Definition:

The graph of a differentiable function y = f(x) is (a) concave up on an open interval *I* if $\frac{df}{dx}$ is increasing on *I*. (b) concave down on an open interval *I* if $\frac{df}{dx}$ is decreasing on *I*.

The Second Derivative Test for Concavity

Let
$$y = f(x)$$
 be twice-differentiable on an interval *I*.
1. If $\frac{d^2 f}{dx^2} > 0$ on *I*, the graph of $f(x)$ over *I* is concave up.
2. If $\frac{d^2 f}{dx^2} < 0$ on *I*, the graph of $f(x)$ over *I* is concave down.

Definition:

A point (c, f(c)) where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.

At a point of inflection
$$(c, f(c))$$
, either $\frac{d^2 f}{dx^2}\Big|_{x=c} = 0$ or $\frac{d^2 f}{dx^2}\Big|_{x=c}$ fails to exist.

Theorem 5 – Second Derivative Test for Local Extrema
Suppose
$$\frac{d^2 f}{dx^2}$$
 is continuous on an open interval that contains $x = c$.
1. If $\frac{df}{dx}\Big|_{x=c} = 0$ and $\frac{d^2 f}{dx^2}\Big|_{x=c} < 0$, then $f(x)$ has a local maximum at $x = c$.
2. If $\frac{df}{dx}\Big|_{x=c} = 0$ and $\frac{d^2 f}{dx^2}\Big|_{x=c} > 0$, then $f(x)$ has a local minimum at $x = c$.
3. If $\frac{df}{dx}\Big|_{x=c} = 0$ and $\frac{d^2 f}{dx^2}\Big|_{x=c} = 0$, then the test fails. The function $f(x)$ may have a local maximum, a local minimum, or neither at $x = c$.

Instead of using the Procedure for Graphing y = f(x), on page 248 of your text, I'll be using more detailed procedure shown on next page.

Check the figure that summarizes how the first derivative and second derivative affect the shape of a graph on page 251 of your textbook.

The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because the steps below must be modified.

Step 1:

Determine if the function is rational or polynomial. If the function is a polynomial then the domain is $(-\infty, \infty)$ and skip to step 5

Step 2:

Determine if the rational function is proper or improper. If it is proper (or improper with numerator and denominator of the same degree) then apply limit as $x \to \pm \infty$ to the function to find the Horizontal Asymptote, and go to step 4.

Step 3:

For the improper fraction with degree of numerator greater than degree of denominator, do a long polynomial division (numerator divided by denominator) to break up the rational expression into a simple polynomial and a fraction at the end. The simple polynomial is your oblique asymptote (not vertical).

Step 4:

Find the vertical asymptotes. If you have a real number solution, then the solution(s)s is/are the vertical asymptote. The domain is all real numbers with values of the asymptotes removed.

Step 5:

Find y-intercept (set x = 0), if exists.

Step 6:

Find the first and second derivatives if necessary.

Step 7:

Draw 2 lines one for first derivative and the other for second derivative. Each line must be the same amount as the intervals of the domain.

Step 8:

Compute the Critical Points (by setting first derivative equal to 0) and Inflection Points (by setting second derivative equal to 0). If you have real number solution, then label on the lines created in step 7.

Step 9:

Only when a critical number is unique (the value is not a solution of inflection points), apply the second derivative test on the value. With this information we can find if it is a local maximum or minimum and predict the behavior surrounding this critical value. Otherwise, use a full test (take a test point on the interval and compute the value of its first and second derivatives to find the behavior).

Step 10:

Compute the *y* value of all critical and inflection points and sketch the graph.

To illustrate the steps above, a curve sketching of a polynomial and rational functions are show on following pages (page 2 to page 6).

Example 1: $y = 2 + 3x^2 - x^3$ **Step 1**: Function is polynomial. Domain: $(-\infty, \infty)$ **Step 5**: y-intercept: $y = 2 + 3(0)^2 - (0)^3 = 0 \implies y = 0$ $\frac{dy}{dx} = 0 + 3[2x] - [3x^2] = 6x - 3x^2$ $\frac{d^2y}{dx^2} = 6[1] - 3[2x] = 6 - 6x$ Step 6: Step 7: dy \overline{dx} $\frac{d^2 y}{dx^2}$ Step 8: Critical points $0 = \frac{dy}{dx} = 6x - 3x^2 \implies 0 = 3x(2 - x) \implies 3x = 0 \quad 2 - x = 0$ $x = 0 \quad x = 2$ $0 = 6x - 3x^2$ Inflection points $0 = \frac{d^2 y}{dx^2} = 6 - 6x \implies 0 = 6(1 - x) \implies 1 - x = 0$ x = 1 $\frac{dy}{dx}$ 0 2 $\frac{d^2 y}{dx^2}$ 1 Step 9: $\frac{d^2 y}{dx^2}$ $\frac{d^2 y}{dx^2}$ = 6 - 6(0) > 0 C.U. local min. = 6 - 6(2) < 0C.D. local max. Local max. Local min. dy \overline{dx} 0 2 C.U. C.D. $\frac{d^2 y}{dx^2}$

Now that we determine all missing information with our knowledge of local minimum and maximum.

Example 2:

Steps 1 and 2: Improper rational function with degree of numerator same as degree of denominator.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{x^2}{x^2 + 9} = \lim_{x \to \infty} \frac{\frac{x}{x^2}}{\frac{x^2}{x^2} + \frac{9}{x^2}} = \lim_{x \to \infty} \frac{1}{1 + \frac{9}{x^2}} = \frac{1}{1 + 0} = \frac{1}{1} = 1$$

2

We have a horizontal asymptote of y = 1

Step 4:
$$x^{2} + 9 = 0$$
 no solution Domain: $(-\infty, \infty)$
Step 5: $y = \frac{(0)^{2}}{(0)^{2} + 9} = 0$
 $\frac{dy}{dx} = \frac{(x^{2} + 9)[2x] - (x^{2})[2x]}{(x^{2} + 9)^{2}} = \frac{2x\{(x^{2} + 9)[1] - (x^{2})[1]\}}{(x^{2} + 9)^{2}} = \frac{2x\{9\}}{(x^{2} + 9)^{2}} = \frac{18x}{(x^{2} + 9)^{2}}$
Step 6: $\frac{d^{2}y}{dx^{2}} = \frac{\{((x^{2} + 9)^{2})[18] - (18x)[2(x^{2} + 9)^{1}(2x)]\}}{((x^{2} + 9)^{2})^{2}} = \frac{18(x^{2} + 9)\{(x^{2} + 9)[1] - (x)[4x]\}}{(x^{2} + 9)^{4}}$
 $= \frac{18\{x^{2} + 9 - 4x^{2}\}}{(x^{2} + 9)^{3}} = \frac{18\{9 - 3x^{2}\}}{(x^{2} + 9)^{3}}$
Step 7:

 $\frac{dy}{dx}$

 $\frac{d^2 y}{dx^2}$

Step 8:

Critical points

$$0 = \frac{dy}{dx} = \frac{18x}{(x^2 + 9)^2} \implies 0 = \frac{18x}{(x^2 + 9)^2} \implies 18x = 0$$

Inflection points $l^2 = 1800$

$$0 = \frac{d^2 y}{dx^2} = \frac{18\{9 - 3x^2\}}{(x^2 + 9)^3} \qquad 0 = 18\{9 - 3x^2\} \\ \Rightarrow \qquad 0 = 18(3)(3 - x^2) \\ 0 = \frac{18\{9 - 3x^2\}}{(x^2 + 9)^3} \qquad 0 = 18(3)(\sqrt{3} + x)(\sqrt{3} - x) \\ = 0 = 18(3)(\sqrt{3} + x)(\sqrt{3} - x) \\ = 0 = 18(3)(\sqrt{3} - x) \\$$

Step 9: $\frac{d^2 y}{dx^2}\Big|_{x=0} = \frac{18\{9-3(0)^2\}}{((0)^2+9)^3} > 0$ C.U. local min.

Now that we determine all missing information with our knowledge of local minimum and maximum.

2) $y = \frac{1}{2}x^4 - 2x^2 + 4$ domain: (-00,00) $\frac{\partial y}{dx} = \frac{1}{6} \left[\frac{4}{3} \right] - 2 \left[2x \right] + \left[0 \right] = x^3 - 4x$ $\frac{d^2y}{dx^2} = [3x^2] - 4[1] = 3x^2 - 4$ critical points inflection points $0 = \frac{dy}{dx} = 2c^3 - 4x$ $0 = \frac{\partial^2 y}{\partial x^2} = 3x^2 - y$ 0=3x2-4 $0 = \chi^3 - 4\chi$ $O = (\sqrt{3} \times + 2)(\sqrt{3} \times - 2)$ $\mathcal{O} = \chi \left(\chi^2 - 4 \right)$ V3 2+2=0 1 V3 2-2=0 0 = (x+2)(x)(x-2)X+2=0 x=D X-Z=0 $\frac{\partial^2 y}{\partial x^2} = 3(0)^2 + < 0$ x=-2 dy =3(2)2-4>D $\frac{d^2 y}{dx^2} = 3(-2)^2 - 4 > 0$ dx2 x=1 C.P. [Concove Down] C. U. see pg 11 for calculation Local Masc local min (2,0) C.U. {Concove Up} (0, 4)local min (-2,0) Increasing : (-2,0), (2,00) Local dy dec. local INC Man dec INC decreasing: (-00, -2), (0, 2) In Concove Up: (-00, -2) (2, 00) 12 C.U. C.D. C.U. Concave Down: (-2 2)

8 4) $y = \frac{q}{14} x^{\frac{1}{3}} (x^2 - 7) = \frac{q}{14} (x^{\frac{1}{3}} - 7x^{\frac{1}{3}})$ domain; (-00,00) $\frac{\partial y}{\partial x} = \frac{9}{14} \left(\left[\frac{7}{3} \times \frac{4}{3} \right] - 7 \left[\frac{1}{3} \times \frac{4}{3} \right] \right) = \frac{9}{14} \left(\frac{7}{3} \times \frac{4}{3} - \frac{7}{3} \times \frac{7}{3} \right) = \frac{3}{2} \left(\times \frac{4}{3} - \frac{7}{3} \right)$ $=\frac{4}{14} \left(\frac{7}{3}\right) \left(\left(\frac{3}{\sqrt{x}}\right)^{4} - \frac{1}{\left(\frac{3}{\sqrt{x}}\right)^{2}} \right) = \frac{3}{2} \left(\frac{(3\sqrt{x})^{4}}{1} \left(\frac{(3\sqrt{x})^{2}}{(\sqrt{x})^{2}}\right) - \frac{1}{(3\sqrt{x})^{2}} \right) = \frac{3}{2} \left(\frac{(3\sqrt{x})^{6} - (1)^{2}}{(\sqrt{x})^{2}} \right)$ $=\frac{3}{2}\left(\frac{2c^2-1}{(3/2)^2}\right)$ $\frac{\partial^{3} y}{\partial x^{2}} = \frac{3}{2} \left(\left[\frac{4}{3} \times \frac{1}{3} \right] - \left[\frac{-2}{3} \times \frac{-5}{3} \right] \right) = \frac{3}{2} \left(\frac{4(3\pi)}{3} + \frac{2}{3(3\pi)^{5}} \right)$ $=\frac{3}{2}\left(\frac{4(\sqrt[3]{x})}{3}\left(\frac{(\sqrt[3]{x})}{(\sqrt[3]{x})}\right)+\frac{2}{3(\sqrt[3]{x})}\right)=\frac{3}{2}\left(\frac{4(\sqrt[3]{x})}{3(\sqrt[3]{x})}+\frac{2}{(\sqrt[3]{x})}\right)=\frac{2x^{2}+1}{(\sqrt[3]{x})^{5}}$ critical points inflection points $0 = \frac{\partial \chi}{\partial x} = \frac{3}{2} \left(\frac{\chi^2 - 1}{(3\sqrt{\chi})^2} \right)$ $0 = \frac{d^2 y}{dx^2} = \frac{2x^2 + 1}{(3\sqrt{x})^5} \quad \text{denominator} = 0$ (3/x) 5=0 $O = \frac{2x^2 + 1}{(\sqrt[3]{x})^3}$ $0 = \frac{3}{2} \left(\frac{x^{2} - 1}{(3) - 1^{2}} \right)$ $3\sqrt{x}=0$ (0,0) x=0 (0,0) 0=22-1 0=2x2+1 no solution 0=(x+1)(x-1) see pg 12 for calculation 2(+1=0 dy INC, dec X dec INC dx -1 0 1 x=-1 $\frac{\partial^2 y}{\partial x^2}\Big|_{x=1} = \frac{2(-1)^2 + 1}{(\sqrt[3]{(-1)})^5} < 0 \quad \frac{\partial^2 y}{\partial x^2}\Big|_{x=1} = \frac{2(1)^2 + 1}{(\sqrt[3]{(-1)})^5} > 0$ $\frac{d^2y}{dx^2}$ C.D. χ C.U. C.D. (-1, 27) C.U. Local Max (-1, 27) local min (1, 27) influction point: (0,0) Increasing: (-00,-1), (1,00) Concave Up: (0, 00) Concare Down: (-00,0) decreasing: (-1, 0) U (0, 1)

