
Math 34600 L (43597)
- Lectures 03

Ethan Akin
Office: Marshak 325

Email: eakin@ccny.cuny.edu

Spring, 2024



Contents

Linear Transformations
Matrix of a Linear Transformation

Eigenvalues, Eigenvectors and Diagonalization

Euclidean Spaces, Orthogonality and Symmetric Matrices
Orthogonal Matrices
Symmetric Matrices



Linear Transformations

Earlier we define a linear transformation TA : Rn → Rm

defined by multiplying the m × n matrix A.

In general, a linear transformation or linear map is a function
T : V → W between the vector spaces V and W . That is,
the inputs and outputs are vectors, and T satisfies linearity,
which is also called the superposition property:

T (v1 + v2) = T (v1) + T (v2) and T (av) = aT (v).
(6.1)

In particular, T (0) = T (00) = 0T (0) = 0, and
T (−v) = T ((−1)v) = (−1)T (v) = −T (v).
It follows that T relates linear combinations:

T (c1v1 + c2v2 +. . . ckvk) = c1T (v1) + c2T (v2) +. . . ckL(vk).
(6.2)



This property of linearity is very special. It is a standard
algebra mistake to apply it to functions like the square root
function and sin and cos etc. for which it does not hold. On
the other hand, these should be familiar properties from
calculus. The operator D associating to a differentiable
function f its derivative Df is a most important example of a
linear operator.

From a linear map we get an important examples of subspaces.



For a linear map T : V → W , the set of vectors
{v ∈ V : T (v) = 0} solution space of the homogeneous
equation, is a subspace of V called the kernel of T , Ker(T ).
If r is not 0 then the solution space of T (v) = r is not a
subspace. For example, it does not contain 0.

For a linear map T : V → W , the set of vectors {w ∈ W : for
some v ∈ V , T (v) = w} is called the image of L, denoted
Im(T ).

Check that Ker(T ) ⊂ V and Im(T ) ⊂ W are subspaces.

For the linear map TA : Rn → Rm associated with the m × n
matrix A, Ker(TA) = Null(A) and Im(TA) = Col(A).



Theorem 6.01: (a) If T : V → W and S : W → U are linear
maps, then the composition S ◦ T : V → U defined by
S ◦ T (v) = S(T (v)) is a linear map.

(b) A linear map T : V → W is one-to-one if and only if
Ker(T ) = {0}.

(c) A linear map T : V → W is onto if and only if
Im(T ) = W .

(d) If a linear map T : V → W is one-to-one and onto, then
the inverse map T−1 : W → V defined by

T−1(w) = v ⇔ T (v) = w (6.3)

is a linear map.

A one-to-one, onto linear map is called a linear isomorphism.



Proof: (a)
S(T (cv1 +v2) = S(cT (v1)+T (v2)) = cS(T (v1))+S(T (v2)).

(b) T (0) = 0 and so if T is one-to-one, Ker(T ) = {0}.
Conversely, if T (v1) = T (v2), then T (v1 − v2) = 0. So if
Ker(T ) = {0}, we have v1 − v2 = 0 and so v1 = v2.

(c) This is clear from the definition of Im(T ).

(d)T−1(cw1+w2) = cv1+v2 ⇔ cw1+w2 = T (cv1+v2).
�



Theorem 6.02: Let T : V → W be a linear map and
D = {v1, . . . , vn} be a list of vectors in V . Define
T (D) = {T (v1), . . . ,T (vn)}

(a) If D is an li list in V and Ker(T ) = {0}, then If T (D) is
an li list in W .

(b) If D spans V and Im(T ) = W , then T (D) spans W .

(c) If D is a basis for V and T is a linear isomorphism, then
T (D) is a basis for W .

Proof: (a) Assume
0 = c1T (v1) + · · ·+ cnT (vn) = T (c1v1 + · · ·+ cnvn).
Because Ker(T ) = {0}, 0 = c1v1 + · · ·+ cnvn. Because D is
li, c1 = · · · = cn = 0.

(b) For w ∈ W , there exists v with T (v) = w because T is
onto. There exist coefficients so that v = c1v1 + · · ·+ cnvn
because D spans. So w = c1T (v1) + · · ·+ cnT (vn).

(c) follows from (a) and (b).

