\left.\frac{d y}{d x}\right|_{x=3}=\frac{-2(3)^{2}+5(3)-4}{(3)^{3}((3)-2)^{2}}=\frac{-18+15-4}{(27)(1)^{2}}<0$ dec.
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=3}=\frac{2\left\{3(3)^{3}-12(3)^{2}+20(3)-12\right\}}{(3)^{4}((3)-2)^{3}}=\frac{2\{81-108+60-12\}}{(81)(1)^{3}}=\frac{2\{21\}}{81}>0$ c.U.
at $x=-1:\left.\frac{d y}{d x}\right|_{x=-1}=\frac{-2(-1)^{2}+5(-1)-4}{(-1)^{3}((-1)-2)^{2}}=\frac{-2-5-4}{(-1)(-1)^{2}}>0$ INC

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=\frac{2\left\{3(-1)^{3}-12(-1)^{2}+20(-1)-12\right\}}{(-1)^{4}((-1)-2)^{3}}=\frac{2\{-3-12-20-12\}}{(1)(-3)^{3}}>0 \text { C.U. }
$$

100) continued y-int: nove becanse $x=0$ is V, A.

$$
\begin{aligned}
x-\text { int: } & 0=\frac{x-1}{x^{2}(x-2)} \\
(1,0) & 0 \\
& x=x-1 \\
& =1
\end{aligned}
$$

$$
\text { 102) } y=\frac{4 x}{x^{2}+4}
$$

$$
\begin{aligned}
& \text { H.A.: } y=\lim _{x \rightarrow \infty} \frac{4 x}{x^{2}+4}=\lim _{x \rightarrow \infty} \frac{\frac{4 x}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{4}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{4}{x}}{1+\frac{4}{x^{2}}}=\frac{0}{1+0}=0 \\
& y \text {-int: } y=\frac{4(0)}{(0)^{2}+4}=\frac{0}{4}=0 \quad x \text {-int: } 0=\frac{4 x}{x^{2}+4} \Rightarrow 0=4 x \Rightarrow x=0 \\
& (0,0) \text { both } x-\ln t, y-\ln t
\end{aligned} \begin{aligned}
& \frac{d y}{d x}=\frac{\left(x^{2}+4\right)[4]-(4 x)[2 x]}{\left(x^{2}+4\right)^{2}}=\frac{4 x^{2}+16-8 x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{-4 x^{2}+16}{\left(x^{2}+4\right)^{2}}=\frac{-4\left(x^{2}-4\right)}{\left(x^{2}+4\right)^{2}} \\
& \frac{\begin{array}{l}
d y \\
d x^{2}
\end{array}}{}=\frac{\left(\left(x^{2}+4\right)^{2}\right)[-8 x]-\left(-4 x^{2}+16\right)\left[2\left(x^{2}+4\right)^{\prime}(2 x)\right]}{\left(\left(x^{2}+4\right)^{2}\right)^{2}} \\
&=\frac{-8 x\left(x^{2}+4\right)\left\{\left(x^{2}+4\right)[1]-\left(x^{2}-4\right)[2]\right\}}{\left(x^{2}+4\right)^{4}}=\frac{-8 x\left\{x^{2}+4-2 x^{2}+8\right\}}{\left(x^{2}+4\right)^{3}} \\
&=\frac{-8 x\left\{-x^{2}+12\right\}}{\left(x^{2}+4\right)^{3}}=\frac{8 x\left\{x^{2}-12\right\}}{\left(x^{2}+4\right)^{3}}
\end{aligned}
$$

102) continued
critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{-4\left(x^{2}-4\right)}{\left(x^{2}+4\right)^{2}} \\
& 0=-4\left(x^{2}-4\right) \\
& 0=x^{2}-4 \\
& 0=(x+2)(x-2) \\
& x+2=0 \mid x-2=0 \\
& x=-2 \mid x=2
\end{aligned}
$$

inflection point

$$
\left.\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=\frac{8 x\left\{x^{2}-12\right\}}{\left(x^{2}+4\right)^{3}} \\
& 0=\frac{8 x\left\{x^{2}-12\right\}}{\left(x^{2}+4\right)^{3}} \\
& 0=8 x\left\{x^{2}-12\right\} \\
& 0=(x+\sqrt{12})(8 x)(x-\sqrt{12}) \\
& x+\sqrt{12}=0 \\
& x=-\sqrt{12} \\
& x=-\sqrt{3}
\end{aligned} \right\rvert\, \begin{array}{l|l|l}
& x=0 & x=\sqrt{12}=0 \\
x=2 \sqrt{3}
\end{array}
$$

at $x=-2,\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=-2}=\frac{8(-2)\left\{(-2)^{2}-12\right\}}{\left((-2)^{2}+4\right)^{3}}=\frac{8(-2)\{-8\}}{(8)^{3}}>0 \quad$ C.U. local min

$$
\left.y\right|_{x=-2}=\frac{4(-2)}{(-2)^{2}+4}=\frac{-8}{4+4}=\frac{-8}{8}=-1 \quad(-2,-1)
$$

at $x=2:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=2}=\frac{8(2)\left\{(2)^{2}-12\right\}}{\left((2)^{2}+4\right)^{3}}=\frac{8(2)\{-8\}}{(8)^{3}}<0$ C.D. Local Max

$$
\begin{equation*}
\left.y\right|_{x=2}=\frac{4(2)}{(2)^{2}+4}=\frac{8}{4+4}=\frac{8}{8}=1 \tag{2,1}
\end{equation*}
$$

102) continued
at $x=0: \quad y=0$ (from intercept calculation) $(0,0)$

$$
\begin{aligned}
& \text { at } x=-2 \sqrt{3}:\left.y\right|_{x=-2 \sqrt{3}}=\frac{4(-2 \sqrt{3})}{(-2 \sqrt{3})^{2}+4}=\frac{-8 \sqrt{3}}{4(3)+4}=\frac{-8 \sqrt{3}}{12+4}=\frac{-8 \sqrt{3}}{16}=\frac{-\sqrt{3}}{2}\left(-2 \sqrt{3}, \frac{-\sqrt{3}}{2}\right) \\
& \text { at } x=2 \sqrt{3}:\left.y\right|_{x=2 \sqrt{3}}=\frac{4(2 \sqrt{3})}{(2 \sqrt{3})^{2}+4}=\frac{8 \sqrt{3}}{4(3)+4}=\frac{8 \sqrt{3}}{12+4}=\frac{8 \sqrt{3}}{16}=\frac{\sqrt{3}}{2} \quad\left(2 \sqrt{3}, \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

104)

$$
\begin{aligned}
& \left.\frac{d y}{d x} \frac{\text { INC }}{\frac{d}{-2}} \begin{array}{cc}
(-2,8) \\
\frac{d^{2} y}{d x^{2}} & \frac{1}{2} \\
(2,0) \\
\left(0, D_{1}\right. & \text { INC } \\
\begin{array}{c}
1 \\
(0,4) \\
\hline
\end{array} &
\end{array}\right]
\end{aligned}
$$