6) y= tan x - 4x -# 2207 dy = [sec²x (1)] - 4[1] = sec²x - 4 critical points (inflection points $0 = \frac{dy}{dx} = Alc^2 x - 4$ 1 0= dry = 2 see x tan x 0=2 sec2 x tan x 0 = Alc2x - 4 2 see² x = 0 | tan x = 0 discard | x = 0 (0,0) 0 = (secx + 2)(secx - 2) Sec x +2=0 Secx - 2 = 6 QI: x= I Alex = Z Alex=-2 $\frac{\partial^{2} y}{\partial x^{2}} = 2 \operatorname{sec}^{2} \left(\frac{27}{3}\right) \tan \left(\frac{37}{3}\right) = 2(2)^{2} (F_{3}) > 0$ 1 = 2 coax y core = -2 C.U. local min (77 J3-477) co2x = 1 QII : x= 7 CO2x = -1 $\frac{\partial y}{\partial x^2} = 2 \sec^2\left(\frac{-y}{3}\right) \tan\left(\frac{-y}{3}\right) = 2(z)^2(-\sqrt{3}) < 0$ discord notin (7, T) C. D. Local Max (-7 47-53) see pg 12 for calculation dec. INC.) 7/2 T dy -TI (INC. Max Jx Z -TI d2y -77 € C.D. C, V. 17 Increasing: (==,==), (=,=) Concave Up: (0,=) decreasing : (-];]) Concave Lown: (-7, 0)

10 8) y=2 conx - J2 x $-\mathcal{U} \leq z \leq \frac{3\pi}{2}$ $\frac{dY}{dx} = 2[-\sin x(1)] - \sqrt{2}[1] = -2\sin x - \sqrt{2}$ $\frac{\partial^2 \psi}{\partial z} = -2 \left[\cos x \left(1 \right) \right] = -2 \cos x$ critical point [inflection point $0 = \frac{dy}{dx} = -2 \sin x - \sqrt{2}$ $0 = \frac{\partial^2 \chi}{\partial x^2} = -2\cos x \Rightarrow 0 = -2\cos x \Rightarrow \cos x = 0$ $x = \frac{\pi}{2} : \mathcal{Y}_{12} = \frac{\pi}{2} = 2 \cos\left(\frac{\pi}{2}\right) - \int_{\Sigma} \left(\frac{\pi}{2}\right) = 2(0) + \pi \int_{\Sigma} = \pi \int_{\Sigma}$ 0=-2 sinx - JZ (== TJZ) 2 Nin x = - J2 x= ?: y/x= = 2 con (王)-52(王)=210)- なりを=- かしを (王-なしを) $\operatorname{Min} x = \frac{-\sqrt{2}}{2} = \frac{-1}{\sqrt{2}}$ x: 37 : since 37 is an endpoint we will not get a concavity change here. $\chi = \frac{-3\chi}{4}$ $\frac{\int_{-\frac{1}{2}}^{\frac{1}{2}}}{\int_{-\frac{1}{2}}^{\frac{1}{2}}} = -2\cos\left(\frac{-3\pi}{4}\right) = -2\left(\frac{-1}{\sqrt{2}}\right) > 0 \quad C, U. \quad local min$ $\mathcal{Y}_{x} = \frac{3\pi}{2} = 2\cos\left(\frac{-3\pi}{4}\right) - \int_{\Sigma} \left(\frac{-3\pi}{4}\right) = 2\left(\frac{-1}{\sqrt{2}}\right) + \frac{3\pi}{4} = -\int_{\Sigma} + \frac{3\pi}{4} \int_{\Sigma} = \frac{-4\sqrt{2}}{4} + \frac{3\pi}{4} \int_{\Sigma}$ = 3275-452 (-37 375-452) $\chi = \frac{-\gamma}{\varphi}$ $\frac{d^2 y}{d\pi^2} = -2 \cos\left(\frac{-\pi}{\varphi}\right) = -2\left(\frac{1}{\sqrt{z}}\right) < 0 \quad C, D, \quad Local Max \quad \left(\frac{-\pi}{\varphi}, \frac{4\sqrt{z} + \pi\sqrt{z}}{\varphi}\right)$ $\frac{1}{2} \int_{x=\frac{\pi}{4}} = 2\cos\left(\frac{-\pi}{4}\right) - \int_{z} \left(\frac{-\pi}{4}\right) = 2\left(\frac{1}{\sqrt{z}}\right) + \frac{\pi}{4} \int_{z} = \sqrt{z} + \frac{\pi}{4} \int_{z} = \frac{4\sqrt{z}}{4} + \frac{\pi}{4} \int_{z} = \frac{4\sqrt{z}}{4} + \frac{\pi}{4} \int_{z}$ $\chi = \frac{57}{4}$ $\frac{d^2 y}{dx^2} \bigg|_{x=\frac{5\pi}{4}} = -2\cos\left(\frac{5\pi}{4}\right) = -2\left(\frac{-1}{52}\right) > 0 \quad (, U. local min \left(\frac{5\pi}{4}, \frac{-452 - 5\pi 52}{4}\right)$ $\mathcal{Y}_{x} = \frac{5\pi}{4} = 2\cos\left(\frac{5\pi}{4}\right) - \sqrt{2}\left(\frac{5\pi}{4}\right) = 2\left(\frac{1}{\sqrt{2}}\right) - \frac{5\pi}{4} = -\sqrt{2} - \frac{5\pi\sqrt{2}}{4} = \frac{-4\sqrt{2} - 5\pi\sqrt{2}}{4}$

8) continued

(continued
local Local A
$\frac{dy}{dx} - \frac{\pi}{10} \frac{dec.}{100} \frac{min}{INC}, \frac{max}{100} \frac{local}{INC} \frac{100}{37}$
4 4 4
$\frac{\partial^2 y}{\partial x^2} - \pi \begin{bmatrix} C. v. & C. v. & C. v. \\ -\pi & \pi & -\pi \end{bmatrix} = \frac{3\pi}{2}$
Z Z
Since this function is evaluated on a closed interval
we must check the endpoints for extrema.
y/x=-y=2 con (-71)-JZ(-71)=2(-1)+71 JZ = 71 JZ -2 (-71, 71 JZ-2) Local Max
$\mathcal{Y} _{x:\frac{3\pi}{2}} = 2\cos(\frac{3\pi}{2}) - \int_{\Sigma}(\frac{3\pi}{2}) = 2(0) - 3\pi\int_{\Sigma} = -3\pi\int_{\Sigma}(\frac{3\pi}{2}, -3\pi\int_{\Sigma})\log(1-1)$
Increasing: $\left(\frac{-37}{4}, \frac{-7}{4}\right), \left(\frac{57}{4}, \frac{37}{2}\right)$ (on cave $\mathcal{U}_{p}: \left(-7, \frac{-7}{4}\right), \left(\frac{7}{4}, \frac{37}{2}\right)$
decreasing: $(-\pi, -\frac{3\pi}{4}), (-\frac{\pi}{4}, -\frac{5\pi}{4})$ Concave Down: $(-\frac{\pi}{2}, -\frac{\pi}{2})$
2) continued
$\mathcal{Y} _{x=-2} = \frac{1}{4}(-2)^4 - 2(-2)^2 + 4 = 4 - 8 + 4 = 0$ (-2,0)
$y _{x=0} = \frac{1}{4}(0)^{4} - 2(0)^{2} + 4 = 4 (0, 4)$
$\mathcal{Y} _{x=2} = \frac{1}{6}(2)^4 - 2(2)^2 + 4 = 4 - 8 + 4 = 0$ (2,0)
$\mathcal{Y}_{1x}:= \frac{1}{7} = \frac{1}{7} \left(\frac{1}{7}\right)^{4} - 2 \left(\frac{1}{7}\right)^{2} + 4 = \frac{4}{9} - \frac{8}{3} + 4 = \frac{4}{9} - \frac{24}{9} + \frac{36}{9} = \frac{16}{9} \left(\frac{-2}{73}, \frac{16}{9}\right)$
$\mathcal{Y}_{x=\frac{2}{5}} = \frac{1}{4} \left(\frac{2}{5}\right)^{4} - 2 \left(\frac{2}{5}\right)^{2} + 4 = \frac{4}{9} - \frac{8}{3} + 4 = \frac{4}{9} - \frac{24}{9} + \frac{36}{9} = \frac{16}{9} \left(\frac{2}{5}, \frac{16}{9}\right)$
7, 4)

4) continued

 $y = \frac{9}{14} \times \frac{1}{3} (x^2 - 7) = \frac{9}{14} (\sqrt[3]{x}) (x^2 - 7)$ $\frac{3}{2} = \frac{9}{14} \left(\frac{3}{10} \right) \left((0)^2 - 7 \right) = 0 \quad (0, 0)$ $\mathcal{Y}_{x=-1} = \frac{q}{14} \left(\sqrt[3]{(-1)} \left((-1)^2 - 7 \right) \right) = \frac{q}{14} \left((-1) \left((-6) \right) = \frac{27}{14} \left((-1) \frac{27}{14} \right)$ $y|_{x=1} = \frac{9}{14} \left(\sqrt[3]{(1)} \left((1)^2 - 7 \right) = \frac{9}{14} \left(1 \right) \left(-6 \right) = \frac{-27}{-47} \left(1 - \frac{27}{47} \right)$ 6) continued $y_{1} = tan(0) - 4(0) = (0) - 0 = 0$ (0,0) $\mathcal{Y}|_{x=\frac{34}{2}} = tan(\frac{3}{3}) - \mathcal{Y}(\frac{3}{3}) = (\frac{\sqrt{3}}{2}) - \frac{\sqrt{3}}{3} = \sqrt{3} - \frac{\sqrt{3}}{3} = (\frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3})$ H2==== tan (==)-4(==)= (-5)+4== 4=-5 (== 4=-5) domain: (-00,00) 10) y=6-2x-x2 $\frac{\partial y}{\partial x} = [0] - 2[1] - [2x] = -2 - 2xi \qquad \frac{\partial y}{\partial x} = \frac{1}{\sqrt{2}}$ dec 12y C.D. 0 - 2 [1] = -2 (-1,7) - 8 critical points ; inflection point $0 = \frac{dy}{dx} = -2 - 2x$ $10 = \frac{d^2y}{dx^2} \neq 2$ none 0=-2-22 2x = -2 26=-1 =-2<0 C.D. Local Max 4/x== 6-2(-1)-(-1)2=6+2-1=7 (-1,7)

domain: (-00,00) $12) y = x (6 - 2x)^2$ $y = x(36 - 24x + 4x^2) = 36x - 24x^2 + 4x^3$ $\frac{dy}{dx} = 36[1] - 24[2x] + 4[3x^2] = 36 - 48x + 12x^2 = 12(3 - 4x + x^2)$ $\frac{d'y}{dt} = (0) - 48(1) + 12(2x) = -48 + 24x = 24(x-2)$ inflection point $0 = \frac{d^2y}{d^2} = 24(x-2)$ $y_{1} = (2)(6-2(2))^{2} = 2(6-4)^{2} = 2(2)^{2}$ = 8 (2,8) 0=24(x-2) D = x - 2257 1-x=0 => x=1 critical points $\frac{d'y}{dx^2} = 24((1)-2) = 24(-1) < 0 \quad C, D.$ 0= dy= 12(3-4x+x2) Local Max (1, 16) $0 = 12(3 - 4x + x^2)$ $\mathcal{Y}_{n=1} = (1) (6 - 2(1))^2 = (1) (4)^2 = 16$ $D = 3 - 4x + x^2$ 3-x=0 => x=3 0 = (1 - x)(3 - x) $\frac{\partial^2 y}{\partial x^2} = 24((3)-2) = 24(1) > 0 \quad C.U.$ (3,0)local min $y|_{x=3} = (3) (6-2(3))^2 = (3)(0)^2 = 0$