�



Theorem 6.03: For T : V → W a linear map,

dimV = dimKer(T ) + dimIm(T ). (6.4)

Proof: Every vector of Im(T ) is of the form T (v) and so we
can choose a basis {T (v1), . . . ,T (vr )} for Im(T ). Let
{vr+1, . . . , vn} be a basis for Ker(T ). We will show that
{v1, . . . , vr , vr+1, . . . vn} is a basis for V which will show that
n = dimV .

Assume 0 = c1v1 + · · ·+ crvr + cr+1vr+1 + . . . cnvn. We must
show c1 = . . . cr = cr+1 · · · = cn = 0.

Apply T and note the vi ∈ Ker(T ) for r < i ≤ n implies
0 = c1T (v1) + · · ·+ crT (vr ). So c1 = · · · = cr = 0 (Why?)

This implies that 0 = cr+1vr+1 + . . . cnvn. So
cr+1 = · · · = cn = 0 (Why?)

Thus, {v1, . . . , vr , vr+1, . . . vn} is li.



Now let v ∈ V . We must find coefficients so that
v = c1v1 + · · ·+ crvr + cr+1vr+1 + . . . cnvn.

There exist coefficients so that
T (v) = c1T (v1) + · · ·+ crT (vr ) (Why?)

T (v−c1v1+· · ·+crvr ) = T (v)−(c1T (v1)+· · ·+crT (vr )) = 0

and so there exist coefficients such that

v − c1v1 + · · ·+ crvr = cr+1vr+1 + . . . cnvn.

Thus, {v1, . . . , vr , vr+1, . . . vn} spans V .
�



Theorem 6.04: Let D = {v1, . . . , vn} be a list of vectors in V .
The map TD : Rn → V defined by

TD(x1, . . . , xn) =
n∑

i=1

x1vi = x1v1 + · · ·+ xnvn (6.5)

is a linear map.

If D is a basis, then TD is a linear isomorphism and inverse
map T−1D : V → Rn is given by T−1D (v) = [v]D , the
coordinate vector of v with respect to the basis D.

Proof: We saw above that the sum of two linear combinations
on a list is the linear combination obtained by adding the
corresponding coefficients. Similarly,

TD(cx1, . . . , cxn) = cTD(x1, . . . , xn). Thus, TD is linear.

If D is a basis then for any v ∈ V the equation
v = x1v1 + · · ·+ xnvn uniquely defines the coefficients and
the list of coefficients is the coordinate vector [v]D .
�



Corollary 6.05: For finite dimensional vector spaces V and W ,
there is a linear isomorphism T : V → W if and only if
dimV = dimW . In particular, if dimV = n, then there is a
linear isomorphism T : Rn → V .

Proof: If D = {v1, . . . , vn} is a basis for V , then
TD : Rn → V is a linear isomorphism and such a basis exists
exactly when dimV = n.

Thus, if dimV = dimW = n then there exist linear
isomorphisms T : V → Rn and S : W → Rn and so the
composition S−1 ◦ T : V → W is a linear isomorphism.

On the other hand, if T : V → W is a linear isomorphism and
D is a basis for V , then by Theorem 6.02(d) T (D) is a basis
for W . Therefore, dimV = #D = #T (D) = dimW .
�

Let us look at Exercise 7.2/ 1b, page 385.



Matrix of a Linear Transformation
Recall that for A an m × n matrix the linear map
TA : Rn → Rm is defined by TA(X ) = AX . By using bases we
can represent every linear map between finite dimensional
vector spaces in this way.

If T : V → W is a linear map and
B = {v1, ..., vn},D = {w1, ...,wm} are bases for V and W ,
respectively, then the matrix [T ]DB is the m × n matrix given
by

[T ]DB = [ [T (v1)]D ...[T (vn)]D ]. (6.6)

That is, we form the matrix by applying T to each of the
domain basis vectors from B in V . We list them in order,
thinking of them as a matrix but with vectors in W instead of
columns of numbers. We convert each vector to an actual
column of numbers by replacing each by its column of D
coordinates. Thus, we obtain the m × n matrix [T ]DB .



Theorem 6.06: Let T : V → W be a linear map with
B = {v1, ..., vn},D = {w1, ...,wm} bases for V and W . Let
[T ]DB be the m× n matrix associated to the linear map by the
choice of bases. If v ∈ V , then

[T (v)]D = [T ]DB [v]B . (6.7)

That is, the D coordinate vector of w = T (v) in Rm is

obtained by multiplying the B coordinate vector of v in Rn by
the m × n matrix [T ]DB .