106) $\frac{d y}{d x}$

30) $y=x^{2 / 5}=(\sqrt[5]{x})^{2} \quad$ domain: $(-\infty, \infty)$
y-int: $y=(\sqrt[5]{(0)})^{2}=0 \quad x$-int: $0=(\sqrt[5]{x})^{2} \Rightarrow 0=\sqrt[5]{x} \Rightarrow 0=x \quad(0,0)$

$$
\frac{d y}{d x}=\left[\frac{2}{5} x^{-\frac{3}{5}}\right]=\frac{2}{5} x^{\frac{-3}{5}}=\frac{2}{5(\sqrt[5]{x})^{3}} \quad \frac{d^{2} y}{d x^{2}}=\frac{2}{5}\left[\frac{-3}{5} x^{-\frac{8}{5}}\right]=\frac{-6}{25(\sqrt[5]{x})^{8}}
$$

critical point inflectionpoint

$$
0=\frac{d y}{d x}=\frac{2}{5(\sqrt[5]{x})^{3}}
$$

$$
0=\frac{d^{2} y}{d x^{2}}=\frac{-6}{25(\sqrt[5]{x})^{8}}
$$

$$
0=\frac{2}{5(\sqrt[5]{x})^{3}}
$$

$$
0=\frac{-6}{25(\sqrt[5]{x})^{8}}
$$

no solution no solution

$$
\frac{d^{2} y}{d x^{2}}-C_{1} x_{0} \quad C_{1} D .
$$

but denominata 0 when $x=0$
beet denominator 0
when $x=0$

$$
\text { at } x=-1:\left.\frac{d y}{d x}\right|_{x=-1}=\frac{2}{5(\sqrt[5]{(-1)})^{3}}=\frac{2}{5(-1)^{3}}<0 \text { dec, } \begin{aligned}
& \text { at } x=0 \\
& \text { this is a }
\end{aligned}
$$

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=\frac{-6}{25(\sqrt[5]{(-1)})^{8}}=\frac{-6}{25(-1)^{8}}<0 \text { C.D., local min }
$$

at $x=1:\left.\frac{d y}{d x}\right|_{x=1}=\frac{2}{5(\sqrt[5]{11})^{3}} \geqslant 0$ INC

$$
\begin{equation*}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=\frac{-6}{25(\sqrt[5]{(1)})^{8}}<0 \tag{CD.}
\end{equation*}
$$

32)

$$
y=\frac{\sqrt{1-x^{2}}}{2 x+1}=\frac{\left(1-x^{2}\right)^{\frac{1}{2}}}{2 x+1}
$$

from numerator: $1-x^{2}>0$ and $[-1,1]$
V.A.: $\begin{aligned} & 2 x+1=0 \\ & 2 x=-1\end{aligned} \quad$ since $x=\frac{-1}{2}$ is in $[-1,1]$, ous

$$
x=-\frac{1}{2} \quad \text { Lomain: }\left(-1,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, 1\right]
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(2 x+1)\left[\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x)\right]-\left(\left(1-x^{2}\right)^{\frac{1}{2}}\right][2]}{(2 x+1)^{2}} \\
& =\frac{\frac{-x(2 x+1)}{\sqrt{1-x^{2}}}-2 \sqrt{1-x^{2}}}{(2 x+1)^{2}}=\frac{\frac{-x(2 x+1)}{\sqrt{1-x^{2}}}-\left(\frac{\left(\sqrt{1-x^{2}}\right.}{1}\right)\left(\frac{\sqrt{1-x^{2}}}{11-x^{2}}\right)}{(2 x+1)^{2}} \\
& =\frac{\frac{-2 x^{2}-x-2\left(1-x^{2}\right)}{\sqrt{1-x^{2}}}}{(2 x+1)^{2}}=\frac{-2 x^{2}-x-2+2 x^{2}}{\sqrt{1-x^{2}}(2 x+1)^{2}}=\frac{-x-2}{\sqrt{1-x^{2}}(2 x+1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
b & =\sqrt{1-x^{2}}(2 x+1)^{2}=\left(1-x^{2}\right)^{\frac{1}{2}}(2 x+1)^{2} \\
\frac{d b}{d x} & =\left(\left(1-x^{2}\right)^{\frac{1}{2}}\right)\left[2(2 x+1)^{\prime}(2)\right]+\left((2 x+1)^{2}\right)\left[\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x)\right] \\
& =4(2 x+1) \sqrt{1-x^{2}}-\frac{x(2 x+1)^{2}}{\sqrt{1-x^{2}}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{\left(\sqrt{1-x^{2}}(2 x+1)^{2}\right)[-1]-(-x-2)\left[4(2 x+1) \sqrt{1-x^{2}}-\frac{x(2 x+1)^{2}}{\sqrt{1-x^{2}}}\right]}{\left(\sqrt{1-x^{2}}(2 x+1)^{2}\right)^{2}} \\
& =\frac{(2 x+1)\left\{-(2 x+1) \sqrt{1-x^{2}}+4(x+2) \sqrt{1-x^{2}}-\frac{x(x+2)(2 x+1)}{\sqrt{1-x^{2}}}\right\}}{\left(\sqrt{1-x^{2}}\right)^{2}(2 x+1)^{4}}
\end{aligned}
$$

32) continued

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\frac{-(2 x+1) \sqrt{1-x^{2}}}{1}\left(\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}\right)+\frac{4(x+2) \sqrt{1-x^{2}}}{1}\left(\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}\right)-\frac{x(x+2)(2 x+1)}{\sqrt{1-x^{2}}}}{\left(\sqrt{1-x^{2}}\right)^{2}(2 x+1)^{3}} \\
& =\frac{-(2 x+1)\left(1-x^{2}\right)+4(x+2)\left(1-x^{2}\right)-x(x+2)(2 x+1)}{(2 x+1)^{3}\left(\sqrt{1-x^{2}}\right)^{3}} \\
& =\frac{-\left(-2 x^{3}-x^{2}+2 x+1\right)+4\left(-x^{3}-2 x^{2}+x+2\right)-x\left(2 x^{2}+5 x+2\right)}{(2 x+1)^{3}\left(\sqrt{1-x^{2}}\right)^{3}} \\
& =\frac{2 x^{3}+x^{2}-2 x-1-4 x^{3}-8 x^{2}+4 x+8-2 x^{3}-5 x^{2}-2 x}{(2 x+1)^{3}\left(\sqrt{1-x^{2}}\right)^{3}} \\
& =\frac{-4 x^{3}-12 x^{2}+7}{(2 x+1)^{3}\left(\sqrt{1-x^{2}}\right)^{3}}
\end{aligned}
$$

Critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{-x-2}{\sqrt{1-x^{2}}(2 x+1)^{2}} \\
& 0=\frac{-x-2}{\sqrt{1-x^{2}}(2 x+1)^{2}} \\
& 0=-x-2 \\
& x=-2
\end{aligned}
$$

discard
not in domain
none
inflectiompoint

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=\frac{-4 x^{3}-12 x^{2}+7}{(2 x+1)^{3}\left(\sqrt{1-x^{2}}\right)^{3}} \\
& 0=\frac{-4 x^{3}-12 x^{2}+7}{(2 x+1)^{3}\left(\sqrt{1-x^{2}}\right)^{3}} \\
& 0=-4 x^{3}-12 x^{2}+7
\end{aligned}
$$

using MAPLE software

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-0.45} \approx 18.05>0 \text { c.0. }
$$

continued next page
32) continued $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-0.90} \approx-4.62<0$ C.D.
so there is an inflection point between $(-0.45,-0.90)$

$$
\begin{equation*}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0.65} \approx 0.16>0 \text { c.0. }\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=0.70} \approx-0.05<0 \tag{CPD.}
\end{equation*}
$$