(1,16) 12) continued dy INC Mose dec min INC (2,8) $\frac{d^2y}{dx^2}$ C.D C.U. domain: (-00,00) 14) y=1-9x-6x2-x3 $\frac{dy}{dx} = [o] - 9[1] - 6[2x] - [3x^2] = -9 - 12x - 3x^2 = -3(x^2 + 4x + 3)$ $\frac{d^2 y}{dx^2} = [0] - 12[1] - 3[2x] = -12 - 6x = -6(x+2)$ inflection point $0 = \frac{d^2 y}{dx^2} = -6(x+2) \qquad y \Big|_{x=-2} = |-9(-2) - 6(-2)^2 - (-2)^3$ = 1 + 18 - 24 + 8 = 3 0 = -6(x+2)(-2,3)0=x+2=> x=-2 critical points x+3=0 => x=-3 $\frac{d^2y}{dx^2} = -6((-3)+2) = -6(-1) > 0 \quad C.U.$ $0 = \frac{dy}{dx} = -3(x^2 + 4x + 3)$ (-3, 1)local min 0=-3(x2+4x+3) $y_{1_{x=-3}} = 1 - 9(-3) - 6(-3)^2 - (-3)^3 = 1 + 27 - 54 + 27 = 1$ $0 = x^2 + 4x + 3$ x+(=0=) x=-1 0 = (x+3)(x+1) $\frac{d^2 y}{dx^2} = -6((-1)+2) = -6(1) < 0 \quad C \cdot D,$ Local Max (-1, 5) $y|_{x=-1} = [-9(-1)-b(-1)^2-(-1)^3 = [+9-b+1] = 5$ (-1,5)

15 14) continued dy dec min INC Max dec (-1,5) (-2,3) dry (.U. dr2 -2 × C.D. =2 domain; (-ao, oo) $16) \quad y = 1 - (x+1)^3$ $\frac{\partial y}{\partial x} = [0] - [3(x+1)^2(1)] = -3(x+1)^2 \qquad \frac{\partial^2 y}{\partial x^2} = -3[2(x+1)'(1)] = -6(x+1)$ [x=-2) "full test" [re= 0] critical point inflection point $0 = \frac{dy}{dx} = -3(x+1)^2 \qquad 0 = \frac{d^2y}{dx^2} - 6(x+1) \qquad \frac{dy}{dx} \qquad \frac{dec.}{dx} = -1$ dec. $0 = -3(x+1)^2$ 0=-6(x+1) D= (x+1)2 0=2+1 $\frac{\partial^2 y}{\partial x^2} = \frac{C.U.}{-1}$ DEXI x=-1 2:1 x= 1 is an inflection point with slope at x=2: $\frac{dy}{dx} = -3((-2)+1)^2 = -3(-1)^2 < 0 dec.$ $\mathcal{Y}|_{\mathbf{x}=-1} = [-((-1)+1)^3 = [-(0)^3 = 1 (-1,1)]$ $\frac{\partial^2 y}{\partial x^2}\Big|_{xz-2} = -6((-2)+1) = -6(-1) > 0 \quad C. \ U.$ (-1,1) at x=0: dy = -3((0)+1)²=-3(1)²<0 dec. -2 $\frac{d^2y}{dx^2} = -6(L_0) + 1) = -6(1) < 0 \quad C, D.$

$$| b | = -x^{4} + 6x^{2} - 4 = x^{2}(6-x^{2}) - 4 \quad domain: (-\infty, \infty)$$

$$| dy = -[4x^{3}] + 6[2x] - [0] = -4x^{3} + 12x = -4x(x^{2} - 3)$$

$$| dx^{2} = -4[3x^{2}] + 12[1] = -12x^{2} + 12 = -12(x^{2} - 1)$$

$$| dx^{2} = -4x(x^{2} - 3) \quad 0 = \frac{d^{2}y}{dx^{2}} = -12(x^{2} - 1)$$

$$| 0 = \frac{d^{2}y}{dx} = -4x(x^{2} - 3) \quad 0 = \frac{d^{2}y}{dx^{2}} = -12(x^{2} - 1)$$

$$| 0 = \frac{d^{2}y}{dx} = -4x(x^{2} - 3) \quad 0 = \frac{d^{2}y}{dx^{2}} = -12(x^{2} - 1)$$

$$| 0 = -12(x^{2} - 1) \quad 0 = -12(x^{2} - 1)$$

$$| 0 = (x + \sqrt{3})(-4x)(x - \sqrt{3}) \quad x + (z - 0) \quad x = -1$$

$$| 0 = \frac{d^{2}y}{dx} = -\frac{1}{\sqrt{3}} \quad x = 0 \quad | x - \sqrt{3} = 0 \quad x = -(1 \quad | x = 1)$$

$$| x + \sqrt{3} = 0 \quad | -4x = 0 \quad | x - \sqrt{3} = 0 \quad x = -(1 \quad | x = 1)$$

$$| x = -\sqrt{3} \quad x = 0 \quad | x = \sqrt{3}$$

$$| dx = -\sqrt{3} \quad dx \quad dx \quad mx \quad INC. \quad Mon \quad dec.$$

$$| dy = \frac{1NC. \quad Mon \quad dxc. \quad mx}{\sqrt{3}} \quad INC. \quad Mon \quad dec.$$

$$| dx = -\sqrt{3} : \quad \frac{d^{2}y}{dx^{2}} = -12((-\sqrt{3})^{2} - 1) = -12(3 - 1) < 0 \quad C. D. \quad local \quad Max$$

$$| y |_{x = -\sqrt{3}} : \frac{d^{2}y}{dx^{2}} |_{x = -\sqrt{3}} = -12((-\sqrt{3})^{2} - (-\sqrt{3}) - 4 = (3)(3) - 4 = 5 \quad (-\sqrt{5}, 5)$$

$$| at x = 0; \quad \frac{d^{2}y}{dx^{2}} |_{x = 0} = -12((0)^{2} - 1) = -12(-1) > 0 \quad C. V. \quad local \quad mx$$

$$| y |_{x = 0} = (0)^{3}(6 - (0)^{2} - 4 = 0 - 4 - 4 \quad (0 - 4)$$

18) continued

at $x = \sqrt{3}$: $\frac{\int^2 \frac{y}{y}}{\int x^2} \int_{x=\sqrt{3}}^{z=-12} ((\sqrt{3})^2 - 1) = -12(3-1) < 0$ C. D. Local Max $\frac{y}{x=\sqrt{3}} = (\sqrt{3})^2 (6 - (\sqrt{3})^2) - 4 = (3)(6-3) - 4 = (3)(3) - 4 = 5$ $(\sqrt{3}, 5)$

domain: (-00,00) 20) $y = x^4 + 2x^3 = x^3(x+2)$ $\frac{\partial y}{\partial x} = [4x^3] + 2[3x^2] = 4x^3 + 6x^2 = 2x^2(2x+3)$ $\frac{d^2 y}{dx^2} = 4 [3x^2] + 6 [2x] = 12 x^2 + 12 x = 12 x (x+1)$ critical points inflection points $0 = \frac{dy}{dx} = 2x^2(2x+3)$

 $\begin{array}{c|c}
0 = 2x^2 & (2x+3) \\
2x^2 = 0 & 2x+3 = 0 \\
x^2 = 0 & 2x = -3 \\
x = 0 & x = -3 \\
x = 0 & x = -3
\end{array}$

0 = 12x (x+1) 0=12x (x+1) 12x=0 | x+1=0 x=0 | x=-1

20) continued

 $\mathcal{Y}|_{x=4} = (-1)^3 ((-1)+2) = (-1)(1) = -1 (-1,-1)$

at == 1; $\frac{dy}{dx} = 2(1)^{2}(2(1)+3) > 0 \text{ INC } \frac{d^{2}y}{dx^{2}} = 12(1)((1)+1) > 0 \text{ C.U.}$

x=0 is an inflection point with slope 0.

 $\mathcal{Y}|_{r=0} = (0)^{3}((0)+2) = 0$ (0,0)

8

 $=\left(\frac{-27}{8}\right)\left(\frac{1}{2}\right)=\frac{-27}{16}$

domain: (-00, 00)

 $\frac{dy}{dx} = (x) \left[4 \left(\frac{x}{2} - 5 \right)^3 \left(\frac{1}{2} \right) \right] + \left(\left(\frac{x}{2} - 5 \right)^4 \right) \left[1 \right] = \left(\frac{x}{2} - 5 \right)^3 \left\{ (z) \left[2 \right] + \left(\frac{x}{2} - 5 \right) (1) \right\}$ $= \left(\frac{x}{2} - 5 \right)^3 \left\{ \frac{5x}{2} - 5 \right\} = \left(\frac{5x}{2} - 5 \right) \left(\frac{x}{2} - 5 \right)^3 = 5 \left(\frac{x}{2} - 1 \right) \left(\frac{x}{2} - 5 \right)^3$

 $\frac{d^{2}y}{dx^{2}} = \left(\frac{5z}{2} - 5\right) \left[3\left(\frac{z}{2} - 5\right)^{2}\left(\frac{t}{2}\right)\right] + \left(\left(\frac{z}{2} - 5\right)^{3}\right) \left[\frac{5}{2}\right]$ $= \left(\frac{x}{2} - 5\right)^{2} \left\{\frac{5z}{2} - 5\right) \left[\frac{3}{2}\right] + \left(\frac{z}{2} - 5\right) \left[\frac{5}{2}\right]^{2} = \left(\frac{z}{2} - 5\right)^{2} \left\{\frac{15z}{4} - \frac{15}{2} + \frac{5z}{4} - \frac{25}{2}\right\}$ $= \left(\frac{z}{2} - 5\right)^{2} \left\{\frac{20z}{4} - \frac{40}{2}\right\} = \left\{5z - 20\right\} \left(\frac{z}{2} - 5\right)^{2} = 5\left(z - 4\right) \left(\frac{z}{2} - 5\right)^{2}$

 $\begin{array}{l} \text{critical points} \\ 0 = \frac{dy}{dx} = 5\left(\frac{\chi}{2} - 1\right)\left(\frac{\chi}{2} - 5\right)^{3} \\ 0 = 5\left(\frac{\chi}{2} - 1\right)\left(\frac{\chi}{2} - 5\right)^{3} \\ \frac{\chi}{2} - 1 = 0 \\ \frac{\chi}{2} = 1 \\ \chi = 2 \end{array} \qquad \left(\begin{array}{c} \left(\frac{\chi}{2} - 5\right)^{3} = 0 \\ \left(\frac{\chi}{2} - 5\right)^{3} = 0 \\ \left(\frac{\chi}{2} - 5\right)^{3} = 0 \\ \frac{\chi}{2} = 1 \\ \chi = 10 \end{array}\right)$

22) $y = x \left(\frac{x}{2} - 5\right)^{4}$

influction point $0 = \frac{\partial^2 y}{\partial x^2} = 5(x-y)(\frac{x}{2}-5)^2$ $0 = 5(x-y)(\frac{x}{2}-5)^2$ $x = 4 \qquad (\frac{x}{2}-5)^2 = 0$ $\frac{x}{2} = 5$ x = 10

