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1. (10 points) Compute
dy

dx
for each of the functions below. You do not need to simplify your

answer.

(a) (3 points) y =
x3 − 5x4 + x8

e3x
.

(b) (3 points) y = xx+2.

(c) (4 points) xy3 − x2 = ey − 2.

Solution:

(a) Using the quotient rule we have

dy

dx
=

(3x2 − 20x3 + 8x7)e3x − 3e3x(x3 − 5x4 + x8)

(e3x)2

=
[3x2 − 20x3 + 8x7 − 3(x3 − 5x4 + x8)]e3x

e6x

=
− 3x8 + 8x7 + 15x4 − 23x3 + 3x2

e3x
.

(b) Using the logarithmic differentiation we have

ln(y) = ln(x)x+2 = (x+ 2) ln(x)

d

dx
[ln(y)] =

d

dx
[(x+ 2) ln(x)]

y′

y
=
(

1 · ln(x) + (x+ 2) ·
1

x

)
y′ =

(
ln(x) +

x+ 2

x

)
· y

y′ =

(
ln(x) +

x+ 2

x

)
· xx+2.

(c) Using the implicit differentiation we have

d

dx
[xy3 − x2] =

d

dx

(
ey − 2

)
1 · y3 + x · 3y2y′ − 2x = y′ · ey

y3 + 3xy2y′ − 2x = y′ · ey

3xy2y′ − y′ey = 2x− y3

(3xy2 − ey)y′ = 2x− y3

dy

dx
=

2x− y3

3xy2 − ey
.
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2. ( 12 points) Evaluate each integral and simplify your answer.

(a) (3 points)

∫
x5 sin

(
x6
)
dx.

(b) (3 points)

∫
21/x2

x3
dx.

(c) (4 points)

∫ e

1

2 + ln(x)

x
dx.

Solution: Using the substitution we have

(a) Let u = x6 =⇒ du = 6x5dx =⇒ dx =
1

6x5
du. So the integral becomes∫

x5 sin
(
x6
)
dx =

∫
x5 sin (u)

1

6x5
du =

1

6

∫
sin (u) du = −

1

6
cos(u) = −

1

6
cos(x6)+C.

(b) Let u =
1

x2
=⇒ du = −

2x

x4
= −

2

x3
dx =⇒ dx = −

1

2
x3du so that∫

21/x
2

x3
dx =

∫
2u

x3
1

2
x3du =

1

2

∫
2u du =

1

2
·

2u

ln 2
=

2u

2 ln 2
+ C.

We use the formula:

∫
axdx =

2x

ln 2
+ C

(c) Let u = 2 + ln(x) =⇒ du =
1

x
dx =⇒ dx = xdu

∫ e

1

2 + ln(x)

x
dx =

∫ e

1

u

x
xdu =

∫ e

1

u du =
u2

2
=

(2 + ln(x))2

2

∣∣∣∣∣
e

1

=
(2 + ln(e))2

2
−

(2 + ln(1))2

2

=
(3)2

2
−

(2)2

2
=

5

2
.

3. (10 points) Find the limit or state that the limit does not exist.You must justify your
answer.

(a) (3 points) lim
x→−∞

x+ 3
√

4x2 + 5x− 8
.

(b) (3 points) lim
x→∞

ln
(
x1/x

)
.

(c) (4 points) lim
x→0

[
1

ln(x+ 1)
−

1

x

]
.

Solution:
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(a) You can solve it the long way as we demonstrate in class or simply use the short/systematic
method as

lim
x→−∞

x+ 3
√

4x2 + 5x− 8
= lim

x→−∞

x
√

4x2
= lim

x→−∞

x

2
√
x2

= lim
x→−∞

x

2(−x)
= −

1

2
.

(b) Use law of logarithm then L’Hopital’s rule as

lim
x→∞

lnx1/x = lim
x→∞

lnx

x
=
∞
∞

H
= lim

x→∞

1/x

1
= lim

x→∞
1/x = 0.

