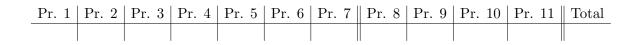
THE CITY COLLEGE OF NEW YORK DEPARTMENT OF MATHEMATICS SPRING 2016 MATH 392, FINAL EXAMINATION

YOUR NAME (print and sign):

NAME OF YOUR INSTRUCTOR:



INSTRUCTIONS:

- There are a total of 11 problems.
- DO ALL PROBLEMS 1 THROUGH 7 AND THREE OF THE FOUR PROBLEMS 8-11. IN THE TABLE ABOVE, CROSS OUT ONE PROB-LEM AMONG PROBLEMS 8-11 THAT YOU OMITTED.
- Each problem is worth 10 points.
- Notes, books and calculators are not to be used.
- All work on this exam is to be your own.
- Read each problem carefully. Be sure to show your work. Remember that it is your obligation to answer each question clearly and in a way that convinces the grader that you understand how to solve the problem.
- Stop working immediately at the end of the exam when time is called.

1. Find the arc-length parametrization of the curve that is the intersection of the elliptic cylinder $x^2 + \frac{y^2}{2} = 1$ and the plane z = x - 2. Use s as the arc-length parameter with s = 0 corresponds to the point (1, 0, -1). Specify the limits for s.

2. Find the potential of the vector field $\vec{F}(x, y, z) = e^{xy/z} \left((1 + \frac{xy}{z})\vec{i} + \frac{x^2}{z}\vec{j} - \frac{x^2y}{z^2}\vec{k} \right)$, and use the Fundamental Theorem for Line Integrals to evaluate

$$\int_C \vec{F} \cdot d\vec{r},$$

where C is the straight line segment from (1, 1, 1) to (2, 2, 1). Can one choose an arbitrary piece-wise smooth curve C with initial point (1, 1, 1) and terminal point (2, 2, 1) instead of the straight line segment?

3. Determine whether the following system of linear equations is consistent, and, if it is, find the set of solutions.

$$\begin{cases} 3x_1 + 4x_2 - x_4 = -5 \\ -x_2 - 6x_3 + 13x_4 = -4 \\ 2x_3 + x_4 = 3 \end{cases}$$

4. Use Green's theorem to find

$$\int_C xy^2 \, dx + x^3 y^2 \, dy,$$

 $\int_C \int_C \int_C y \, dy,$ where C is the boundary of the region $D = \{(x, y) : |x| + |y| \le 1, x \ge 0\}$, oriented positively (i.e., counterclockwise).

5. Evaluate the surface integral

$$\iint_S \vec{F} \cdot d\vec{S},$$

where $\vec{F}(x,y,z) = x\vec{i}$, and S is the part of the paraboloid $z = -x^2 - y^2 + 1$ above the xy-plane, oriented upward.

6. Use the Divergence Theorem to evaluate the integral

$$\iint_{S} \vec{F} \cdot d\vec{S},$$

where $\vec{F}(x,y,z) = x^2 y z \vec{k}$, and S is the positively oriented (i.e., outward pointing normal) boundary of the cube

$$E = \{(x, y, z) \colon 0 \le x \le 1, \ 0 \le y \le 1, \ |z| \le 1/2\}.$$

7. Solve the following linear system of ODE's.

$$\begin{cases} y_1' = 5y_1 - 2y_2\\ y_2' = -2y_1 + y_2 \end{cases}$$

•

8. Evaluate the triple integral

$$\iiint_E z \, dV,$$

where E is the region in the first octant, contained in $z^2 \ge x^2 + y^2$, and bounded by the sphere $x^2 + y^2 + z^2 = 4$ and the plane z = 1.

9. Evaluate the surface integral

$$\iint_{S} (2x - y + z) dS,$$

 $\int \int_{S} (-x - y + z) dx$, where S is the surface that is the intersection of the plane x + 2y + 2z = 1 with the first octant.

10. Use Stokes' Theorem to find the line integral

$$\int_C \vec{F} \cdot d\vec{r},$$

where $\vec{F}(x, y, z) = y\vec{i} + z\vec{j} + 2x\vec{k}$, and *C* is the circle in the plane x + z = 1, centered at the point (1, 0, 0), whose radius is 2, and that is oriented clockwise when viewed from the origin.

11. Find the inverse to the following matrix

$$A = \begin{bmatrix} 1 & -2 & 6 \\ -4 & 9 & -23 \\ -1 & 2 & -5 \end{bmatrix}.$$

Use A^{-1} to solve the following system of linear equations

$$\begin{cases} x_1 - 2x_2 + 6x_3 = 2\\ -4x_1 + 9x_2 - 23x_3 = 0\\ -x_1 + 2x_2 - 5x_3 = -1 \end{cases}$$

•