22) continued

at x=2: $\frac{d^2y}{dx^2}\Big|_{x=2} = 5((2)-4)(\frac{(2)}{2}-5)^2 = 5(-2)(-4)^2 < 0 < 0.0.$ Local Max $\frac{y}{x=2} = (2)(\frac{(2)}{2}-5)^4 = (2)(-4)^4 = 512 \quad (2,512)$

 $\frac{\gamma}{\chi_{=4}} = (4) \left(\frac{(4)}{2} - 5\right)^{4} = (4) (-3)^{4} = 324 \quad (4, 324)$

at x=12 ! $\frac{\partial y}{\partial x} = 5\left(\frac{(12)}{2} - 1\right)\left(\frac{(12)}{2} - 5\right)^3 = 5(5)(1)^3 > 0 \text{ INC.}$ $\frac{d^2 \mu}{dx^2} = 5((12) - 4)(\frac{(12)}{2} - 5)^2 = 5(8)(1)^2 > 0 \quad C.U.$ x=10 is a local minimum $\frac{y}{z} = (10) \left(\frac{(10)}{2} - 5 \right)^{4} = (10)(0)^{4} = 0 \quad (0, 0)$ 400 (4,324) 300 (10,0)

2

8

10

26) $y = \frac{4}{3}x - \tan x$	-なくえく かっ	22
$\frac{dy}{dx} = \frac{4}{3} [1] - [Mu^2_{x}(1)] = \frac{4}{3}$	-Alix $\frac{d^2 y}{dx^2} = [0] - [2 \operatorname{Alix}(\operatorname{Alix} \operatorname{tan} x(1))]$	= -2 sec ² n ton x
critical point $0 = \frac{dy}{dx} = \frac{4}{3} - sei^2 x$	inflection point dy - The local	-)
$0 = \frac{4}{3} - Sle^2 \propto$ $0 = \left(\frac{2}{43} + Sle^2\right) \left(\frac{2}{\sqrt{3}} - Sle^2\right)$	$0 = -2 \operatorname{Me}^{2} x \tan x \qquad \frac{\partial^{2} y}{\partial x^{2}} - \frac{\pi}{2} \left(\begin{array}{c} C.U. \\ 0 \end{array} \right)$ $-2 \operatorname{Me}^{2} x = 0 \qquad \tan x = 0 \qquad \frac{\partial x^{2}}{\partial x^{2}} = \frac{\pi}{2} \left(\begin{array}{c} 0 \end{array} \right)$	
$\frac{2}{J_3} + All z = 0 \qquad \frac{2}{J_3} - All z = 0$ $All z = \frac{-2}{J_3} \qquad All z = \frac{2}{J_3}$ $W \qquad W$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$co_{2}x = \frac{-\sqrt{3}}{2} \qquad co_{2}x = \frac{\sqrt{3}}{2}$ $discord \qquad x = \frac{\sqrt{3}}{6} x = \frac{\sqrt{3}}{6}$ $not in \left(-\frac{\pi}{2}, \frac{\sqrt{3}}{2}\right) \qquad x = \frac{\sqrt{3}}{6}$	C.U. local min $(\frac{-\pi}{6}, \frac{-\pi}{53})^{-2}$ $y _{x=\frac{\pi}{6}} = \frac{4}{3}(\frac{-\pi}{6}) - \tan(\frac{-\pi}{6}) = \frac{-2\pi}{9} - (\frac{-\pi}{53}) = \frac{-2}{9}$	$\left(\frac{\pi}{9}\right)$ $\left(\frac{\pi}{1}\right)$ $\left(\frac{\pi}{13}\right)$
	at $x = \frac{\pi}{6}$: $\frac{d^2 y}{dx^2} = -2 \operatorname{sec}^2\left(\frac{\pi}{6}\right) \operatorname{tam}\left(\frac{\pi}{6}\right) = -2\left(\frac{2}{53}\right)$ (,), Local Max $\left(\frac{\pi}{6}, \frac{2}{5}\right)$	()<0
[1	$y _{x=\frac{\pi}{2}} = \frac{4}{3} \left(\frac{\pi}{6}\right) - \tan\left(\frac{\pi}{6}\right) = \frac{2\pi}{9} - \left(\frac{1}{52}\right) = \frac{2\pi}{9} - \frac{1}{53}$	
	$\left(\frac{\overline{w}}{6}, \frac{2\overline{w}}{9}, \frac{1}{55}\right)$ (0,0)	
- M-Z		

28) $y = \cos x + \sqrt{3} \sin x$ DEXEZT $\frac{dy}{dz} = \left[-\sin x(1)\right] + \sqrt{3} \left[\cos x(1)\right] = -\sin x + \sqrt{3} \cos x$ $\frac{d^2y}{dx^2} = -\left[\cos x (1)\right] + \sqrt{3} \left[-\sin x (1)\right] = -\cos x - \sqrt{3} \sin x$ inflection point critical points $0 = \frac{d^2y}{dx^2} = -\cos x - \sqrt{3} \sin x$ $0 = \frac{dy}{dt} = -Ainz + \sqrt{3} \cos x$ 0=- sin x + J3 cos x 0=- co2x - J3 sin x Sinx = J3 conx BAINX = - COZZ Almx = J3 Min 2 = -1 1022 = -1 $\tan x = \sqrt{3} = \frac{\sqrt{3}}{1}$ tan x = 15 $\mathcal{K} = \frac{\mathcal{H}}{2} \left| \chi = \frac{\mathcal{H}}{2} \right|$ $\chi = \frac{5\pi}{6} \left| \chi = \frac{112\pi}{6} \right|$ dy of INC. Man dec. min INC.]227 The of The Horal Arc.]227 $\frac{d^{\frac{2}{2}}}{dx^2} O \begin{bmatrix} C.D. \\ \underline{5\pi} \\ \underline{5\pi} \\ \underline{5\pi} \\ \underline{1\pi} \end{bmatrix} C.U. \\ \underline{1\pi} \\ \underline{7\pi} \\ \underline{1\pi} \end{bmatrix} 27$ $at x = \frac{\pi}{3}; \frac{d^2 y}{dx^2} \Big|_{x = \frac{\pi}{3}} = -co_2 \left(\frac{\pi}{3}\right) - \sqrt{3} \sin\left(\frac{\pi}{3}\right) = -\left(\frac{1}{2}\right) - \sqrt{3} \left(\frac{\sqrt{3}}{2}\right) < 0$ C.D. Local Max $\left(\frac{\pi}{3}, 2\right)$ $\mathcal{Y}_{x=\frac{N}{3}} = \cos\left(\frac{N}{3}\right) + \int_{3}^{3} \sin\left(\frac{N}{3}\right) = \left(\frac{1}{2}\right) + \int_{3}^{3} \left(\frac{\sqrt{3}}{2}\right) = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2$

28) continued at $z = \frac{4\pi}{3}$: $\frac{d^2 y}{dz^2} \Big|_{z = \frac{4\pi}{3}} = -\cos\left(\frac{4\pi}{3}\right) - \sqrt{3} \sin\left(\frac{4\pi}{3}\right) = -\left(\frac{-1}{2}\right) - \sqrt{3} \left(\frac{-\pi}{2}\right) > 0$ C.U. local min (47-2) $\frac{\gamma}{\chi_{2}}\Big|_{\chi_{2}} = \cos\left(\frac{4\pi}{3}\right) + \sqrt{3}\sin\left(\frac{4\pi}{3}\right) = \left(\frac{-1}{2}\right) + \sqrt{3}\left(\frac{-\sqrt{3}}{2}\right) = \frac{-1}{2} - \frac{3}{2} = \frac{-4}{2} = -2$ $at_{x} = \frac{5\pi}{6}; \quad \mathcal{Y}|_{x} = \frac{5\pi}{6} = \cos\left(\frac{5\pi}{6}\right) + \sqrt{3}\sin\left(\frac{5\pi}{6}\right) = \left(\frac{-\sqrt{3}}{2}\right) + \sqrt{3}\left(\frac{1}{2}\right) = 0 \quad \left(\frac{5\pi}{6}, 0\right)$ at $x = \frac{11\pi}{6}$: $y|_{x=\frac{11\pi}{6}} = co_2\left(\frac{11\pi}{6}\right) + \sqrt{3} sin\left(\frac{11\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right) + \sqrt{3}\left(\frac{-1}{2}\right) = 0$ $\left(\frac{11\pi}{6}, 0\right)$ endpoints : local min X=O y/x== = cor (0) + J3 sin(0) = (1) + J3 (0) = 1 (0,1) x=27 Local Mar. $y|_{x=2\pi} = co_2(2\pi) + \sqrt{3} sin(2\pi) = (1) + \sqrt{3}(0) = 1$ (27,1)

25 86) $y = \frac{x^2 - 49}{x^2 + 5x - 14} = \frac{(x+7)(x-7)}{(x+7)(x-2)} = \frac{x-7}{x-2}$ V.A : x2+5x-14=0 domains (-00, -7) U (-7, 2) U (2, 00) (x+7)(x-2)=0H.A.: y = dim x2-49 x > co x2+5x-14 = lim x2 - 49 x2+5x-14 = x > co x2 + 5x - 14 x+7=0 1x-2=0 2=-7 2=2 not V.A. because V.A. $= \lim_{x \to \infty} \frac{1 - \frac{49}{x^2}}{1 + 5 - \frac{14}{x}} = \frac{1 - 0}{1 + 0 - 0} = \frac{1}{1} = 1$ numerator is of when x= .7] $\frac{\partial y}{\partial x} = \frac{(x-2)[1] - (x-7)[1]}{(x-2)^2} = \frac{x-2-x+7}{(x-2)^2} = \frac{5}{(x-2)^2} = 5(x-2)^2} \begin{cases} x \neq -7 \end{cases}$ $\frac{d^{2}y}{dx^{2}} = 5\left(-2\left(x-2\right)^{-3}(1)\right) = \frac{-10}{(x-2)^{3}}$ x = -8"full test " $\frac{dy}{dx}$ INC. x = 3) INC.)2(-INC, $\frac{d^2y}{dx^2}$ C.U. (C.U.) (C.U.) (C.D.)at x = -8: $0 = \frac{3x}{5x} = \frac{5}{(x-2)^2}$ no solution $0 = \frac{3^2x}{5x^2} = \frac{-10}{(x-2)^2}$ no solution critical point $\frac{dy}{dx}\Big|_{x=-8} = \frac{5}{((-8)-2)^2} > 0 \text{ INC}, \quad \frac{d^2y}{dx^2}\Big|_{x=-8} = \frac{-10}{((-8)-2)^3} > 0 \text{ C.U},$ at x=0; $\frac{dy}{dx} = \frac{S}{(0)-2)^{2}} > 0 \text{ INC.} \quad \frac{d^{2}y}{dx^{2}} = \frac{-10}{(0)-2)^{3}} > 0 \quad C. U,$

86) continued

at x=3; $\frac{\partial y}{\partial x}\Big|_{x=3} = \frac{5}{(3)-2)^2} > 0 INC. \qquad \frac{\partial^2 y}{\partial x^2}\Big|_{x=3} = \frac{-10}{(3)-2)^3} < 0 \quad C, D,$ at x = -7: $y|_{x=-7} = \frac{(-7)-7}{(-7)-2} = \frac{-14}{-9} = \frac{14}{9} \left(-7, \frac{14}{9}\right)^{1/2}$ -6 - 2 -4 $(88)_{y=\frac{x^2-4}{2x}}$ V.A.: 2x=0 domain; (-00,0) U(0,00) Oblique asymptote: $y = \frac{x^2 - 4x}{2x} = \frac{1}{2}x + \frac{(-4)}{2x} = \frac{1}{2}x - \frac{2}{2}$ $\frac{\frac{1}{2}x}{2x x^2 + 0x - 4}$ y= 1/2 x $\frac{(x^2)}{0+0x^{-4}}$ $\frac{dy}{dx} = \frac{(2x)[2x] - (x^2 - 4)[2]}{(2x)^2} = \frac{4x^2 - 2x^2 + 8}{4x^2} = \frac{2x^2 + 8}{4x^2}$ $=\frac{2(x^2+4)}{4x^2}=\frac{x^2+4}{2x^2}$

88) continued

 $\frac{d^2 y}{dx^2} = \frac{(2x^2)[2x] - (x^2 + 4)[4x]}{(2x^2)^2} = \frac{4x\{(x^2)[1] - (x^2 + 4)[1]\}}{4x^4}$

critical point 0= dy = 22+4 no solution

inflection point 0= dry = -4 no solution

at x = -1; $\frac{dy}{dx} = \frac{(-1)^2 + 4}{2(-1)^2} > 0$ INC. $\frac{d^2y}{dx^2} = \frac{-4}{(-1)^3} > 0$ C.U.