Proof: By definition [v]B =


x1
·
·
xn

 means v = x1v1 + . . . xnvn,

and so w = T (v) = x1T (v1) + . . . xnT (vn). By Theorem 6.04,
the coordinate map w 7→ [w]D is linear and so

[w]D = x1[T (v1)]D + . . . xn[T (vn)]D .

This is, the linear combination of the columns of [T ]DB with
coefficients x1, . . . , xn. That is exactly

[T ]DB


x1
·
·
xn

 = [T ]DB [v]B .

�



Corollary 6.07: Let T : V → W and S : W → U be linear
maps with B ,D,E bases for V ,W and U .

[S ◦ T ]EB = [S ]ED [T ]DB . (6.8)

That is, the matrix of the composed linear map S ◦ T is the

product of the matrices of S and T provided that the same
basis D is used for W as the range of T and as the domain of
S .

Proof: Let v be an arbitrary vector in V . By Theorem 6.06
applied first to S ◦ T , then to S and then to T we have

[S ◦ T ]EB [v]B = [(S ◦ T )(v)]E =

[(S(T (v))]E = [S ]ED [T (v)]D = [S ]ED [T ]DB [v]B .
(6.9)

�



An important special case lets us change the coordinates from
one basis to another. We use the identity map I on the vector
space V , so that I (v) = v for all v in V , but we use different
bases on the domain and range.
Let B = {v1, ..., vn},D = {w1, ...,wn} be two different bases
on a vector space V . They have the same number n of
elements when dimV = n. The transition matrix from B to D
is given by:

[I ]DB = [ [v1]D ...[vn)]D ]. (6.10)

That is, the columns are the D coordinates of the B vectors
listed in order.



Corollary 6.08: Let B and D be bases for a vector space V of
dimension n.

(a) [I ]BB = In. That is, the transition matrix from a basis to
itself is the identity matrix.

(b) [I ]BD = ([I ]DB)−1. That is, the transition matrix from D
to B is the inverse matrix of the transition matrix from B
to D.

(c) For any vector v ∈ V ,

[v]D = [I ]DB [v]B . (6.11)

Proof: (a) is easy to check, e.g. v1 = 1v1 + 0v2 + · · ·+ 0vn.
Then (b) follows from Corollary 6.07.

Finally, (c) is a special case of Theorem 6.06.
�



As we have seen, many of the spaces we look at have a
standard basis S whose coordinate vectors are easy to read off.
If T : V → W is a linear map with B is a basis for V and S is
a standard basis for W , then it is easy to compute [T ]SB .

For example, if A is an m × n matrix and X ∈ Rn, then with
respect to the standard bases Sn on Rn and Sm on Rm, just as
the coordinate vector [X ]Sn is X itself, so too [TA]SmSn = A.

If T : V → W is a linear map with
B = {v1, . . . , vn},D = {w1, . . . ,wm} bases for V and W
and S is a standard basis for W , then usually [T ]SB and [I ]SD
are easy to read directly. It is then sometimes easiest to use
the following application of Corollaries 6.07 and 6.08:

[T ]DB = [I ]DS [T ]SB = ([I ]SD)−1[T ]SB . (6.12)

Let us look at Exercises 9.1/1ad, page 501.



Eigenvalues, Eigenvectors

Suppose T : V → V is a linear map on an n dimensional
vector space V . Since the domain and range are the same
space, we usually choose the same basis for the domain and
range. If B and D are bases for V then from Corollaries 6.07
and 6.08 we have

[T ]DD = [I ]DB [T ]BB [I ]BD = ([I ]BD)−1[T ]BB [I ]BD . (7.1)

All of these matrices are square n × n matrices.

Again if B is a standard basis, then [T ]BB and [I ]BD are
usually easy to compute.



A nonzero vector v is an eigenvector for L with eigenvalue λ
when L(v) = λv. That is, L(v) is just a multiple of v. Of
course, if v = 0, then L(v) = λv for any λ, but if v 6= 0, then
the eigenvalue is uniquely determined by the eigenvector.

Proof: If L(v) = λ1v = λ2v, then (λ1 − λ2)v = 0 and since
v 6= 0 this means λ1 − λ2 = 0 and so λ1 = λ2. �

A nonzero vector v is an eigenvector with eigenvalue λ = 0 if
and only if v is in the kernel of L.

