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1. (10 points) Compute
dy

dx
for each of the functions below. You do not need to simplify your

answer.

(a) (3 points) y =
x3 − 5x4 + x8

e3x
.

(b) (3 points) y = xx+2.

(c) (4 points) xy3 − x2 = ey − 2.

2. ( 10 points) Evaluate each integral and simplify your answer.

(a) (3 points)

∫
x5 sin

(
x6
)
dx

(b) (3 points)

∫
21/x2

x3
dx

(c) (4 points)

∫ e

1

2 + ln(x)

x
dx

3. (10 points) Find the limit or state that the limit does not exist.You must justify your
answer.

(a) (3 points) lim
x→−∞

x+ 3
√

4x2 + 5x− 8

(b) (3 points) lim
x→∞

ln
(
x1/x

)
(c) (4 points) lim

x→0

[
1

ln(x+ 1)
−

1

x

]
4. (10 points) This question has part (a) and (b).

(a) (5 points) State the Fundamental Theorem of Calculus, Part 1 including all hypotheses.

(b) (5 points) Let F (x) =

∫ x

0

t2

t2 + t+ 2
dt for all real number x. Find F ′′(x) and determine

the concavity of F .

5. (10 points) Water is leaking out of an inverted conical tank at a rate of 100 cm3/min at the
same time that water is being pumped into the tank at a constant rate. The tank has height 6
m and the diameter at the top is 4 m. If the water level is rising at a rate of 20 cm/min when
the height of the water is 0.3 m, find the rate at which water is being pumped into the tank.

Note that the volume of the cone is V =
π

3
r2h. Also 1m=100cm

6. (10 points) Let s(t) = t3 − 10t2 + 25t be the position function of a moving object. Find the
object’s acceleration each time the speed is zero.

7. (10 points) An island is
√

3 mi due north of its closest point along a straight shoreline. A guard
is staying at a cabin on the shore that is 6 mi west of that point. The guard is planning to
go from the cabin to the island. If the guard runs at a rate of 4 mi/h and swims at a rate of
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2 mi/h, how far should the guard run before swimming to minimize the time it takes to reach
the island?

8. (10 points) Let f : R→ R be defined by y = f(x) =
1

2
x4 +

8

3
x3 −

2

3
.

(a) (2 points) On which intervals is f increasing or decreasing? Explain your reasoning.

(b) (2 points) At what values of x does f have local maximum or minimum? Explain.

(c) (2 points) On what interval is f concave up or concave down? Explain your reasoning.

(d) (2 points) Does f has inflection points? if so, find its x-coordinates.

(e) (2 points) Sketch the graph of f by using all the information obtained above.

9. (10 points) This Problems has 3 parts labeled (a) through (c).

(a) (4 points) Use the limit definition of derivative to find f ′(x) if f(x) =
√
x+ 1. No credit

will be given for any other method.

(b) (3 points) Find an equation of the tangent line to the curve y = f(x) at x = 3.

(c) (3 points) Use differentials (or linear approximations) to estimate f(3.01). You do not
need to simplify your answer.

10. (10 points) This Problems has 2 parts labeled (a) and (b).

(a) (5 points) Let f be a continuous function. Give the definition for

∫ b

a

f(x) dx in terms of

Riemann sums.

(b) (5 points) Use part (a) with 4 subintervals and right endpoints to estimate the integral∫ 9

1

√
lnx dx. You do not need to simplify your answer.

End
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