 $at_{x=1}: \frac{d_{y}}{dx} = \frac{(1)^2 - 4}{2(1)^2} > 0$ INC. $\frac{d^2 y}{dx} = \frac{-4}{(1)^3} < 0$ C.D.

y-int - none at z=2 $\frac{y}{x} = \frac{(-2)^2 - 4}{2(-2)} = \frac{4 - 4}{-4} = 0$ x-Int. (-2,0) at z = 2 $y|_{z=2} = \frac{(2)^2 - 4}{2(2)} = \frac{4 - 4}{4} = 0$ (2,0)

 $\frac{d^2y}{dx^2} = \frac{C.U.}{-1(C.D.)} - 1(C.D.)$

90) continued

y=-x+1

-(x+1)

31

94) continued

 $\frac{dy}{dx} = \frac{(x+i)[-2x] - (-x^2 + 4)[i]}{(x+i)^2} = \frac{-2x^2 - 2x + x^2 - 4}{(x+i)^2} = \frac{-x^2 - 2x - 4}{(x+i)^2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{((x+1)^2) [-2x-2] - (-x^2 - 2x - 4) [2(x+1)'(1)]}{((x+1)^2)^2}$ $((x+1)^2)^2$ $=\frac{-2(x+1)\left\{(x+1)\left[x+1\right]-(x^{2}+2x+4)\left[1\right]\right\}}{(x+1)^{4}}=\frac{-2\left\{x^{2}+2x+1-x^{2}-2x-4\right\}}{(x+1)^{3}}$ $=\frac{-2\left\{-3\right\}}{\left(x+1\right)^{3}}=\frac{6}{\left(x+1\right)^{3}}$ influction point $y=\frac{1}{(0)^2+4}=\frac{4}{(0)^$ critical point $0 = \frac{dy}{dx} = \frac{-\chi^2 - 2\chi - 4}{(\chi + 1)^2}$ $0 = \frac{-x^2 - 2x - 4}{(x+1)^2}$ none 0 = - x² - 2x - 4 none 0=-x2+4 $0 = x^2 + 2x + 4$ x2-4=0 no solution (x+2)(x-2)=0x+2=0 | x-2=0 x=-2 2=2 $\frac{[x=-2)}{dec.} - 1$ 1(-2,0) (2,0) dy dec. dy C.U. C.D. 1-14

34 96) continued $\frac{d^2 y}{dx^2} = \frac{((x-1)^2) [-2x+2] - (-x^2+2x) [2(x-1)'(1)]}{((x-1)^2)^2}$ $=\frac{2(x-1)\left\{(x-1)\left[-x+1\right]-(x^{2}+2x)\left[1\right]\right\}}{(x-1)^{4}}=\frac{2\left\{-x^{2}+2x-1+x^{2}-2x\right\}}{(x-1)^{3}}$ $=\frac{2\left\{-1\right\}}{(x-1)^3}=\frac{-2}{(x-1)^3}$ critical points inflection point $0 = \frac{dy}{dx} = \frac{x(2-x)}{(x-1)^2} \qquad 0 = \frac{d^2y}{dx^2} = \frac{-2}{(x-1)^3} \qquad none$ $0 = \frac{x(2-x)}{(x-1)^2} - \frac{no solution}{1}$ X-int: $\partial = x (2-x)$ $0 = \frac{-x^2 + z - 1}{z - 1} \xrightarrow{\qquad x^2 - x + 1 = 0} no solution$ x=0 2-x=0 D=-x2+x-1 none dec max INC) I (INC Man dec dy dr dy C.U.) 1 (C,D dr2 at z=0: $\frac{dy}{dz}\Big|_{z=0} = \frac{-2}{(\omega)-1)^3} > 0$ C.U. local min $y|_{x=0} = \frac{-(0)^2 + (0) - 1}{(0) - 1} = \frac{-1}{-1} = 1$ (0,1) "also y-int"

98) continued

 $\frac{dy}{dx} = -[1] - [0] - 2[-1x^{-2}] = -1 + 2x^{-2} = -1 + \frac{2}{x^2} = \frac{2}{x^2} - 1$ $z \neq 1$ $\frac{d^2 y}{dx^2} = [0] + 2[-2x^{-3}] = -4x^{-3} = \frac{-4}{x^3}$

inflection point ; Oblique asymptote critical point $0 = \frac{dy}{dx} = \frac{2}{x^2} - 1$ $0 = \frac{d^2 y}{dx^2} = \frac{-4}{x^3} - \frac{-x^2}{x^3} -$ $\frac{-(x^3-x^2)}{+x^2+x}$ no solution $0 = \frac{2}{x^2} - 1$ $-\frac{(\chi^2-\chi)}{+2\chi-2}$ $1 = \frac{2}{2}$ $y = \frac{x^3 + x^{-2}}{x - x^2} = -x - 1 + \frac{(+2x^{-2})}{x - x^2}$ $\chi^2 = 2$ $x^2 - 2 = 0$ $(x+J\overline{z})(x-J\overline{z})=0$ y=-x-1 x+J2=0 x-J2=0 x=-J2 x=J2 "full test" dy INC dec) O (INC) O (dec. min INC dx -JZ

dy)()(- C, D, C.U.)0(C.D. dr2

98) continued
at
$$x = -\sqrt{2}$$
; $\frac{d^2 y}{dx^2}\Big|_{x=-\sqrt{2}} = \frac{-4}{(\sqrt{2})^3} > 0$ C.U. Local Max
 $\frac{y}{x=-\sqrt{2}} = \frac{-(\sqrt{2})^2 - (-\sqrt{2})^{-2}}{(-\sqrt{2})^2 - (-\sqrt{2})^2} = \frac{-2 + \sqrt{2} - 2}{-\sqrt{2}} = \frac{-4 + \sqrt{2}}{-\sqrt{2}} = 2\sqrt{2} - 1$ $(-\sqrt{2}, 2\sqrt{2} - 1)$
at $x = \sqrt{2}$; $\frac{d^2 y}{dx^2}\Big|_{x=\sqrt{2}} = \frac{-4}{(\sqrt{2})^3} < 0$ C.D. local min
 $\frac{y}{x=\sqrt{2}} = \frac{-(\sqrt{2})^2 - (\sqrt{2}) - 2}{(\sqrt{2})} = \frac{-2 - \sqrt{2} - 2}{\sqrt{2}} = \frac{-4 - \sqrt{2}}{\sqrt{2}} = -2\sqrt{2} - 1$ $(\sqrt{2}, -2\sqrt{2} - 1)$

$$at x = \frac{1}{2}; \quad \frac{dy}{dx}\Big|_{x=\frac{1}{2}} = \frac{2}{(\frac{1}{2})^2} - 1 = \frac{2}{(\frac{1}{4})} - 1 = 8 - 1 > 0 \quad INC,$$
$$\frac{d^2y}{dx^2}\Big|_{x=\frac{1}{2}} = \frac{-4}{(\frac{1}{2})^3} = \frac{-4}{(\frac{1}{8})} \neq 0 \quad C,D,$$

100) continued

critical point	inflection point
$0 = \frac{dy}{dx} = \frac{-2x^2 + 5x - 4}{x^3 (x - 2)^2}$	$O = \frac{d^2 y}{dx^2} = \frac{2 \left\{ 3x^3 - 12x^2 + 20x - 12 \right\}}{x^4 (x-2)^3}$
$0 = \frac{-2x^2 + 5x - 4}{x^3 (x - 2)^2}$	$0 = \frac{2 \left\{ 3x^3 - 12x^2 + 20x - 12 \right\}}{x^4 (x-2)^3}$
$0 = -2x^2 + 5x - 4$ $2x^2 - 5x + 4 = 0$	$0=2\{3x^{3}-12x^{2}+20x-12\}$
x= -(-5) ± J(-5)2-4(2)(4) 5 ± J25-32	0= 3x3-12x2+20x-12 the solution is not a national
no solution	number. So see below:
at x=1: $\frac{d^2 y}{dx^2}\Big _{z=1} = \frac{2\left[3(1)^3 - 12(1)^2 + 20(1) - 12\right]}{(1)^4((1)-2)^3}$	$=\frac{2\left\{\frac{3-12+20-12\right\}}{(1)(-1)^{3}}=\frac{2\left\{\frac{1}{2}-1\right\}}{-1}=2>0 C,U,$
at $x = \frac{3}{2}$: $\frac{d^2y}{dx^2}\Big _{x=\frac{3}{2}} = \frac{2\left\{3\left(\frac{3}{2}\right)^3 - 12\left(\frac{3}{2}\right)^2 + 20\left(\frac{3}{2}\right)^2 + 20\left(\frac{3}{2}\right)^2 - 2\right\}^3}{\left(\frac{3}{2}\right)^4 \left(\left(\frac{3}{2}\right)^2 - 2\right)^3}$	$\frac{1-12}{2} = \frac{2\left\{\frac{81}{8} - 27 + 30 - 12\right\}}{\left(\frac{81}{16}\right)\left(\frac{-1}{2}\right)^3}$
$=\frac{2\left\{\frac{8!}{9}-9\right\}}{\left(\frac{8!}{16}\right)\left(\frac{-1}{9}\right)}=\frac{2\left\{\frac{9}{8}\right\}}{\left(\frac{8!}{16}\right)\left(\frac{-1}{9}\right)}$	<0 C. P.

By Intermediate Value Theorem for Continuous Functions on pg 97, we know that there is a value c in $[1, \frac{3}{2}]$ such that $\frac{d^2y}{dx^2}|_{x=c}=0$.

There is an inflection point.