For an n × n matrix A an eigenvector is a nonzero n × 1
column vector X such that AX = λX or, equivalently,
(λI − A)X = 0. Thus, an eigenvector for the matrix A is
exactly an eigenvector for the linear map TA.



For a linear map L on V or an n × n matrix A, the eigenspace
Eλ(L) or Eλ(A) is the subspace defined by

Eλ(L) = {v ∈ V : L(v) = λv}.
Eλ(A) = Eλ(TA) = {X ∈ Rn : AX = λX} = Null(λI − A).

(7.2)

So Eλ(A) consists of the eigenvectors of A with eigenvalue λ
(if any) together with the zero vector.

In particular, E0(A) = Null(A) and E0(L) is the kernel of L.



You might think that we find the eigenvectors of the matrix A
and then for each one multiply by A to get the associated
eigenvalue. In fact, we do the reverse finding the eigenvalues
first.

For most values of λ the nullspace Null(λI − A) equals {0}
and so there are no eigenvectors with eigenvalue λ.

We know exactly when the nullspace is nontrivial. It is when
the system (λI − A)X = 0 has nontrivial solutions and so
when the rank of λI − A is less than n. This occurs exactly
when λI − A is singular, i.e. noninvertible, and so when
det(λI − A) = 0. So λ is an eigenvalue for A when x = λ is a
root of the characteristic equation cA(x) = 0 where cA(x) is
the characteristic polynomial given by

cA(x) = det(xI − A). (7.3)

For an n × n matrix A, cA(x) is a polynomial of degree n



Diagonalization

What we look for is a basis of eigenvectors. When there is a
basis of eigenvectors of T then we call T diagonalizable.

Theorem 7.03: Let D = {v1, . . . , vn} be a basis for V and
T : V → V be a linear map. For {λ1, . . . , λn} a list of
numbers in R diag(λ1, . . . , λn) denotes the diagonal matrix
with diag(λ1, . . . , λn)ii = λi and diag(λ1, . . . , λn)ij = 0 when
i 6= j . The list D consists of eigenvectors with λi the
eigenvalue of vi for all i if and only if

[L]DD = diag(λ1, . . . , λn).



Proof: The i th column of [L]DD is the D coordinate vector for
L(vi). This coordinate vector [L(vi)]D has a λi in the i th place
and 0’s elsewhere if and only if L(vi) = λivi . As they are
elements of a basis, no vi = 0.

Therefore, [L]DD = diag(λ1, . . . , λn) if and only if for each i ,
vi is an eigenvector with eigenvalue λi .
�



Theorem 7.04: Let A be an n × n matrix with distinct
eigenvalues λ1, . . . , λk . If Di is a basis for the eigenspace
Eλi

(A), i = 1, . . . , k , then the combined list
D = D1 ∪ · · · ∪ Dk is an li list in Rn. The matrix A is
diagonalizable if and only if D is a list of n vectors in total.

Proof: We will illustrate the proof by looking at a special case.
Suppose that k = 3, D1 = {v1, v2, v3},
D2 = {v4,w5},D3 = {v6, v7}.



Given

(1) c1v1 + c2v2 + c3v3 + c4v4 + c5v5 + c6v6 + c7v7 = 0.

We must show all the ci equal 0.
Multiply by the matrix λ3I − A. Because Avi = λ1vi for
i = 1, 2, 3, Avi = λ2vi for i = 4, 5 and Avi = λ3vi for i = 6, 7,
we get

(2) c1(λ3 − λ1)v1 + c2(λ3 − λ1)v2 + c3(λ3 − λ1)v3
+c4(λ3 − λ2)v4 + c5(λ3 − λ2)v5 = 0.



Multiply by λ2I − A to get

(3) c1(λ3 − λ1)(λ2 − λ1)v1 + c2(λ3 − λ1)(λ2 − λ1)v2
+c3(λ3 − λ1)(λ2 − λ1)v3 = 0.

Because {v1, v2, v3} is an li list and (λ3 − λ1)(λ2 − λ1) 6= 0,
we have c1 = c2 = c3 = 0.

Because {v4, v5} is li, and (λ3 − λ2) 6= 0, equation (2) implies
c4 = c5 = 0.

Finally, equation (1) implies c6 = c7 = 0 because {v6, v7} is li.