(c) Direct substitution gives an indeterminate form ∞−∞

lim
x→0

[
1

ln(x+ 1)
−

1

x

]
= lim

x→0

x− ln(x+ 1)

x ln(x+ 1)
H
= lim

x→0

1−
1

x+ 1

x ·
1

x+ 1
+ 1 · ln(x+ 1)

·
x+ 1

x+ 1

= lim
x→0

x

x+ (x+ 1) ln(x+ 1)
= 0/0

H
= lim

x→0

1

1 + (x+ 1) ·
1

x+ 1
+ 1 · ln(x+ 1)

= lim
x→0

1

1 + 1 + ln(x+ 1)
=

1

2
.

4. (10 points) This question has part (a) through (b)

(a) (5 points) State the Fundamental Theorem of Calculus, Part 1 including all hypotheses.

(b) (5 points) Let F (x) =

∫ x

0

t2

t2 + t+ 2
dt for all real number x. Find F ′′(x) and determine

the concavity of F .

Solution:

(a) Definion:. Suppose f is continuous on closed interval [a, b]. Let F (x) =

∫ g(x)

a

f(t) dt where

a ≤ g(x) ≤ b; then

F ′(x) = g′(x) · f
(
g(x)

)
. (1)

(b) Given F (x) =

∫ x

0

t2

t2 + t+ 2
dt with f(x) =

t2

t2 + t+ 2
, g(x) = x =⇒ g′(x) = 1 and

a = 0. Using (1) of part(a) we have
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F ′(x) =
x2

x2 + x+ 2
. (2)

Use quotient rule to find F ′′(x); that is

F ′′(x) =
2x(x2 + x+ 2)− x2(2x+ 1)

(x2 + xt+ 2)2
=

x2 − 4x

(x2 + xt+ 2)2
=

x(x− 4)

(x2 + xt+ 2)2
. (3)

F ′′(x) = 0 =⇒ x2 − 4x = 0 =⇒ x(x− 4) = 0 =⇒ x = 0, x = 4

since the denominator is always positive. Note that the domain DF = (−∞,∞).

• For x < 0 and x > 4 =⇒ F ′′(x) > 0, hence F is concave up on (−∞, 0) ∪ (4,∞)

• For 0 < x < 4 =⇒ F ′′(x) < 0, and hence F is concave down on (0, 4).

5. (10 points) Water is leaking out of an inverted canonical tank at a rate of 100 cm3/min at the
same time that water is being pumped into the tank at a constant rate. The tank has height 6
m and the diameter at the top is 4 m. If the water level is rising at a rate of 20 cm/min when
the height of the water is 0.3 m, find the rate at which water is being pumped into the tank.

Note that the volume of the cone is v =
π

3
r2h.

Proof: Step 1: Draw a possible picture. See Figure 1 below.

Figure 1: Inverted cone

Step 2: Identify your given ( the known) and unknown

• Rate of change pumped in = C (Constant) cm3/min.

• Rate of change leaked out = 100 cm3/min.

• h = h(t) = height of the water in the tank at time t. When h = 0.3m =. 30 cm,
dh

dt
= 20

cm/min.
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• v = v(t) = is the volume of the water at t.

• Unknown: Is to find the constant C.

Rate of change in the tank = Rate of change pumped in−Rate of change leaked out

dv

dt
= C − 100 (4)

Using the similar triangle from triangle 2 of Figure 1, we have

r

200
=

h

600
=⇒ r =

200h

600
=⇒ r =

h

3
(5)

(6)

Substituting r =
h

3
into the the volume formula we have

v =
π

3

(h
3

)2
h =

π

27
h3 =⇒ v(t) =

π

27
[h(t)]3 (7)

Differentiating (7) with respect to t, we have

dv

dt
=

d

dt

[ π
27

[h(t)]3 = 3 ·
π

27
[h(t)]2 ·

dh

dt
=
π

9
(30)2 · 20 = 2000π cm/min (8)

substitute (8) into (4) to get

2000π = C − 100 =⇒ C = 2000π + 100 cm3/min (9)

6. (10 points) Find all points (x, y) on the graph of y = f(x) = x2 + 2 with tangent lines through
the points (x, y) and (3,10).