39

102) continued

critical point	inflection point
$0 = \frac{dy}{dx} = \frac{-4(x^2-4)}{(x^2+4)^2}$	$0 = \frac{d^2 y}{dx^2} = \frac{8x \{ z^2 - 12 \}}{(x^2 + 4)^3}$
$0 = -4(x^2-4)$	$0 = \frac{8 \times \{x^2 - 12\}}{(x^2 + 4)^3}$
$0 = x^2 - 4$ 0 = (x+2)(x-2)	$0 = 8_{x} \{x^{2} = 12\}$ $0 = (x + \sqrt{12})(8_{x})(x - \sqrt{12})$
x+2=0 x-2=0	x+J12=0 8x=0 x-J12=0
x=-2 $x=2$	$\begin{array}{c cccc} x = -\sqrt{12} & x = 0 & x = \sqrt{12} \\ x = -2\sqrt{3} & x = 2\sqrt{3} \end{array}$

 $at = -2; \quad \frac{d^{2} \frac{y}{dx^{2}}}{dx^{2}}\Big|_{xz=2} = \frac{8(-2)\left[(-2)^{2} - 12\right]}{((-2)^{2} + 4)^{3}} = \frac{8(-2)\left[-8\right]}{(8)^{3}} > 0 \quad C.U. \text{ local min}$ $y\Big|_{xz=2} = \frac{4(-2)}{(-2)^{2} + 4} = \frac{-8}{4 + 4} = \frac{-8}{8} = -1 \quad (-2, -1)$ $at = 2; \quad \frac{d^{2} \frac{y}{dx^{2}}}{dx^{2}}\Big|_{xzz} = \frac{8(2)\left\{(2)^{2} - 12\right\}}{((2)^{2} + 4)^{3}} = \frac{8(2)\left[-8\right]}{(8)^{3}} < 0 \quad C.D. \text{ Local Max}$ $y\Big|_{xzz} = \frac{4(2)}{(2)^{2} + 4} = \frac{8}{8} = 1 \quad (2, 1)$

102) continuedat x=0: y=0 (from intercept calculation) (0,0) $at x=-2J_3: y|_{x=-2J_3} = \frac{4(-2J_3)}{(-2J_3)^2+4} = \frac{-8J_3}{4(3)+4} = \frac{-8J_3}{12+4} = \frac{-8J_3}{16} = \frac{-J_3}{2} (-2J_3, -J_3)$

at $x=2\sqrt{3}$: $y|_{x=2\sqrt{3}} = \frac{4(2\sqrt{3})}{(2\sqrt{3})^2 + 4} = \frac{8\sqrt{3}}{4(3) + 4} = \frac{8\sqrt{3}}{12 + 4} = \frac{8\sqrt{3}}{16} = \frac{\sqrt{3}}{2} (2\sqrt{3}, \frac{\sqrt{3}}{2})$

30)
$$y = x^{\frac{2}{5}} = (\sqrt[5]{x})^{2}$$
 domain: $(-\infty, \infty)$
y-int: $y = (\sqrt[5]{10})^{2} = 0$ x-int: $0 = (\sqrt[5]{2})^{2} \Rightarrow 0 = \sqrt[5]{x} \Rightarrow 0 = x$ $(0,0)$
 $\frac{dy}{dx} = [\frac{2}{5}x^{-\frac{3}{5}}] = \frac{2}{5}x^{-\frac{3}{5}} = \frac{2}{5(\sqrt[5]{x})^{3}}$ $\frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{2}{5}[\frac{-3}{5}x^{-\frac{3}{5}}] = \frac{-6}{25(\sqrt[5]{x})^{5}}$
critical point infliction paint $0^{\frac{2}{5}} \frac{d^{\frac{2}{5}}y}{dx} = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{-6}{25(\sqrt[5]{x})^{3}}$ $\frac{d^{\frac{2}{5}}y}{dx} = \frac{2}{\sqrt{5}} \frac{d^{\frac{2}{5}}y}{\sqrt{5}}$
 $0 = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{-6}{25(\sqrt[5]{x})^{5}}$ $\frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{C.D.}{\sqrt{5}}$ (100)
 $0 = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{-6}{25(\sqrt[5]{x})^{5}}$ $\frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{C.D.}{\sqrt{5}}$ (200)
 $0 = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{-6}{25(\sqrt[5]{x})^{5}}$ $\frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{C.D.}{\sqrt{5}}$ (200)
 $0 = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{-6}{25(\sqrt[5]{x})^{5}}$ $\frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{C.D.}{\sqrt{5}}$ (200)
 $0 = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{-6}{25(\sqrt[5]{x})^{5}}$ $\frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{C.D.}{\sqrt{5}}$ (200)
 $0 = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{-6}{25(\sqrt[5]{x})^{5}}$ $\frac{d^{\frac{2}{5}}y}{dx^{2}} = \frac{C.D.}{\sqrt{5}}$ (200)
 $0 = \frac{2}{5(\sqrt[5]{x})^{3}}$ $0 = \frac{-6}{25(\sqrt[5]{x})^{5}} = \frac{2}{5(\sqrt[5]{x})^{5}}$ $\frac{1}{25(\sqrt{5})}$ $\frac{1}{25(\sqrt{5})}$ $\frac{1}{5}$ $\frac{1}{5}$

$$3.2) \quad y = \frac{\sqrt{1-x^{2}}}{2x+1} = \frac{(1-x^{2})^{\frac{1}{2}}}{2x+1} \quad from \quad 1-x^{2}>0 \quad and \quad [-1,1]$$

$$V(A, : \frac{2x+1}{2x+1} = 0 \quad bince \quad x = \frac{-1}{2} \text{ is in } [-1,1], out \quad x = \frac{-1}{2}$$

$$domain : [-1, \frac{1}{2}] \cup (\frac{-1}{2}, 1]$$

$$\frac{dy}{dx} = \frac{(2x+1)\left[\frac{1}{2}(1-x^{3})^{\frac{-1}{2}}(-2x)\right] - \left((1-x^{2})^{\frac{1}{2}}\right] \left[\frac{2}{2}\right]}{(2x+1)^{2}}$$

$$= \frac{\frac{-x}{\sqrt{1-x^{2}}} - 2\sqrt{1-x^{2}}}{(2x+1)^{2}} = \frac{\frac{-x}{\sqrt{1-x^{2}}} - \frac{b\sqrt{1-x^{2}}}{(2x+1)^{2}}}{(2x+1)^{2}}$$

$$= \frac{\frac{-2x^{2}-x-2}{\sqrt{1-x^{2}}} \left(\frac{1-x^{2}}{2}\right)}{(2x+1)^{2}} = \frac{-2x^{2}-x-2+2x^{2}}{\sqrt{1-x^{2}}} \left(\frac{1-x^{2}}{\sqrt{1-x^{2}}}\right)^{\frac{1}{2}}$$

$$b = \sqrt{1-x^{2}} \left(\frac{2x+1}{2x+1}\right)^{\frac{1}{2}} = \left(\frac{1-x^{2}}{\sqrt{1-x^{2}}}\right) + \left(\frac{2x+1}{\sqrt{1-x^{2}}}\right)^{\frac{1}{2}} \left(\frac{1-x^{2}}{\sqrt{1-x^{2}}}\right)^{\frac{1}{2}}$$

$$\frac{dL}{dx} = \left((1-x^{2})^{\frac{1}{2}}\right) \left[\frac{2(2x+1)^{1}}{\sqrt{1-x^{2}}} - \frac{x}{\sqrt{1-x^{2}}}\right] \left[\frac{1}{2}(1-x^{2})^{-\frac{1}{2}}(-2x)\right]$$

$$= \frac{4(2x+1)\sqrt{1-x^{2}}}{(\sqrt{1-x^{2}}} \left(\frac{2x+1}{\sqrt{1-x^{2}}}\right)^{\frac{1}{2}} \left(-\frac{1}{2}-\frac{x}{\sqrt{1-x^{2}}}\right)^{\frac{1}{2}}$$

$$= \frac{(2x+1)\left\{-(2x+1)\sqrt{1-x^{2}} + 4(x+2)\sqrt{1-x^{2}} - \frac{x(x+2)(2x+1)}{\sqrt{1-x^{2}}}\right\}}{(\sqrt{1-x^{2}})^{2}(2x+1)^{4}}$$

32) continued	47
$\frac{d^{2}y}{dx^{2}} = \frac{-(2x+1)\sqrt{1-x^{2}}}{1} \left(\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} \right) + \frac{4(x+2)\sqrt{1-x^{2}}}{1} \left(\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} \right) - \frac{x(x+1)}{1} \left(\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} \right) - \frac{x(x+1)}{1} \left(\sqrt{1-x^{2}} \right)^{2} (2x+1)^{3}$	$\frac{(+2)(2x+1)}{\sqrt{1-x^2}}$
$= \frac{-(2x+1)(1-x^2) + 4(x+2)(1-x^2) - x(x+2)(2x+1)}{(2x+1)^3(\sqrt{1-x^2})^3}$	
$=\frac{-(-2x^{3}-x^{2}+2x+1)+4(-x^{3}-2x^{2}+x+2)-x(2x^{2}+5x)}{(2x+1)^{3}(\sqrt{1-x^{2}})^{3}}$	+2)
$= \frac{2x^3 + x^2 - 2x - 1 - 4x^3 - 8x^2 + 4x + 8 - 2x^3 - 5x^2 - 2x^3}{(2x+1)^3 (\sqrt{1-x^2})^3}$	2
$= \frac{-4 \times 3 - 12 \times 2 + 17}{(2 \times 1)^3 (\sqrt{1 - x^2})^3}$	
Critical point inflection point $D = \frac{dy}{dx} = \frac{-x-2}{\sqrt{1-x^2}(2x+1)^2} \qquad D = \frac{d^2y}{dx^2} = \frac{-4x^3 - 12x^2 + 7}{(2x+1)^3(\sqrt{1-x^2})}$	5
$O = \frac{-x - 2}{\sqrt{1 - x^2} (2x+1)^2} \qquad \qquad O = \frac{-4 \times 3 - 12x^2 + 7}{(2x+1)^3 (\sqrt{1 - x^2})^3}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	

49 34) $y = 5x^{\frac{2}{5}} - 2x = 5(5x)^{2} - 2x$ domain: (-00,00) $\frac{\partial y}{\partial x} = 5\left[\frac{2}{5}x^{\frac{-3}{5}}\right] - 2\left[1\right] = 2x^{\frac{-3}{5}} - 2 = \frac{2}{(5x)^3} - 2 = 2\left(\frac{1}{(5x)^3} - 1\right)$ $\frac{d^{2}y}{dx^{2}} = 2\left[\frac{-3}{5}x^{-8}\right] = \frac{-6}{5(5/\pi)^{8}}$ inflection point critical point 2/x== 5 (5/10) 2-2(0) $0 = \frac{d^2 y}{dx^2} = \frac{-6}{5(5/x)^8}$ $0 = \frac{dy}{dx} = 2\left(\frac{1}{(5\sqrt{x})^3} - 1\right)$ (0,0) no solution $0 = 2 \left(\frac{1}{(\sqrt{x})^3} - 1 \right)$ also denominata O when x = 0 "full test" [x=-1] $O = \frac{1}{(5/2)^3} - 1$ dy INC. Max dec. X dx $l = \frac{1}{(5f_{x})^{3}}$ dry C.D. C. D, $(\sqrt[5]{x})^3 = 1$ dace 5/x=1 $\frac{d^{2}y}{dx^{2}}\Big|_{x=-1} = \frac{-6}{5(5\sqrt{1-1})^{8}} < 0 \quad C, D,$ $\frac{\partial^2 y}{\partial x^2} = \frac{-6}{5(5\sqrt{11})}$ we have a cusp at x=0 [local min] (1,3) C.D. Local Max $y|_{x=1} = 5(\sqrt[5]{(1)})^2 - 2(1) = 3$ also denominator 0, when x=0 (0,0)

 $36) y = x^{2/3} (x-5) = x^{5/3} - 5x^{2/3}$ $= (\sqrt[3]{x})^2 (x-5)$ domain; (-00,00) $\frac{\partial y}{\int z} = \left[\frac{5}{3}\chi^{2/3}\right] - 5\left[\frac{2}{3}\chi^{-\frac{1}{3}}\right] = \frac{5}{3}\chi^{2/3} - \frac{10}{3}\chi^{-\frac{1}{3}} = \frac{5}{3}\left\{\left(\frac{3}{3}\chi\right)^{2} - \frac{2}{3\sqrt{2}}\right\}$ $=\frac{5}{3}\int \frac{(3\sqrt{x})^{2}(3\sqrt{x})}{1} - \frac{2}{3\sqrt{x}} = \frac{5}{3}\int \frac{2}{3\sqrt{x}}$ $\frac{d^{2}y}{dx^{2}} = \frac{5}{3} \left[\frac{2}{3} \times \frac{-1}{3} \right] - \frac{10}{3} \left[\frac{-1}{3} \times \frac{-4}{3} \right] = \frac{10}{9} \left\{ \frac{1}{3\sqrt{x}} + \frac{1}{(\sqrt{x})^{4}} \right\}$ $= \frac{10}{9} \left\{ \frac{1}{3\sqrt{x}} \left(\frac{(3\sqrt{x})^3}{(3\sqrt{x})^4} \right\} + \frac{1}{(3\sqrt{x})^4} \right\} = \frac{10}{9} \left\{ \frac{1}{(3\sqrt{x})^4} \right\}$ critical points inflection points $0 = \frac{d^2 y}{dx^2} = \frac{10}{9} \left\{ \frac{x+1}{(\sqrt{x})^4} \right\}$ $0 = \frac{0y}{1} = \frac{5}{3} \left\{ \frac{z-2}{3t} \right\}$ $D = \frac{10}{9} \left\{ \frac{x+1}{(3\sqrt{x})^4} \right\}$ $0 = \frac{5}{2} \left\{ \frac{x-2}{3\sqrt{x}} \right\}$ 1=x+1 0=x-2 26=-1 20=2 also denominator O also denominator o when x=0 [x=-2] "full test " when x=0 INC. dec, min dy dx INC. 0 C. U. $\partial^2 y = C, D, C, U.$ X Ô