Generalizing this argument we get that the list D is li.
Furthermore every eigenvector is a linear combination of one
of the Di ’s since {λ1, . . . , λk} lists all the eigenvalues. In
particular, the span of D contains all of the eigenvectors.

If D contains fewer than n vectors then its span has dimension
less than n and so is a proper subspace of Rn. This means
there is no basis of eigenvectors.

On the other hand, if the li list D contains n = dimRn vectors,
then it is a basis by Theorem 5.05.
�



Corollary 7.05: If A is an n × n matrix with n distinct
eigenvalues, then A is diagonalizable.

Proof: If vi is an eigenvector for λi , then D = {v1, . . . , vn} is
a list of eigenvectors which is li by Theorem 7.04.

Since it consists of n vectors, D is a basis.
�



Our procedure to diagonalize A is as follows

I Compute the real roots of the characteristic polynomial
cA(x) = det(xI − A). These are the eigenvalues of A.

I For each eigenvalue λ compute a basis of the solution
space for the homogeneous system (λI − A)X = 0.

I Put these bases together. If we have a list D of n vectors
then it is the required basis of eigenvectors, and the
transition matric P = [I ]SD , with columns the
coordinates of the vectors of D, is the transition matrix so
that P−1AP is diagonal. If D has fewer than n vectors,
then A is not diagonalizable.



Example: Let A =

−1 2 2
0 1 2
0 8 7

 so that the determinant of

xI − A is

(x+1)det(

(
x − 1 −2
−8 x − 7

)
) = (x+1)(x2−8x−9) = (x+1)2(x−9).

So the eigenvalues are −1 and 9.

For λ = −1, −I − A is row equivalent to

0 1 1
0 0 0
0 0 0

 with

solution x3 = r , x2 = −r , x1 = s. So

D−1 = {

1
0
0

 ,

 0
−1
1

}



For λ = 9, 9I − A is row equivalent to

1 0 −1/4
0 1 −1/4
0 0 0

 with

solution x3 = r , x2 = x1 = r/4. Using r = 4 we get

D9 = {

1
1
4

}.
P =

1 0 1
0 −1 1
0 1 4


This is the transition matrix such that
P−1AP = diag(−1,−1, 9).

Let us consider what happens when we use A =

−1 2 3
0 1 2
0 8 7


which has the same characteristic polynomial.



Systems of Differential Equations

Just as we can represent a system of linear equations using a
single matrix equation, we can do the same for a system of
linear differential equations:

dX

dt
= AX . (7.4)

Suppose that the coefficient matrix A is diagonalizable, so
that P−1AP = diag(λ1, . . . , λn) with P the invertible matrix
whose columns form a basis of eigenvectors for A.

We change variables, defining Y = P−1X and so X = PY .
Because P−1 is a constant matrix,

dY

dt
= P−1

dX

dt
= P−1AX = P−1APY = diag(λ1, . . . , λn)Y .

(7.5)



That is, we have the system of equations:

dy1
dt

= λ1y1

dy2
dt

= λ2y2

·
dyn
dt

= λnyn

(7.6)

The solution of dyi
dt

= λiyi is yi(0)eλi t . So the solution of the
system can be written in matrix form as

Y = diag(eλ1t , . . . , eλnt)Y (0),

X = PY = Pdiag(eλ1t , . . . , eλnt)P−1X (0).
(7.7)



If {v1, . . . , vn} is the basis of eigenvectors for A with
eigenvalues {λ1, . . . , λn}, then the columns of P are the
vectors v1, . . . , vn. That is,

P = [v1 . . . vn] and so

Pdiag(eλ1t , . . . , eλnt) = [eλ1tv1 . . . e
λntvn].

(7.8)

The general solution is X = c1e
λ1tv1 + . . . cne

λntvn with

Y (0) =


c1
.
.
cn

.



If we are given initial conditions X (0) then we solve for the
constants c1, . . . , cn using Y (0) = P−1X (0). So we solve:

P


c1
.
.
cn

 =


x1(0)
.
.

xn(0)

 (7.9)

and write X = c1e
λ1tv1 + . . . cne

λntvn.

Let us look at Exercise 3.5/ 1b, page 201.



Euclidean Spaces and Orthogonality

A Euclidean Space is a vector space V equipped with an inner
product.

A function associating a real number v ·w to every pair of
vectors v,w ∈ V is called an inner product when it satisfies
the following properties

I Symmetry: v ·w = w · v.
I Bilinearity: v · (cw1 + w2) = c(v ·w1) + v ·w2.