Proof:

Derivative of f at x = Slope of the line through the points (x, y) and (3, 10)

2x =
y − 10

x− 3
=
x2 + 2− 10

x− 3
=
x2 − 8

x− 3

2x(x− 3) = x2 − 8 =⇒ 2x2 − 6x = x2 − 8 =⇒ x2 − 6x+ 8 = 0 =⇒ (x− 2)(x− 4) = 0 =⇒
x = 2, x = 4.

So the points (x, y) are

• x = 2 =⇒ y = (2)2 + 2 = 6; the point is (2,6).

• x = 4 =⇒ y = (4)2 + 2 = 18; the point is (4,18).
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7. (10 points) An island is
√

3 mi due north of its closest point along a straight shoreline. A guard
is staying at a cabin on the shore that is 6 mi west of that point. The guard is planning to
go from the cabin to the island. If the guard runs at a rate of 4 mi/h and swims at a rate of
2 mi/h, how far should the guard run before swimming to minimize the time it takes to reach
the island?

Solution:

C O B (Shoreline)

I (Island)

• The. distance from C (Cabin) to B (Shoreline) is CB = 6 mi

• Let Rr = 4 mi/h be running rate, and tr be its running time. Let also x = OC be the
running distance; then the distance OB = 6− x. So, Distance = rate · time

x = Rr · tr = 4 · tr =⇒ tr =
x

4
(10)

• Let Rs = 2 mi/h be the swimming rate, ts its swimming time and OI = the swimming
distance. Using Pythagorean, we have OI2 = OB2 +BI2; that is

OI2 = (6− x)2 + (
√

3)2 = 36− 12x+ x2 + 3 = x2 − 12x+ 39 =⇒ (11)

OI =
√
x2 − 12x+ 39 =⇒ ts =

OI

Rs

=⇒ (12)

ts =

√
x2 − 12x+ 39

2
(13)

The total time T spent is

T (x) = tr + ts =
x

4
+

√
x2 − 12x+ 39

2

T ′(x) =
1

4
+

1

2

2x− 12

2
√
x2 − 12x+ 39

=
1 + 2x− 12

4
√
x2 − 12x+ 39

= 0 =⇒

1 + 2x− 12 = 0 =⇒ x = 11/2 = 5.5.

Since T ′(x) < 0 when x < 5.5 and T ′(x) > 0 when x > 5.5; then x = 5.5 is minimum, which
mean that the guard should run 5.5 mi before swimming.
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8. (10 points) Let f : R→ R be defined by y = f(x) =
1

2
x4 +

8

3
x3 −

2

3
.

(a) (2 points) On which intervals is f increasing or decreasing? Explain your reasoning.

(b) (2 points) At what values of x does f have local maximum or minimum? Explain.

(c) (2 points) On what interval is f concave up or concave down? Explain your reasoning.

(d) (2 points) Does f has inflection points? if so, find its x-coordinates.

(e) (2 points) Sketch the graph of f by using all the information obtained above.

Proof:

Since f is a polynomial, domain Df = (−∞,∞).

(a) f ′(x) = 2x3 + 8x2 = 2x2(x + 4) = 0 =⇒ 2x2 = 0, x + 4 = 0 =⇒ x = 0 or x = −4 are
critical numbers.

When x < −4, then f ′(x) < 0, which implies that f is decreasing on (−∞,−4).
When −4 < x ≤ 0 or 0 ≤ x , then f ′(x) > 0, which implies that f is increasing on (−4,∞).
Therefore, the point (−4, f(−4)) is a local minimum and no local maximum.

(b) at x = −4, f has a minimum.

(c) For the concavity, investigate the solution of f ′′(x) = 0; that is

f ′(x) = 2x3 + 8x2 =⇒ f ′′(x) = 6x2 + 8x = 2x(3x + 4) = 0 =⇒ 2x = 0 or 3x + 4 = 0 =⇒
x = 0 or x = −4/3.

f ′′(x) > 0 when x < −4/3, and f ′′(x) < 0 when (−4/3, 0) and f ′′(x) > 0 when x > 0.
Hence f concave up on (−∞,−4/3) ∪ (0,∞) and concave down on (−4/3, 0).

(d) Since f change signs around −4/3 and 0, then f has inflection points with x− coordinates
x− 4/3 and x = 0.
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=

9. (10 points) This Problems has 3 parts labeled (a) through (c).