36) continued

 $at = 2_{1} \frac{d^{2} \frac{y}{dx^{2}}}{dx^{2}}\Big|_{x=2} = \frac{10}{9} \left\{ \frac{(2)+1}{(\sqrt[3]{(2)})^{4}} \right\} > 0 \quad C.0. \quad \text{local min}$ $\frac{y}{x=2} = (\sqrt[3]{(2)})^{2} ((2)-5) = (\sqrt[3]{4})(-3) = -3(\sqrt[3]{4}) \quad (2, -3(\sqrt[3]{4}))$ $at = 2 : \frac{dy}{dx}\Big|_{x=-2} = \frac{5}{3} \left\{ \frac{(-2)-2}{\sqrt[3]{(2)}} \right\} = \frac{5}{3} \left\{ \frac{-4}{-\sqrt{2}} \right\} = \frac{5}{3} \left\{ \frac{4}{\sqrt{2}} \right\} > 0 \quad INC.$ $\frac{d^{2} \frac{y}{dx}}{dx^{2}}\Big|_{x=-2} = \frac{10}{9} \left\{ \frac{(-2)+1}{(\sqrt[3]{(2)})^{4}} \right\} = \frac{10}{9} \left\{ \frac{-1}{(\sqrt[3]{3})^{4}} \right\} < 0 \quad C.D.$ $at = 1 : \frac{y}{x=-1} = (\sqrt[3]{(4)})^{2} ((-1)-5) = (1)(-6) = -6 \quad (-1,-6)$ $at = 0 : \frac{y}{x=0} = (\sqrt[3]{(0)})^{2} ((0)-5) = (0)(-5) = 0 \quad (0,0) \quad \text{cusp at } x=0$ $I = 0 : \frac{y}{x=0} = (\sqrt[3]{(0)})^{2} ((0)-5) = (0)(-5) = 0 \quad (0,0)$

$$38) y = (2-x^{2})^{3/2} = (\sqrt{2-x^{2}})^{3} \quad domain; [-\sqrt{2}, \sqrt{2}]$$

$$\frac{dy}{dx} = \frac{3}{2} (2-x^{1})^{\frac{1}{2}} (-2x) = -3x (2-x^{2})^{\frac{1}{2}} = -3x \sqrt{2-x^{2}}$$

$$\frac{d^{2}y}{dx^{2}} = (-3x) [\frac{1}{2} (2-x^{1})^{-\frac{1}{2}} (-2x)] + ((2-x^{1})^{\frac{1}{2}}) [-3] = \frac{3x^{2}}{\sqrt{2-x^{2}}} - 3\sqrt{2-x^{2}}$$

$$= \frac{3x^{2}}{\sqrt{2-x^{2}}} - \frac{3\sqrt{2-x^{2}}}{1} (\frac{\sqrt{2-x^{2}}}{\sqrt{2-x^{2}}}) = \frac{3x^{2}-3(2-x^{2})}{\sqrt{2-x^{2}}} = \frac{3x^{2}-6+3x^{2}}{\sqrt{2-x^{2}}} = \frac{6(x^{2}-1)}{\sqrt{2-x^{2}}}$$
Critical paint in flection paints
$$0 = \frac{dy}{dx} = -3x \sqrt{2-x^{2}} \qquad 0 = \frac{d^{1}y}{dx^{2}} = \frac{6(x^{2}-1)}{\sqrt{2-x^{2}}} = \frac{d^{1}y}{\sqrt{2-x^{2}}} = \frac{d^{1}y}{\sqrt{2-x^{2}}} = 0$$

$$x = 0 \qquad \sqrt{2-x^{2}} = 0 \qquad 0 = 6(x^{2}-1) \qquad x = \sqrt{2}, x = \sqrt{2}$$

$$x = 0 \qquad \sqrt{2-x^{2}} = 0 \qquad 0 = x^{2}-1 \qquad x = \sqrt{2}, x = \sqrt{2}$$

$$x = \sqrt{2} \qquad x = \sqrt{2} \qquad x$$

 $\frac{\partial^2 y}{\partial x^2} - \sqrt{2} \frac{C.U.}{1} \frac{C.U.}{1} \frac{C.U.}{1} \frac{C.U.}{1} \frac{1}{\sqrt{2}}$

38) continued

at x=0: $\frac{d^2y}{dx^2}\Big|_{x=0} = \frac{6(10)^2 - 1}{\sqrt{2} - (0)^2} = \frac{6(-1)}{\sqrt{2}} < 0$ C.P. Local Mase $\frac{\gamma}{2}\Big|_{x=0} = \left(\sqrt{2-(0)^2}\right)^3 = \left(\sqrt{2}\right)^3 = 2\sqrt{2}$ (0, $2\sqrt{2}$) at x = -1; $y|_{x=-1} = (\sqrt{2} - (-1)^2)^3 = (\sqrt{2} - 1)^3 = 1$ (-1,1) at x=1: $\mathcal{Y}|_{x=1} = (\sqrt{2-(1)^2})^3 = (\sqrt{2-1})^3 = (\sqrt{1})^3 = 1$ (1,1) endpoints: $x = -\sqrt{2}$: $\frac{y}{z-5} = (\sqrt{2-(-52)^2})^3 = (\sqrt{2-2})^3 = (\sqrt{50})^3 = 0$ (-52,0) $x = \sqrt{2} : \mathcal{Y} |_{x = \sqrt{2}} = \left(\sqrt{2 - (\sqrt{2})^2}\right)^3 = \left(\sqrt{2 - 2}\right)^3 = \left(\sqrt{2}\right)^3 = 0 \quad (\sqrt{2}, 0)$ these endpoints are also local min. (0,252) (52,0)

(40) $y = x^2 + \frac{2}{x} = x^2 + 2z^2 + 2z^2$ this function has an ablique asymptote y=x2 [polynomial] $\frac{dy}{dx} = [2x] + 2[-1x^{-2}] = 2x - 2x^{-2} = 2x - \frac{2}{x^2} = \frac{2x}{x^2} - \frac{2}{x^2} = \frac{2x^3 - 2}{x^2} = \frac{2(x^2 - 1)}{x^2}$ $\frac{d^2y}{dx^2} = 2[1] - 2[-2x^{-3}] = 2 + \frac{4}{x^3} = \frac{2x^3 + 4}{x^3}$ critical point inflection point $0 = \frac{dy}{dx} = \frac{2(x^3-1)}{x^2}$ $0 = \frac{d^2 y}{dx^2} = \frac{2x^3 + 4}{x^3}$ $O = \frac{2(x^3-1)}{x^2}$ $0 = \frac{2 \times 3^{3} + 4}{3^{3}}$ 0=2(x3-1) $0 = 2x^{3} + 4$ 0=23-1 $0=2(x^{3}+2)$ 0=(x-1)(x2+x+1) $0 = x^3 + (3\overline{z})^3$ $0 = (x + \sqrt[3]{2}) (x^2 - \sqrt[3]{2} x + (\sqrt[3]{2})^2)$ x-1=0 | x2+x+1=0 x=1 no real $\chi + \sqrt[3]{2} = 0$ | $\chi^2 - \sqrt[3]{2} = 1$ x=-35 no real solution "full test ") 0 (dec. min dy dec. INC. dx dy C.U. C.U. C.D. 10E

40) continued

 \sim

(42) $y = \sqrt[3]{x^3 + 1} = (x^3 + 1)^{\frac{1}{3}}$ domain: (-00,00) $\frac{dy}{dx} = \frac{1}{3} \left(x^{3} + 1 \right)^{-\frac{2}{3}} \left(3x^{2} \right) = \frac{x^{2}}{\left(x^{3} + 1 \right)^{\frac{2}{3}}} = \frac{x^{2}}{\left(\frac{3}{\sqrt{x^{3} + 1}} \right)^{\frac{2}{3}}}$ $\frac{\partial^2 y}{\partial x^2} = \frac{\left(\left(x^3+1\right)^{\frac{2}{3}}\right)\left[2x\right] - \left(x^2\right)\left[\frac{2}{3}\left(x^3+1\right)^{-\frac{1}{3}}\left(3x^2\right)\right]}{\left(\left(x^3+1\right)^{\frac{2}{3}}\right)^2} = \frac{2x\left(\sqrt[3]{x^3+1}\right)^2 - \frac{2x^4}{\left(\sqrt[3]{x^3+1}\right)}}{\left(\sqrt[3]{x^3+1}\right)^4}$ $= \frac{2 \times (\sqrt[3]{x^{3}+1})^{2} (\sqrt[3]{x^{3}+1})}{(\sqrt[3]{x^{3}+1})} - \frac{2 \times 2^{4}}{(\sqrt[3]{x^{3}+1})} = \frac{2 \times (x^{3}+1) - 2 \times 4^{4}}{\sqrt[3]{x^{3}+1}} \\ (\sqrt[3]{x^{3}+1})^{4} = \frac{(\sqrt[3]{x^{3}+1}) - 2 \times 4^{4}}{(\sqrt[3]{x^{3}+1})^{4}} = \frac{(\sqrt[3]{x^{3}+1}) - 2 \times 4^{4}}{(\sqrt[3]{x^{3}+1})^{4}}$

x+1=0 neal ution

$$=\frac{2x^{4}+2x^{-2}x^{4}}{(\sqrt[3]{x^{3}+1})^{5}}=\frac{2x}{(\sqrt[3]{x^{3}+1})^{5}}$$

Critical points

$$0 = \frac{dy}{dx} = \frac{\chi^2}{(\sqrt[3]{x^3+1})^2}$$

$$0 = \frac{\chi^2}{(\sqrt[3]{x^3+1})^2}$$

$$0 = \chi^2$$

$$\chi = 0$$
also denominator 0
$$(\sqrt[3]{x^3+1})^2 = 0 \qquad \chi^3+1=0$$

$$\sqrt[3]{x^3+1} = 0 \qquad \chi^3+1=0$$

$$\sqrt[3]{x^3+1} = 0 \qquad \chi^3+1=0$$

$$\chi = 1 \qquad (\chi^2-\chi+1)=0$$

inflection point $\int = \frac{\partial^2 y}{\partial x^2} = \frac{2x}{(3\sqrt{x^2+1})^5}$