and another inflection point between $(0.65,0.70)$

$$
\begin{align*}
& x=\frac{-3}{4} \text { "full cost" } \\
& \frac{d y}{d x}-1[\\
& \frac{d^{2} y}{d x^{2}}-1\left[\frac{\text { C.0. CaD. }}{-0.95-0.90}\right) \frac{11}{2}\left(\frac{\text { CU. }}{0.65 \quad 0.70}\right] \\
& \text { at } x=\frac{-3}{4}:\left.\quad \frac{d y}{d x}\right|_{x=\frac{-3}{4}}=\frac{-\left(\frac{-3}{4}\right)-2}{\sqrt{1-\left(-\frac{3}{4}\right)^{2}}\left(2\left(\frac{-3}{4}\right)+1\right)^{2}}=\frac{\frac{-1}{4}}{\sqrt{\frac{7}{16}}\left(\frac{-1}{2}\right)^{2}}<0 \text { dec. } \\
& \text { at } x=0:\left.\frac{d y}{d x}\right|_{x=0}=\frac{-(0)-2}{\sqrt{1-(0)^{2}}(2(0)+1)^{2}}=\frac{-2}{\sqrt{1}(1)^{2}}<0 \text { dec. }
\end{align*}
$$

endpoints:

$$
x=-1:\left.y\right|_{x=-1}=\frac{\sqrt{1-(-1)^{2}}}{2(-1)+1}=0
$$

Local Max: $(-1,0)$

$$
x=1:\left.y\right|_{x=1}=\frac{\sqrt{1-(1)^{2}}}{2(1)+1}=0
$$

local min: $(1,0)$

34) $y=5 x^{\frac{2}{5}}-2 x=5(\sqrt[5]{x})^{2}-2 x \quad$ domain: $(-\infty, \infty)$

$$
\begin{aligned}
& \frac{d y}{d x}=5\left[\frac{2}{5} x^{-\frac{3}{5}}\right]-2[1]=2 x^{\frac{-3}{5}}-2=\frac{2}{(\sqrt[5]{x})^{3}}-2=2\left(\frac{1}{(\sqrt[5]{x})^{3}}-1\right) \\
& \frac{d^{2} y}{d x^{2}}=2\left[\frac{-3}{5} x^{\frac{-8}{5}}\right]=\frac{-6}{5(\sqrt[5]{x})^{8}}
\end{aligned}
$$

vitical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=2\left(\frac{1}{(\sqrt[5]{x})^{3}}-1\right) \\
& 0=2\left(\frac{1}{(\sqrt[5]{x})^{3}}-1\right) \\
& 0=\frac{1}{(\sqrt[5]{x})^{3}}-1 \\
& 1=\frac{1}{(\sqrt[5]{x})^{3}} \\
& (\sqrt[5]{x})^{3}=1 \\
& \sqrt[5]{x}=1 \\
& x=1
\end{aligned}
$$

$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=\frac{-6}{5(\sqrt[5]{(1)})^{8}}<0$ CAD.
Local Max

$$
\left.y\right|_{x=1}=5(\sqrt[5]{(1)})^{2}-2(1)=3
$$

also denominator 0 , when $x=0$
inflection point

$$
0=\frac{d^{2} y}{d x^{2}}=\frac{-6}{5(\sqrt[5]{x})^{8}}
$$ no solution also denominate, when $x=0$

at $x=-1:\left.\frac{d y}{d x}\right|_{x=-1}=2\left(\frac{1}{(\sqrt[5]{(-1-1)})^{3}}-1\right)<0$ dee.

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=\frac{-6}{5(\sqrt[5]{(-1)})^{8}}<0 \quad C_{1} D .
$$

we have a cusp at $x=0$ [local min]

36)
domain: $(-\infty, \infty)$

$$
\begin{aligned}
\frac{d y}{d x} & =\left[\frac{5}{3} x^{2 / 3}\right]-5\left[\frac{2}{3} x^{-\frac{1}{3}}\right]=\frac{5}{3} x^{2 / 3}-\frac{10}{3} x^{-\frac{1}{3}}=\frac{5}{3}\left\{(\sqrt[3]{x})^{2}-\frac{2}{\sqrt[3]{x}}\right\} \\
& =\frac{5}{3}\left\{\frac{(\sqrt[3]{x})^{2}}{1}\left(\frac{\sqrt[3]{x}}{\sqrt[3]{x}}\right)-\frac{2}{\sqrt[3]{x}}\right\}=\frac{5}{3}\left\{\frac{x-2}{\sqrt[3]{x}}\right\} \\
\frac{d^{2} y}{d x^{2}} & =\frac{5}{3}\left\{\frac{2}{3} x^{-\frac{1}{3}}\right]-\frac{10}{3}\left[\frac{-1}{3} x^{-4 / 3}\right]=\frac{10}{9}\left\{\frac{1}{\sqrt[3]{x}}+\frac{1}{(\sqrt[3]{x})^{4}}\right\} \\
& =\frac{10}{9}\left\{\frac{1}{\sqrt[3]{x}}\left(\frac{(\sqrt[3]{x})^{3}}{(\sqrt[3]{x})^{3}}\right)+\frac{1}{(\sqrt[3]{x})^{4}}\right\}=\frac{10}{9}\left\{\frac{x+1}{(\sqrt[3]{x})^{4}}\right\}
\end{aligned}
$$

critical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{5}{3}\left\{\frac{x-2}{\sqrt[3]{x}}\right\} \\
& 0=\frac{5}{3}\left\{\frac{x-2}{\sqrt[3]{x}}\right\} \\
& 0=x-2 \\
& x=2
\end{aligned}
$$

also denominator 0 when $x=0$
inflection points

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=\frac{10}{9}\left\{\frac{x+1}{(\sqrt[3]{x})^{4}}\right\} \\
& 0=\frac{10}{9}\left\{\frac{x+1}{(\sqrt[3]{x})^{4}}\right\} \\
& 0=x+1 \\
& x=-1
\end{aligned}
$$

also denominate 0 when $x=0$
$x=-2$ "full test"

36) continued
at $x=2,\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=2}=\frac{10}{9}\left\{\frac{(2)+1}{(\sqrt[3]{(2)})^{4}}\right\}>0 \quad$ c.0. local min

$$
\begin{aligned}
& \left.y\right|_{x=2}=(\sqrt[3]{(2)})^{2}((2)-5)=(\sqrt[3]{4})(-3)=-3(\sqrt[3]{4}) \quad(2,-3(\sqrt[3]{4})) \\
& \text { at } x=-2:\left.\frac{d y}{d x}\right|_{x=-2}=\frac{5}{3}\left\{\frac{(-2)-2}{\sqrt[3]{(-2)}\}=\frac{5}{3}\left\{\frac{-4}{-\sqrt[3]{2}}\right\}=\frac{5}{3}\left\{\frac{4}{\sqrt[3]{2}}\right\}>0 \text { INC. }} \begin{array}{l}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-2}=\frac{10}{9}\left\{\frac{(-2)+1}{\left.(\sqrt[3]{(-2)})^{4}\right\}}=\frac{10}{9}\left\{\frac{-1}{(\sqrt[3]{2})^{4}}\right\}<0 \quad\right. \text { C.D. } \\
\text { at } x=-1:\left.y\right|_{x=-1}=(\sqrt[3]{(-1)})^{2}((-1)-5)=(1)(-6)=-6 \quad(-1,-6) \\
\text { at } x=0:\left.y\right|_{x=0}=(\sqrt[3]{(0)})^{2}((0)-5)=(0)(-5)=0 \quad \text { (0,0) } \quad \text { cupp at } x=0 \\
\quad \text { [tocal maac] }
\end{array}\right.
\end{aligned}
$$