(a) (4 points) Use the limit definition of derivative to find f ′(x) if f(x) =
√
x+ 1. No credit

will be given for any other method.

(b) (3 points) Find an equation of the tangent line to the curve y = f(x) at x = 3.

(c) (3 points) Use differentials to estimate f(3.01). You do not need to simplify your
answer.

Proof:

(a)

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(14)

= lim
h→0

√
x+ h+ 1−

√
x+ 1

h
·
√
x+ h+ +

√
x+ 1

√
x+ h+ +

√
x+ 1

(15)

= lim
h→0

(
√
x+ h+ 1)2 − (

√
x+ 1)2

h[
√
x+ h+ +

√
x+ 1]

= lim
h→0

x+ h+ 1− (x+ 1)

h[
√
x+ h+ 1 +

√
x+ 1]

(16)

= lim
h→0

h

h[
√
x+ h+ 1 +

√
x+ 1]

= lim
h→0

1
√
x+ h+ 1 +

√
x+ 1

(17)

= lim
h→0

1
√
x+ 1 +

√
x+ 1

(18)

=
1

2
√
x+ 1

(19)

(20)

(b) Th. equation of the tangent line to the curve f(x) =
√
x+ 1 is of the form

y = f(a) + f ′(a)(x− a) where a = 3.

We have f(3) =
√

3 + 1 = 2 and f ′(3) =
1

2
√

3 + 1
=

1

4
. So the equation is

y − 2 =
1

4
(x− 3) =⇒ y =

1

4
x+

5

4
.

(c) Using the differentials formulus: f(a+ dx) ≈ f(a) + f ′(a)dx we have

f(3.01) ≈ f(3) + f ′(3)(0.01) = 2 +
1

4
· (0.01) = 2 +

1

4
·

1

100
=

801

400
.
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10. (10 points) This Problems has 3 parts labeled (a) through (c).

(a) (3 points) Let f : [a, b]→ R be continuous. Give the definition for

∫ b

a

f(x) dx in terms of

Riemann sums.

(b) (3 points) Use part (a) with 4 subintervals and right endpoints to estimate the integral∫ 9

1

√
lnx dx. You do not need to simplify your answer.

(c) (4 points) Let s(t) = t3− 10t2 + 25t be the position function of a moving object. Find the
object’s acceleration each time the speed is zero.

Proof:

(a) Definition: If f is defined for [a, b], we divide the interval [a, b] into n subintervals

[a, x1], [x1, x2], . . . , [xn−1, b] of equal width ∆x =
b− a
n

. Let c1, c2, . . . cn be any sample

points in these subintervals, ci lies in the ith subinterval [xi−1, xi]. Then∫ b

a

f(x) dx = lim
n→∞

[
f(c1) + f(c2) + f(c3) + f(c4) + . . .+ f(cn−1) + f(cn)

]
∆x

(b) Using part(a) with f(x) =
√

lnx, a = 1, b = 9 and n = 4 subintervals. We have

∆x =
b− a
n

=
9− 1

4
= 2.

x0 = a = 1.

x1 = x0 + ∆x = 1 + 2 = 3.

x2 = x1 + ∆x = 3 + 2 = 5.

x3 = x2 + ∆x = 5 + 2 = 7.

x4 = x3 + ∆x = 7 + 2 = 9.

The sample points in this case are the right endpoints; that is c1 = x1, c2 = x2, c3 = x3
and c4 = x4. So ∫ 9

1

ln(x) dx =
[

ln(c1) + ln(c2) + ln(c3) + ln(c4) +
]
(2)

= 2
[

ln(3) + ln(5) + ln(c3) + ln(7) + ln(9)
]
.

(c) velocity v(t) =
ds

dt
= 3t2 − 20t+ 25 = (3t− 5)(t− 5) = 0 =⇒ t = 5 or t = 5/3
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The acceleration a(t) =
dv

dt
= 6t− 20.

at t = 5, we get a(5) =
dv

dt
= 6(5)− 20 = 10.

at t = 5/3, we get a(5/3) =
dv

dt
= 6(5/3)− 20 = −10.
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