56

 $0 = \frac{2 \times 1}{\left(\frac{3}{\sqrt{3}+1}\right)^5}$

0=22 x=0

also denominator O

{ see left} x=-1

58 42) continued (0,1) at x = 0 : this is an inflection ₹ x (-1,0) point with slope o $\frac{y}{x_{10}} = \sqrt[3]{(0)^3 + 1} = \sqrt[3]{1} = 1$ (0,1) $(44) \quad y = \frac{5}{-4+5} = 5(x^{4}+5)^{-1}$ V.A.: x4+5=0 domain: (-00,00) no solution none $\frac{\partial y}{\partial x} = 5 \left[-1 \left(x^{\frac{4}{5}} \right)^{-2} \left(\frac{4}{x^3} \right) \right] = -20x^3 \left(x^{\frac{4}{5}} \right)^{-2} = \frac{-20x^3}{\left(x^{\frac{4}{5}} \right)^2}$ $\frac{d^2 y}{dx^2} = \frac{((x^{4}+5)^2)[-60x^2] - (-20x^3)[26c^{4}+5)'(4x^3)]}{((-4)x^2)^2}$ $((x^{4}+5)^{2})^{2}$ $= \frac{20x^{2}(x^{4}+5)\left\{(x^{4}+5)\left[-3\right]-(-x)\left[8x^{3}\right]\right\}}{(x^{4}+5)\left[-3\right]-(-x)\left[8x^{3}\right]}$ (x 4+5)4 = 20x2 {-5x4-15+8x4} = 20x2 {5x4-15} 100x2 {x4-3} $(x^{4}+5)^{3}$ $(x^{4+5})^{3} = (x^{4+5})^{3}$ critical soints inflection points $0 = \frac{dy}{dx} = \frac{-20x^3}{(x^4+5)^2}$ $0 = \frac{d^2 y}{dx^2} = \frac{100 x^2 \{x^4 - 3\}}{(x^4 + 5)^3} \cdot (x^2 + \sqrt{3})(x^2 - \sqrt{3}) = 0$ $0 = \frac{100 \times 2 \{x^{4} + 3\}}{(x^{4} + 5)^{3}}, (x^{2} + \sqrt{3})(x + \sqrt{5})(x - \sqrt{5}) = 0$ $D = \frac{-20 \times 3}{(x^4+5)^2}$ 1 no solution X+ J3=0 0=100x2{x4-3} x-JJ3=0 0=-20x3 $\chi = -\sqrt{3}$ x= 153 0=100x2 ; x4-3=0 XIO

20=25

x=-4/3

x= */3

60 domain: (-00,00) 46) y=/x2-2x/ $x^2 - 2x = 0$ x(x-2) = 0 x(x-2) = 0 x(x-2) = 0 $x + \frac{1}{2} + \frac{1}{2}$ $y = \begin{cases} (x^2 - 2x) & x < 0 \\ -(x^2 - 2x) = 2x - x^2 & 0 \le x \le 2 \\ (x^2 - 2x) & 2 < x & 0 \end{cases}$ $x=0 | x-2=0 \quad (x-2) \text{ neg neg } x=2 \quad x(x-2) \text{ POS neg }$ Pos Pos 2<x n x 72 $\frac{dy}{dx} = \begin{cases} 2x - 2 & x < 0 \\ 2 - 2x & 0 < x < 2 \\ 2x - 2 & 0 < x < 2 \\ 2x - 2 & 2 < x \end{cases}$ 200 $\frac{d^2 \varphi}{dz^2} = \begin{cases} 2 & z < 0 \\ -2 & 0 < z < 2 \end{cases}$ critical point inflection point $0 = \frac{d_{2}}{dx} = \begin{cases} 2x-2 & z < 0 \\ 2-2x & 0 < x < 2 \\ 2x-2 & 0 < x < 2 \end{cases}$ $0 = \frac{d^2y}{dx^2} = \begin{cases} 2 & \chi < 0 \\ -2 & 0 < \chi < 2 \end{cases}$ nonl (no solution) "full test" Local "full test" dy dec. X INC." dn 0 1 2 0 = 2x - 2 0 = 2 - 2x2=2x 2x=2 x=1 1=2 only I critical point in OCXCZ $\frac{\partial^2 y}{\partial x^2} \xrightarrow{C.U.} \underbrace{\begin{array}{c} C.D. \\ \chi \end{array}}_{0} \underbrace{\begin{array}{c} C.D. \\ \chi \end{array}}_{2} \underbrace{\begin{array}{c} C.U. \\ \chi \end{array}}_{2} \underbrace{C.U. \\ \chi }_{2} \underbrace{C.U. \\ \chi }_{2} \underbrace{C.U. \\ \chi }_{2} \underbrace{C.U. \\ \chi }_{$ dry == -2 C.D. Local Max $y|_{z=1} = |(1)^2 - 2(1)| = |1-2| = |-1| = 1$ (1,1) (e,1) (o, e) (2,0) X at x=-1: Jx == 2(-1)-2<0 dec. $\frac{\partial^2 y}{\partial x^2}\Big|_{x=1} = 2 C.U.$ at == 1: dy == 2(3)-270 INC. $\frac{d^2 y}{dx^2} = 2 \quad C. 0.$

50)
$$y = \frac{x^2}{1-x}$$
 V.A.: $1-x=0$ domain: $(-\infty, 1) U(1, \infty)$

$$=\frac{2\left\{\left(1-2x+x^{2}\right)+\left(2x-x^{2}\right)\right\}}{\left(1-x\right)^{3}}=\frac{2\left\{1\right\}}{\left(1-x\right)^{3}}=\frac{2}{\left(1-x\right)^{3}}=\frac{2}{\left(1-x\right)^{3}}$$

$52) y = (ln x)^2$	domais	u: (0,∞)	63
$\frac{dy}{dx} = 2(dnx)'(\frac{1}{x}(1))$	$) = \frac{2 \ln x}{x}$		
$\frac{d^2 y}{dx^2} = \frac{(x) [2(\frac{1}{x}(1))]}{(x)^2}$	$\frac{(2 \ln x)[1]}{x^2} = \frac{2 - 2}{x^2}$	lnx	
critical points	inflection point	local , min -	T. #1.0
$0 = \frac{dy}{dx} = \frac{2 \ln x}{x}$	$0 = \frac{\partial^2 y}{\partial x^2} = \frac{2 - 2 \ln x}{x^2}$	dy of dec. min :	LNC,
$0 = \frac{2 \ln x}{x}$	$0 = \frac{2 - 2 \ln x}{x^2}$	$\frac{\partial^2 y}{\partial u^2} o \left(\begin{array}{c} C.U. \end{array} \right)$	C.D,
0 2 2 lnx	$0 = 2 - 2 \ln x$	dx2	e
0 = ln x	$2 \ln x = 2$ $\ln x = 1$		
$x = e^{\circ} = 1$	¥=e'=e		
at $x = 1 : \frac{d^2 y}{dx^2 _{x=1}} = \frac{2 - 2 l_n(1)}{(1)^2}$	20 C.U. Local min		
$y _{x=1} = (ln(1))^2 = (0)^2 = 0$			
at $x = e : \frac{y}{z} = (ln(e))^2$ (e,1)	(1)=1		

54) $y = x e^{-x} = \frac{x}{e^x}$ domain: $(-\infty, \infty)$

H.A. $\lim_{x \to \infty} x e^{-x} = \lim_{x \to \infty} \frac{x}{e^{x}} \stackrel{t}{=} \lim_{x \to \infty} \frac{1}{e^{x}} = 0 \Rightarrow y = 0 \text{ as } x \to \infty$ we will learn how to evaluate in sections 4.5. $\lim_{x \to \infty} x e^{-x} = (-\infty)e^{-(-\infty)} = (-\infty)e^{\infty} = (-\infty)(\infty) = -\infty$ <u>none</u>

 $\frac{\partial y}{\partial x} = (x) \left[e^{-x} (-1) \right] + \left(e^{-x} \right) \left[1 \right] = -x e^{-x} + e^{-x} = e^{-x} - x e^{-x} = e^{-x} (1-x) = \frac{1-x}{e^{-x}}$

 $\frac{d^{2}y}{dx^{2}} = \left\{ \left(-x \right) \left[e^{-x} \left(-1 \right) \right] + \left(e^{-x} \right) \left[-1 \right] \right\} + \left[e^{-x} \left(-1 \right) \right] = \left\{ x e^{-x} - e^{-x} \right\} - e^{-x} = x e^{-x} - 2 e^{-x}$ $= e^{-x} \left(x - 2 \right) = \frac{x - 2}{e^{-x}}$

56) $y = \frac{\ln x}{\sqrt{x}} = \frac{\ln x}{x^{\frac{1}{2}}}$	domai	m: (0,00)	65
H.A.: lim <u>lnx</u> <u>L</u> x > co Jx we will lear	lim = lim 2.Jx x > 00 = 1 = x > 00 = x n how to evaluate	$\lim_{x \to \infty} \frac{2}{5x} = 0 \implies y = 0 \text{ of}$ in section 4.5	12 x → 00
$\frac{dy}{dx} = \frac{(x^{\frac{1}{2}})[\frac{1}{x}(i)] - (k)}{(x^{\frac{1}{2}})^2}$		$\frac{x}{x} = \frac{1}{\sqrt{x}} - \frac{\ln x}{2\sqrt{x}} = \frac{2 - \ln x}{2\sqrt{x}}$ $(\sqrt{x})^2 = \frac{1}{\sqrt{x}}$	zx z J ²
$= \frac{2 - \ln x}{2 (\sqrt{x})^3} = \frac{2 - 2}{2}$ $\frac{d^2 y}{dx^2} = \frac{(2x^{3/2}) \left[\frac{-1}{x}(1)\right] - 2}{(2x^{3/2}) \left[\frac{-1}{x}(1)\right] - 2}$	$\frac{\ln x}{x^{\frac{3}{2}}} \frac{(2 - \ln x) \left[2 \left[\frac{3}{2} \times \frac{1}{2} \right] \right]}{\frac{3}{4} \left[2 - \ln x \right]^2} =$	$\frac{-2(\sqrt{x})^{3}}{x} - 3\sqrt{x} (2 - \ln x)$)
$= \frac{-2\sqrt{x} - 6\sqrt{x} + 3\sqrt{x}}{4(\sqrt{x})^{6}}$	$\frac{5x \ln x}{4 (5x)^6} = \frac{35x \ln x - 8}{4 (5x)^6}$	$\frac{1}{x} = \frac{\sqrt{x} (3 \ln x - 8)}{4(\sqrt{x})^6} = \frac{3 \mu}{4}$	
critical point $0 = \frac{dy}{dx} = \frac{2 - lnx}{2(Jx)^3}$	inflection point $0 = \frac{\partial^2 y}{\partial x^2} = \frac{3 \ln x - 8}{4(\sqrt{x})^5}$	$\frac{dy}{dx} = 0 \underbrace{\int INC. Max}_{e^2}$	dec,
$0 = \frac{2 - \ln x}{2(\sqrt{x})^3}$ $0 = 2 - \ln x$	$4(\sqrt{x})^{3}$ $0 = 3 \ln x - 8$		
lnx = 2 V $x = e^{2}$	$8 = 3 \ln x$ $\frac{8}{3} = \ln x$ $\frac{8}{3} = \ln x$ $\frac{8}{3} = \ln x$	$\frac{d^2y}{dx^2} O \left(\begin{array}{c} C.D. \end{array} \right)$	C.U. e ^{\$} 3
17 1			

 $at = e^{2}; \frac{d^{2}y}{dx^{2}}\Big|_{x=e^{2}} = \frac{3\ln(e^{2})-8}{4(\sqrt{e^{2}})^{5}} = \frac{3(2)-8}{4e^{5}} < 0 \quad C, D, \text{ focal Max}$ $y\Big|_{x=e^{2}} = \frac{\ln(e^{2})}{\sqrt{e^{2}}} = \frac{2}{e} \quad (e^{2}, \frac{2}{e})$

67

58) continued

0=ex no solution

none

dy

inflection point $0 = \frac{e^{x} \{1 - e^{x}\}}{(1 + e^{x})^{3}}$ 0=e*{1-e*} $\begin{array}{c} e^{x} = 0 \\ \text{no solution} \\ e^{x} = 1 \\ \psi \\ x = ln(1) \\ x = 0 \end{array}$ $\begin{array}{c} \# \\ \# \\ x = 1 \\ \psi \\ x = -ln(1) \\ x = 0 \end{array}$

at x=1: $\frac{dy}{dx|_{x=1}} = \frac{e^{(1)}}{(1+e^{(1)})^2} > 0$ IN C, $0 = \frac{\partial^2 y}{\partial x^2} = \frac{e^x \left(1 - e^x \right)^2}{\left(1 + e^x \right)^3} \qquad \frac{\partial^2 y}{\partial x^2} = \frac{e^{(1)} \left(1 - e^{(1)} \right)^2}{\left(1 + e^{(1)} \right)^3} < 0 \ C, P,$ at x = 0: $y|_{x=0} = \frac{e^{(0)}}{1+o^{(0)}} = \frac{1}{1+1} = \frac{1}{2}$

(0,之)

INC.