38) $y=\left(2-x^{2}\right)^{3 / 2}=\left(\sqrt{2-x^{2}}\right)^{3}$ domain: $[-\sqrt{2}, \sqrt{2}]$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{3}{2}\left(2-x^{2}\right)^{\frac{1}{2}}(-2 x)=-3 x\left(2-x^{2}\right)^{\frac{1}{2}}=-3 x \sqrt{2-x^{2}} \\
\frac{d^{2} y}{d x^{2}} & =(-3 x)\left[\frac{1}{2}\left(2-x^{2}\right)^{-\frac{1}{2}}(-2 x)\right]+\left(\left(2-x^{2}\right)^{\frac{1}{2}}\right)[-3]=\frac{3 x^{2}}{\sqrt{2-x^{2}}}-3 \sqrt{2-x^{2}} \\
& =\frac{3 x^{2}}{\sqrt{2-x^{2}}}-\frac{3 \sqrt{2-x^{2}}}{1}\left(\frac{\sqrt{2-x^{2}}}{\sqrt{2-x^{2}}}\right)=\frac{3 x^{2}-3\left(2-x^{2}\right)}{\sqrt{2-x^{2}}}=\frac{3 x^{2}-6+3 x^{2}}{\sqrt{2-x^{2}}}=\frac{6 x^{2}-6}{\sqrt{2-x^{2}}}=\frac{6\left(x^{2}-1\right)}{\sqrt{2-x^{2}}}
\end{aligned}
$$

critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=-3 x \sqrt{2-x^{2}} \\
& 0=-3 x \sqrt{2-x^{2}} \\
& -3 x=0 \quad \left\lvert\, \begin{array}{l}
\sqrt{2-x^{2}}=0 \\
2-x^{2}=0 \\
x=0 \\
(\sqrt{2}+x)(\sqrt{x}-x)=0 \\
\sqrt{2}+x=0: \sqrt{2}-x=0 \\
x=-\sqrt{2} \quad x=\sqrt{2} \\
\text { also endpoints }
\end{array}\right.
\end{aligned}
$$

inflection points

$$
\begin{array}{ll}
0=\frac{d^{2} y}{d x^{2}}=\frac{6\left(x^{2}-1\right)}{\sqrt{2-x^{2}}} ; \\
0=\frac{6\left(x^{2}-1\right)}{\sqrt{2-x^{2}}}, & \text { also denominator 0 } \\
0=6\left(x^{2}-1\right) & \sqrt{2-x^{2}}=0 \\
0=x^{2}-1, & x=-\sqrt{2}, x=\sqrt{2} \\
0=(x+1)(x-1) & \text { endpoints } \\
x+1=0 & x-1=0 \\
x=-1 & x=1
\end{array}
$$

38) continued

$$
\begin{aligned}
& \text { at } x=0:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{6\left((0)^{2}-1\right)}{\sqrt{2-(0)^{2}}}=\frac{6(-1)}{\sqrt{2}}<0 \quad \text { C.P. Local Max } \\
& \left.y\right|_{x=0}=\left(\sqrt{2-(0)^{2}}\right)^{3}=(\sqrt{2})^{3}=2 \sqrt{2} \quad(0,2 \sqrt{2}) \\
& \text { at } x=-1:\left.y\right|_{x=1}=\left(\sqrt{2-(-1)^{2}}\right)^{3}=(\sqrt{2-1})^{3}=(\sqrt{1})^{3}=1 \quad(-1,1) \\
& \text { at } x=1:\left.y\right|_{x=1}=\left(\sqrt{2-(1)^{2}}\right)^{3}=(\sqrt{2-1})^{3}=(\sqrt{1})^{3}=1 \quad(1,1)
\end{aligned}
$$

endpoints:

$$
\begin{aligned}
& x=-\sqrt{2}:\left.y\right|_{x=-\sqrt{2}}=\left(\sqrt{2-(-\sqrt{2})^{2}}\right)^{3}=(\sqrt{2-2})^{3}=(\sqrt{0})^{3}=0 \quad(-\sqrt{2}, 0) \\
& x=\sqrt{2}:\left.y\right|_{x=\sqrt{2}}=\left(\sqrt{2-(\sqrt{2})^{2}}\right)^{3}=(\sqrt{2-2})^{3}=(\sqrt{0})^{3}=0 \quad(\sqrt{2}, 0)
\end{aligned}
$$

these endpoints are also local min.

40) $y=x^{2}+\frac{2}{x}=x^{2}+2 x^{-1} V \cdot A_{1}: x=0$ domain i $(-\infty, 0) \cup(0, \infty)$

$$
=\frac{x^{3}+2}{x}
$$

this function has an Oblique Asymptote $y=x^{2}$ [polynomial]

$$
\begin{aligned}
& \frac{d y}{\partial x}=[2 x]+2\left[-1 x^{-2}\right]=2 x-2 x^{-2}=2 x-\frac{2}{x^{2}}=\frac{2 x}{1}\left(\frac{x^{2}}{x^{2}}\right)-\frac{2}{x^{2}}=\frac{2 x^{3}-2}{x^{2}}=\frac{2\left(x^{3}-1\right)}{x^{2}} \\
& \frac{\partial^{2} y}{d x^{2}}=2[1]-2\left[-2 x^{-3}\right]=2+\frac{4}{x^{3}}=\frac{2 x^{3}+4}{x^{3}}
\end{aligned}
$$

critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{2\left(x^{3}-1\right)}{x^{2}} \\
& 0=\frac{2\left(x^{3}-1\right)}{x^{2}} \\
& 0=2\left(x^{3}-1\right) \\
& 0=x^{3}-1 \\
& 0=(x-1)\left(x^{2}+x+1\right) \\
& x-1=0 \\
& x=1 \quad x^{2}+x+1=0 \\
& \text { no real } \\
& \text { solution }
\end{aligned}
$$

inflection point

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=\frac{2 x^{3}+4}{x^{3}} \\
& 0=\frac{2 x^{3}+4}{x^{3}} \\
& 0=2 x^{3}+4 \\
& 0=2\left(x^{3}+2\right) \\
& 0=x^{3}+(\sqrt[3]{2})^{3} \\
& 0=(x+\sqrt[3]{2})\left(x^{2}-\sqrt[3]{2} x+(\sqrt[3]{2})^{2}\right) \\
& x+\sqrt[3]{2}=0 \mid x^{2}-\sqrt[3]{2} x+(\sqrt[3]{2})^{2}=0 \\
& x=-\sqrt[3]{2} \mid \text { no real solution }
\end{aligned}
$$

"full tats"

$\frac{\partial^{2} y}{d x^{2}} \frac{\text { C.U. }}{-\frac{1}{2}}$ CD. O
40) continued
at $x=1:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=2+\frac{4}{(1)^{3}}>0$ C.U. local min

$$
\begin{aligned}
& \left.y\right|_{x=1}=(1)^{2}+\frac{2}{(1)}=1+2=3 \quad(1,3) \\
& \text { at } x=-1:\left.\quad \frac{d y}{d x}\right|_{x=-1}=2(-1)-\frac{2}{(-1)^{2}}=-2-\frac{2}{1}=-4<0 \text { dec } \\
& \left.\quad \frac{d^{2} y}{\partial x^{2}}\right|_{x=-1}=2+\frac{4}{(-1)^{3}}=2+\frac{4}{-1}=2-4=-2<0 \quad \text { CAD } \\
& \text { at } x=-\sqrt[3]{2}:\left.y\right|_{x=-\sqrt[3]{2}}=\frac{(-\sqrt[3]{2})^{3}+2}{(-\sqrt[3]{2})}=\frac{-2+2}{-\sqrt[3]{2}}=\frac{0}{-\sqrt[3]{2}}=0 \quad(-\sqrt[3]{2}, 0)
\end{aligned}
$$

42) $y=\sqrt[3]{x^{3}+1}=\left(x^{3}+1\right)^{\frac{1}{3}}$
domain: $(-\infty, \infty)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{3}\left(x^{3}+1\right)^{-\frac{2}{3}}\left(3 x^{2}\right)=\frac{x^{2}}{\left(x^{3}+1\right)^{2 / 3}}=\frac{x^{2}}{\left(\sqrt[3]{x^{3}+1}\right)^{2}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{\left.\left(\left(x^{3}+1\right)^{2 / 3}\right)[2 x]-\left(x^{2}\right)\left[\frac{2}{3}\left(x^{3}+1\right)^{-\frac{1}{3}}\left(3 x^{2}\right)\right]\right]}{\left(\left(x^{3}+1\right)^{2 / 3}\right)^{2}}=\frac{2 x\left(\sqrt[3]{x^{3}+1}\right)^{2}-\frac{2 x^{4}}{\left(\sqrt[3]{x^{3+1}}\right)}}{\left(\sqrt[3]{x^{3+1}}\right)^{4}} \\
& =\frac{\frac{2 x\left(\sqrt[3]{x^{3}+1}\right)^{2}}{1}\left(\frac{\left(\sqrt[3]{x^{3}+1}\right)}{\left(\sqrt[3]{x^{3}+1}\right)}\right)-\frac{2 x^{4}}{\left(\sqrt[3]{x^{3}+1}\right)}}{\left(\sqrt[3]{x^{3}+1}\right)^{4}}=\frac{\frac{2 x\left(x^{3}+1\right)-2 x^{4}}{\sqrt[3]{x^{3}+1}}}{\left(\sqrt[3]{x^{3}+1}\right)^{4}} \\
& =\frac{2 x^{4}+2 x-2 x^{4}}{\left(\sqrt[3]{x^{3}+1}\right)^{5}}=\frac{2 x}{\left(\sqrt[3]{x^{3}+1}\right)^{5}}
\end{aligned}
$$

Critical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{x^{2}}{\left(\sqrt[3]{x^{3}+1}\right)^{2}} \\
& 0=\frac{x^{2}}{\left(\sqrt[3]{x^{3}+1}\right)^{2}} \\
& 0=x^{2} \\
& x=0
\end{aligned}
$$

also denominator 0

$$
\begin{aligned}
& \left.\left(\sqrt[3]{x^{3}+1}\right)^{2}=0 \quad \begin{array}{l}
x^{3}+1=0 \\
\sqrt[3]{x^{3}+1}=0
\end{array} \Rightarrow \begin{array}{l}
(x+1)\left(x^{2}-x+1\right)=0 \\
x+1=0 \\
x=-1
\end{array} \right\rvert\, \begin{array}{l}
x^{2}-x+1=0 \\
\text { no neal } \\
\text { solution }
\end{array}
\end{aligned}
$$

inflection point

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=\frac{2 x}{\left(\sqrt[3]{x^{3}+1}\right)^{5}} \\
& 0=\frac{2 x}{\left(\sqrt[3]{x^{3}+1}\right)^{5}} \\
& 0=2 x \\
& x=0
\end{aligned}
$$

also denominator 0
$\{$ see left $\}$

$$
x=-1
$$

42) continued
"full test"

$$
\begin{aligned}
& \text { at } x=-2 ;\left.\quad \frac{d y}{d x}\right|_{x=-2}=\frac{(-2)^{2}}{\left(\sqrt[3]{(-2)^{3}+1}\right)^{2}}=\frac{4}{(\sqrt[3]{-7})^{2}}>0 \text { INC. } \\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{x=-2}=\frac{2(-2)}{\left(\sqrt[3]{(-2)^{3}+1}\right)^{5}}=\frac{-4}{(\sqrt[3]{-7})^{5}}>0 \text { c.0. }
\end{aligned}
$$

at $x=\frac{-1}{2}:\left.\frac{d y}{d x}\right|_{x=\frac{1}{2}}=\frac{\left(\frac{-1}{2}\right)^{2}}{\left(\sqrt[3]{\left(\frac{-1}{2}\right)^{3}+1}\right)^{2}}>0$ INC

$$
\begin{equation*}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{-1}{2}}=\frac{2\left(\frac{-1}{2}\right)}{\left(\sqrt[3]{\left(\frac{1}{2}\right)^{3}+1}\right)^{5}}=\frac{-1}{\left(\sqrt[3]{-\frac{1}{8}+1}\right)^{5}}<0 \tag{CD.}
\end{equation*}
$$

$$
\text { at } x=1:\left.\frac{d y}{d x}\right|_{x=1}=\frac{(1)^{2}}{\left(\sqrt[3]{(1)^{3}+1}\right)^{2}}>0 \text { INC }
$$

$$
\left.\frac{\partial^{2} y}{d x^{2}}\right|_{x=1}=\frac{2(1)}{\left(\sqrt[3]{(1)^{3}+1}\right)^{5}}>0 \text { C. } 0
$$

at $x=-1$; this is an inflection point with slope undefined

$$
\left.y\right|_{x=-1}=\sqrt[3]{(-1)^{3}+1}=\sqrt[3]{-1+1}=\sqrt[3]{0}=0 \quad(-1,0)
$$

42) continued
at $x=0$: this is an inflection point with slope 0

$$
\left.y\right|_{x=0}=\sqrt[3]{(0)^{3}+1}=\sqrt[3]{1}=1 \quad(0,1)
$$

$$
\begin{aligned}
& \text { 44) } \begin{aligned}
y & =\frac{5}{x^{4}+5}=5\left(x^{4}+5\right)^{-1} \quad \begin{array}{c}
\text { V.A. : }
\end{array} \begin{array}{c}
x^{4}+5=0 \\
\text { no solution } \\
\text { none }
\end{array} \\
\frac{d y}{d x} & =5\left[-1\left(x^{4}+5\right)^{-2}\left(4 x^{3}\right)\right]=-20 x^{3}\left(x^{4}+5\right)^{-2}=\frac{-20 x^{3}}{\left(x^{4}+5\right)^{2}}
\end{aligned} \\
& \frac{d^{2} y}{d x^{2}}=\frac{\left.\left(\left(x^{4}+5\right)^{2}\right)\left[-60 x^{2}\right]-\left(-20 x^{3}\right)\left[26 x^{4}+5\right)^{\prime}\left(4 x^{3}\right)\right]}{\left(\left(x^{4}+5\right)^{2}\right)^{2}} \\
&=\frac{20 x^{2}\left(x^{4}+5\right)\left\{\left(x^{4}+5\right)[-3]-(-x)\left[8 x^{3}\right]\right\}}{\left(x^{4}+5\right)^{4}} \\
&=\frac{20 x^{2}\left\{-5 x^{4}-15+8 x^{4}\right\}}{\left(x^{4}+5\right)^{3}}=\frac{20 x^{2}\left\{5 x^{4}-15\right\}}{\left(x^{4}+5\right)^{3}}=\frac{100 x^{2}\left\{x^{4}-3\right\}}{\left(x^{4}+5\right)^{3}}
\end{aligned}
$$

vitical pointo

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{-20 x^{3}}{\left(x^{4}+5\right)^{2}} \\
& 0=\frac{-20 x^{3}}{\left(x^{4}+5\right)^{2}} \\
& 0=-20 x^{3} \\
& x=0
\end{aligned}
$$

inflection pointe

$$
\begin{aligned}
& 0=\frac{d^{2} y}{d x^{2}}=\frac{100 x^{2}\left\{x^{4}-3\right\}}{\left(x^{4}+5\right)^{3}} ;\left(x^{2}+\sqrt{3}\right)\left(x^{2}-\sqrt{3}\right)=0 \\
& 0=\frac{100 x^{2}\left\{x^{4}-3\right\}}{\left(x^{4}+5\right)^{3}} \quad\left\{\begin{array}{l}
\prime\left(x^{2}+\sqrt{3}\right)(x+\sqrt{\sqrt{3}})(x-\sqrt{3})=0 \\
\text { no soluteon }
\end{array}\right. \\
& 0=100 x^{2}\left\{x^{4}-3\right\} \Rightarrow x+\sqrt{3}=0 \quad x-\sqrt{\sqrt{3}}=0 \\
& 0=100 x^{2} ; x^{4}-3=0 \\
& x=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } x=-1:\left.\frac{d y}{d x}\right|_{x=1}=\frac{-20(-1)^{3}}{\left((-1)^{4}+5\right)^{2}}>0 \text { INC. }\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=\frac{100(-1)^{2}\left\{(-1)^{4}-3\right\}}{\left((-1)^{4}+5\right)^{3}}<0 \text { C.D. } \\
& \text { at } x=1:\left.\frac{d y}{d x}\right|_{x=1}=\frac{-20(1)^{3}}{\left((1)^{4}+5\right)^{2}}<0 \text { des. }\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=\frac{100(1)^{2}\left\{(1)^{4}-3\right\}}{\left((1)^{4}+5\right)^{3}}<0 \text { C.D. }
\end{aligned}
$$

so at $x=0$, we havea Local Max.

$$
\begin{align*}
& x=0 ;\left.\quad y\right|_{x=0}=\frac{5}{(0)^{4}+5}=\frac{5}{5}=1 \quad(0,1) \\
& x=-\sqrt[4]{3}:\left.y\right|_{x=-\sqrt[4]{3}}=\frac{5}{(-\sqrt[4]{3})^{4}+5}=\frac{5}{3+5}=\frac{5}{8} \quad\left(-\sqrt[4]{3}, \frac{5}{8}\right) \\
& x=\sqrt[4]{3}:\left.y\right|_{x: \sqrt[4]{3}}=\frac{5}{(\sqrt[4]{3})^{4}+5}=\frac{5}{3+5}=\frac{5}{8} \quad\left(\sqrt[4]{3}, \frac{5}{8}\right) \\
& \text { H.A.: } y=\lim _{x \rightarrow \infty} \frac{5}{x^{4+5}}=\lim _{x \rightarrow \infty} \frac{\frac{5}{x^{4}}}{\frac{x^{4}}{x^{4}+\frac{5}{x^{4}}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{5}{x^{4}}}{1+\frac{5}{x^{4}}}=\frac{0}{1+0}=0 \tag{4}
\end{align*}
$$

46) $y=\left|x^{2}-2 x\right|$
domain: $(-\infty, \infty)$
critical point

$$
\begin{aligned}
& 0=\frac{d y}{d x}= \begin{cases}2 x-2 & x<0 \\
2-2 x & 0<x<2 \\
2 x-2 & 2<x\end{cases} \\
& 0=2 x-2 \quad \begin{array}{l}
0=2-2 x \\
2=2 x
\end{array} \quad \begin{array}{l}
2 x=2 \\
1=x
\end{array} \quad x=1
\end{aligned}
$$

only I critical point in $0<x<2$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=-2$ C.D. Local max
$\left.y\right|_{x=1}=\left|(1)^{2}-2(1)\right|=|1-2|=-1 \mid=1 \quad(1,1)$
at $x=-1:\left.\frac{d y}{d x}\right|_{x=1}=2(-1)-2<0$ dee.
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-1}=2$ co.
at $x=3:\left.\frac{d y}{d x}\right|_{x=3}=2(\xi)-2>0$ INC.
inflection point

$$
\theta=\frac{d^{2} y}{d x^{2}}=\left\{\begin{array}{cl}
2 & x<0 \\
-2 & 0<x<2 \\
2 & 2<x
\end{array}\right.
$$

none (no solution)

$$
\begin{aligned}
& y= \begin{cases}\left(x^{2}-2 x\right) & x<0 \\
-\left(x^{2}-2 x\right)=2 x-x^{2} & 0 \leq x \leq 2 \\
\left(x^{2}-2 x\right) & 2<x a\end{cases} \\
& \frac{d y}{d x}= \begin{cases}2 x-2 & x<0 \\
2-2 x & 0<x<2 \\
2 x-2 & 2<x\end{cases} \\
& x^{2}-2 x=0 \\
& x(x-2)=0 \\
& x=\left.0\right|_{x=2} ^{x-2=0} \\
& \frac{d^{2} y}{d x^{2}}=\left\{\begin{array}{cl}
2 & x<0 \\
-2 & 0<x<2 \\
2 & 2<x
\end{array}\right.
\end{aligned}
$$

$$
\left.\frac{\partial^{2} y}{d x^{2}}\right|_{x=3}=2 \quad \text { c.0. }
$$

$\left.\begin{array}{l}\left.x=0:\left.y\right|_{x=0}=\left|(0)^{2}-2(0)\right|=0(0,0)\right\} \\ x=2:\left.y\right|_{x=2}=\left|(2)^{2}-2(2)\right|=0(2,0)\end{array}\right\}$ these points are cusp and local min.
48) $y=\sqrt{|x-4|}$

Since we have an absolute value inside 61 an even root, the domain is $(-\infty, \infty)$

$$
\begin{gathered}
y=\left\{\begin{array}{l}
\sqrt{-(x-4)}=\sqrt{4-x}=(4-x)^{\frac{1}{2}}, x<4 \\
\sqrt{(x-4)}=\sqrt{x-4}=(x-4)^{\frac{1}{2}}, 4 \leq x
\end{array} \quad x-4=0 \Rightarrow x=4\right. \\
\frac{d y}{d x}=\left\{\begin{array}{l}
\frac{1}{2}\left(4-x x^{-\frac{1}{2}}(-1)=\frac{-1}{2}(4-x)^{-\frac{1}{2}}=\frac{-1}{2 \sqrt{4-x}}, x<4\right. \\
\frac{1}{2}(x-4)^{\frac{-1}{2}}(1)=\frac{1}{2}(x-4)^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x-4}}, 4<x
\end{array} \quad \frac{d^{2} y}{d x^{2}}=\left\{\begin{array}{l}
\frac{1}{2}\left[\frac{1}{2}(4-x)^{-\frac{3}{2}}(-1)\right]=\frac{-1}{4(\sqrt{4-x})^{3}}, x<4 \\
\frac{1}{2}\left[\frac{1}{2}(x-4)^{-\frac{1}{2}}(1)\right]=\frac{-1}{4(\sqrt{x-4})^{3}}, 4<x
\end{array}\right.\right.
\end{gathered}
$$

Critical point

$$
0=\frac{d y}{d x}= \begin{cases}\frac{-1}{2 \sqrt{-x}} & x<4 \\ \frac{1}{2 \sqrt{x-4}} & 4<x\end{cases}
$$

no solution
denominator, $x=4$
inflection point

$$
0=\frac{d^{2} y}{d x^{2}}= \begin{cases}\frac{-1}{4(\sqrt{4-x})^{3}} & x<4 \\ \frac{-1}{4(\sqrt{x-4})^{3}} & 4<x\end{cases}
$$

nosolution
denominator $0, x=4$
x=0 "fullest"
1 at $x=4:\left.y\right|_{x=4}=\sqrt{|(4)-4|}=\sqrt{|0|}=0(4,0)$

this point is a cusp and local min

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{-1}{4(\sqrt{(x-(x)})^{3}}<0 \text { C.D. }
$$

at $x=5$: $\left.\frac{d y}{d x}\right|_{x=5}=\frac{1}{2 \sqrt{(9-4)}}>0$ IN C.

$$
\left.\frac{\partial^{2} y}{x^{2}}\right|_{x=5}=\frac{-1}{4 \sqrt{(5)-4}}<0 \text { C.D. }
$$

50) $y=\frac{x^{2}}{1-x}$

VIA.: $\underset{1=x}{1-x=0}$ domain: $(-\infty, 1) \cup(1, \infty)$
Oblique asymptote

$$
\begin{gathered}
-x+1 \frac{-x-1}{x^{2}+0 x+0} \\
\frac{-\left(x^{2}-x\right)}{+x+0} \\
\frac{-(x-11}{+1}
\end{gathered}
$$

$$
\begin{aligned}
\frac{d y}{\partial x} & =\frac{(1-x)[2 x]-\left(x^{2}\right)[-1]}{(1-x)^{2}}=\frac{2 x-2 x^{2}+x^{2}}{(1-x)^{2}}=\frac{2 x-x^{2}}{(1-x)^{2}} \\
\frac{\partial^{2} y}{d x^{2}} & =\frac{\left((1-x)^{2}\right)[2-2 x]-\left(2 x-x^{2}\right)\left[2(1-x)^{\prime}(-1)\right]}{\left((1-x)^{2}\right)^{2}}=\frac{2(1-x)\left\{(1-x)[1-x]-\left(2 x-x^{2}\right)[-1]\right.}{(1-x)^{4}} \\
& =\frac{2\left\{\left(1-2 x+x^{2}\right)+\left(2 x-x^{2}\right)\right\}}{(1-x)^{3}}=\frac{2\{1\}}{(1-x)^{3}}=\frac{2}{(1-x)^{3}}
\end{aligned}
$$

critical points

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{2 x-x^{2}}{(1-x)^{2}} \\
& 0=\frac{2 x-x^{2}}{(1-x)^{2}} \\
& 0=2 x-x^{2} \\
& 0=x(2-x) \\
& x=0 \left\lvert\, \begin{array}{l}
2-x=0 \\
x=2
\end{array}\right.
\end{aligned}
$$

inflection point

$$
0=\frac{d^{2} y}{d x^{2}}=\frac{2}{(1-x)^{3}}
$$

no solution
none
at $x=0:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=\frac{2}{(1-(0))^{3}}>0$ C.U. Local mim

$$
\left.y\right|_{x=0}=\frac{(0)^{2}}{1-(0)}=0 \quad(0,0)
$$

at $x=2:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=2}=\frac{2}{(1-(2))^{3}}<O$ C. P. Local Max

$$
\left.y\right|_{x=2}=\frac{(2)^{2}}{1-(2)}=\frac{4}{-1}=-4 \quad(2,-4)
$$

52) $y=(\ln x)^{2}$
domain: $(0, \infty)$

$$
\begin{aligned}
& \frac{d y}{d x}=2(\ln x)^{\prime}\left(\frac{1}{x}(1)\right)=\frac{2 \ln x}{x} \\
& \frac{d^{2} y}{d x^{2}}=\frac{(x)\left[2\left(\frac{1}{x}(1)\right)\right]-(2 \ln x)[1]}{(x)^{2}}=\frac{2-2 \ln x}{x^{2}}
\end{aligned}
$$

critical point.

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{2 \ln x}{x} \\
& 0=\frac{2 \ln x}{x} \\
& 0=2 \ln x \\
& 0=\ln x \\
& x=e^{0}=1
\end{aligned}
$$

inflection point

$$
\begin{aligned}
& 0=\frac{2-2 \ln x}{x^{2}} \\
& 0=2-2 \ln x \\
& 2 \ln x=2 \\
& \ln x=1 \\
& 0=\frac{d^{2} y}{d x^{2}}=\frac{2-2 \ln x}{x^{2}} \quad \frac{d y}{d x} 0\left(\frac{\text { dee. }}{\frac{\text { min }}{1} \text { INC. }}\right. \\
& \frac{d^{2} y}{d x^{2}} \circ \leftarrow \frac{C . U . \quad, \quad C . D .}{e} \\
& x=e^{\prime \prime}=e
\end{aligned}
$$

at $x=1:\left.\frac{\partial^{2} y}{\partial x^{2}}\right|_{x=1}=\frac{2-2 h(1)}{(1)^{2}}>0$ C. U. Local min

$$
\left.y\right|_{x=1}=(\ln (1))^{2}=(0)^{2}=0 \quad(1,0)
$$

at $x=e:\left.y\right|_{x=e}=(\ln (e))^{2}=(1)^{2}=1$

$$
(e, 1)
$$

54) $y=x e^{-x}=\frac{x}{e^{x}}$ domain: $(-\infty, \infty)$
H.A. $\quad \lim _{x \rightarrow \infty} x e^{-x}=\lim _{x \rightarrow \infty} \frac{x}{e^{x}} \leqslant \lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0 \Rightarrow y=0$ as $x \rightarrow \infty$ we will lear how to evaluate in section 4.5.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} x e^{-x}=(-\infty) e^{-(-\infty)}=(-\infty) e^{\infty}=(-\infty)(\infty)=-\infty \text { none } \\
& \frac{d y}{d x}=(x)\left[e^{-x}(-1)\right]+\left(e^{-x}\right)[1]=-x e^{-x}+e^{-x}=e^{-x}-x e^{-x}=e^{-x}(1-x)=\frac{1-x}{e^{-x}} \\
& \frac{d^{2} y}{d x^{2}}=\left\{(-x)\left[e^{-x}(-1)\right]+\left(e^{-x}\right)[-1]\right\}+\left[e^{-x}(-1)\right]=\left\{x e^{-x}-e^{-x}\right\}-e^{-x}=x e^{-x}-2 e^{-x} \\
&= e^{-x}(x-2)=\frac{x-2}{e^{x}}
\end{aligned}
$$

critical point inflectionpoint

$$
0=\frac{d y}{d x}=\frac{1-x}{e^{x}}
$$

$$
0=\frac{d^{2} y}{d x^{2}}=\frac{x-2}{e^{x}}
$$

$$
0=\frac{1-x}{e^{x}}
$$

$$
0=\frac{x-2}{e^{x}}
$$

$$
0=1-x
$$

$$
x=1
$$

$$
a t_{x=1}:\left.\frac{d^{2} y}{\partial x^{2}}\right|_{x=1}=\frac{(1)-2}{e^{(1)}}<0 \quad \text { CD } D_{1}
$$

Local Max

$$
\left.y\right|_{x=1}=\frac{(1)}{e^{(1)}}=\frac{1}{e} \quad\left(1, \frac{1}{e}\right)
$$

at $x=2,\left.y\right|_{z=2}=\frac{(2)}{e^{(2)}}=\frac{2}{e^{2}}$

$$
\left(2, \frac{2}{e^{2}}\right)
$$

56) $y=\frac{\ln x}{\sqrt{x}}=\frac{\ln x}{x^{\frac{1}{2}}} \quad$ domain: $(0, \infty)$

$$
\text { H.A.: } \lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{x}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0 \Rightarrow y=0 \text { as } x \rightarrow \infty
$$

we will learn haw to evaluate in section 4.5

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(x^{\frac{1}{2}}\right)\left[\frac{1}{x}(1)\right]-(\ln x)\left[\frac{1}{2} x^{\left.-\frac{1}{2}\right]}\right.}{\left(x^{\frac{1}{2}}\right)^{2}}=\frac{\frac{\sqrt{x}}{x}-\frac{\ln x}{2 \sqrt{x}}}{(\sqrt{x})^{2}}=\frac{\frac{1}{\sqrt{x}}-\frac{\ln x}{2 \sqrt{x}}}{(\sqrt{x})^{2}}=\frac{\frac{2-\ln x}{2 \sqrt{x}}}{(\sqrt{x})^{2}} \\
& =\frac{2-\ln x}{2(\sqrt{x})^{3}}=\frac{2-\ln x}{2 x^{3 / 2}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{\left(2 x^{3 / 2}\right)\left[\frac{-1}{x}(1)\right]-(2-\ln x)\left[2\left[\frac{3}{2} x^{\frac{1}{2}}\right]\right]}{\left(2 x^{3 / 2}\right)^{2}}=\frac{\frac{-2(\sqrt{x})^{3}}{x}-3 \sqrt{x}(2-\ln x)}{4(\sqrt{x})^{6}} \\
& =\frac{-2 \sqrt{x}-6 \sqrt{x}+3 \sqrt{x} \ln x}{4(\sqrt{x})^{6}}=\frac{3 \sqrt{x} \ln x-8 \sqrt{x}}{4(\sqrt{x})^{6}}=\frac{\sqrt{x}(3 \ln x-8)}{4(\sqrt{x})^{6}}=\frac{3 \ln x-8}{4(\sqrt{x})^{5}}
\end{aligned}
$$

critical point inflection point

$$
\begin{aligned}
& 0=\frac{d y}{d x}=\frac{2-\ln x}{2(\sqrt{x})^{3}} \\
& 0=\frac{2-\ln x}{2(\sqrt{x})^{3}} \\
& 0=\frac{d^{2} y}{d x^{2}}=\frac{3 \ln x-8}{4(\sqrt{x})^{5}} \\
& 0=\frac{3 \ln x-8}{4(\sqrt{x})^{5}} \\
& \frac{d y}{d x} \text { of } \frac{\text { INC. Max }}{e^{2}} \text { dec. } \\
& 0=2-\ln x \\
& 0=3 \ln x-8 \\
& \ln x=2 \\
& x=e^{2} \\
& 8=3 \ln x \\
& \frac{8}{3}=\ln x \\
& x=e^{\frac{8}{3}} \\
& \text { at } x=e^{2}:\left.\frac{d^{2} y}{d x^{2}}\right|_{x=e^{2}}=\frac{3 \ln \left(e^{2}\right)-8}{4\left(\sqrt{e^{2}}\right)^{5}}=\frac{3(2)-8}{4 e^{5}}<0 \text { C.D. Local Max } \\
& \left.y\right|_{x=e^{2}}=\frac{\ln \left(e^{2}\right)}{\sqrt{\left(e^{2}\right)}}=\frac{2}{e} \quad\left(e^{2}, \frac{2}{e}\right)
\end{aligned}
$$

56) continued
at $x=e^{\frac{8}{3}}:\left.y\right|_{x=e^{\frac{8}{3}}}=\frac{\ln \left(e^{\frac{8}{3}}\right)}{\sqrt{\left(e^{\frac{8}{3}}\right)}}=\frac{\frac{8}{3}}{e^{\frac{8}{3}}}=\frac{8}{3 e^{4 / 3}} \cdot\left(e^{8 / 3}, \frac{8}{3 e^{4 / 3}}\right)$

57) $y=\frac{e^{x}}{1+e^{x}}$
V.A.: $1+e^{x}=0$
no solution none domain: $(-\infty, \infty)$

$$
\begin{aligned}
& H . A_{1}: \lim _{x \rightarrow \infty} \frac{e^{x}}{1+e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{e^{x}}{e^{x}}}{\frac{1}{e^{x}}+\frac{e^{x}}{e^{x}}}=\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{e^{x}+1}}=\frac{1}{0+1}=\frac{1}{1}=1 \quad \begin{array}{c}
y=1 \\
a x \rightarrow \infty
\end{array} \\
& \lim _{x \rightarrow-\infty} \frac{e^{x}}{1+e^{x}}=\frac{0}{1+0}=0 \quad y=0 \quad \text { as } x \rightarrow-\infty \\
& \frac{d y}{\partial x}=\frac{\left(1+e^{x}\right)\left[e^{x}(1)\right]-\left(e^{x}\right)\left[e^{x}(1)\right]}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}+e^{2 x}-e^{2 x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{\left(\left(1+e^{x}\right)^{2}\right)\left[e^{x}(1)\right]-\left(e^{x}\right)\left[2\left(1+e^{x}\right)^{\prime}\left(e^{x}(1)\right)\right]}{\left(\left(1+e^{x}\right)^{2}\right)^{2}} \\
&=\frac{e^{x}\left(1+e^{x}\right)\left\{\left(1+e^{x}\right)[1]-\left(e^{x}\right)[2]\right\}}{\left(1+e^{x}\right)^{4}}=\frac{e^{x}\left\{1+e^{x}-2 e^{x}\right\}}{\left(1+e^{x}\right)^{3}}=\frac{e^{x}\left\{1-e^{x}\right\}}{\left(1+e^{x}\right)^{3}}
\end{aligned}
$$

58) continued
critical point inplectionpoint at $x=1:\left.\frac{d y}{d x}\right|_{x=1}=\frac{e^{(1)}}{\left(1+e^{(1)}\right)^{2}}>0$ IN G,

$$
\begin{aligned}
& 0=\frac{\partial y}{d x}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}} \\
& 0=\frac{e^{x}}{\left(1+e^{x}\right)^{2}} \\
& 0=e^{x}
\end{aligned}
$$

$$
0=\frac{\partial^{2} y}{\partial x^{2}}=\frac{e^{x}\left\{1-e^{x}\right\}}{\left(1+e^{x}\right)^{3}}
$$

$$
\left.\frac{d^{2} y}{\partial x^{2}}\right|_{x=1}=\frac{e^{(1)}\left\{1-e^{(1)}\right\}}{\left(1+e^{(1)}\right)^{3}}<0 \text { C, D, }
$$

$$
0=\frac{e^{x}\left\{1-e^{x}\right\}}{\left(1+e^{x}\right)^{3}}
$$

$$
\text { at } x=0:\left.y\right|_{x=0}=\frac{e^{(0)}}{1+e^{(0)}}=\frac{1}{1+1}=\frac{1}{2}
$$

$$
0=e^{x}\left\{1-e^{x}\right\}
$$

no solution
none

$e^{x}=0$	$1-e^{x}=0$
no solution	$e^{x}=1$

"full test"
$\frac{d y}{d x}$
INC.