I Positivity: If v 6= 0, then v · v > 0.

From Bilinearity, we have v · 0 = 0 for any vector v and so,
in particular, 0 · 0 = 0.



For X ,Y ∈ Rn,

X · Y = XTY =
n∑

i=1

xiyi (8.1)

is the usual dot product which motivates our definition. In a

Euclidean space V we define the length of the vector v by

||v|| =
√
v · v. (8.2)

Thus, any nonzero vector has a positive length.

We call v a unit vector when it has length 1. If v is any
nonzero vector, then (1/||v|)v is a unit vector.

We call two vectors v and w perpendicular or orthogonal when

v ·w = 0, (8.3)

in which case we write v ⊥ w.



A list {v1, . . . , vk} of nonzero vectors is an orthogonal list,
when vi · vj = 0 for i 6= j from 1 to k . It is an orthonormal list,
when, in addition, vi · vi = 1 for all i . Thus, an orthogonal
list consists of mutually perpendicular nonzero vectors and it is
orthonormal when all of the vectors are unit vectors.

Theorem 8.01: An orthogonal list of nonzero vectors is linearly
independent.

Proof: Assume c1v1 + . . . ckvk = 0. Take the dot product
with vi .

From bilinearity and orthogonality we get
ci(vi · vi) = vi · 0 = 0. Because vi is nonzero, vi · vi > 0
and so ci = 0.
�



Theorem 8.02: For an n dimensional Euclidean space, there
exists an orthonormal basis {u1, . . . ,un}.

Proof: Begin with an arbitrary basis {v1, . . . , vn}. The
Gram-Schmidt procedure constructs an orthogonal list
{w1, . . . ,wn} such that for k = 1, . . . n,

span({w1, . . . ,wk}) = span({v1, . . . , vk}). (8.4)

To begin with, let w1 = v1.

Now assume that for some k < n the orthogonal list
{w1, . . . ,wk} which satisfies (8.4)has been constructed.



Define

wk+1 = vk+1 −
k∑

i=1

(vk+1 ·wi)

wi ·wi
wi . (8.5)

(To get rid of fractions, you can multiply wk+1 by any nonzero
constant.) Check that wk+1 ·wi = 0 for i = 1, . . . , k . Because
vk+1 is not in span({v1, . . . , vk}) = span({w1, . . . ,wk}), it
follows that wk+1 6= 0.

Thus {w1, . . . ,wk ,wk+1} is an orthogonal list.

Since each of the elements of the list is in
span({v1, . . . , vk , vk+1}) it follows that

span({w1, . . . ,wk ,wk+1}) ⊂ span({v1, . . . , vk , vk+1}).

From Theorem 8.01, each of the subspaces has dimension
k + 1 and so they are equal.



Continue the process to reach k = n.

We can then convert each wi to the unit vector
ui = (1/||wi ||)wi .

Clearly, for k = 1, . . . , n

span({u1, . . . ,uk}) = span({w1, . . . ,wk}) = span({v1, . . . , vk}).

Thus, {u1, . . . ,un} is an orthonormal basis.
�

Let us look at Exercise 8.1/ 1c, page 416.



The generalization of the Pythagorean Theorem says: If
v ⊥ w, then ||v −w||2 = ||v||2 + ||w||2.

Proof: ||v −w||2 = (v −w) · (v −w). and from Bilinearity
and Symmetry this equals

v · v − 2v ·w + w ·w = ||v||2 + 0 + ||w||2.

�



For a subspace U of a Euclidean space V , we define

U⊥ = {v ∈ V : v ·w = 0 for all w ∈ U}. (8.6)

Check that U⊥ is a subspace of V .
Choose {u1, . . . ,uk} an orthonormal basis for U . Define the
linear map PU on V by

PU(v) =
k∑

i=1

(v · ui)ui . (8.7)

Notice that if {u1, . . . ,uk} came from an orthogonal list
{w1, . . . ,wk} with each ui = wi/||wi ||, then

PU(v) =
k∑

i=1

(v ·wi)

wi ·wi
wi . (8.8)

This should look familiar from the steps of the Gram-Schmidt
procedure.



Linearity of PU follows from Bilinearity of the inner product.
This is the orthogonal projection of v to U .
It has kernel U⊥.

v− PU(v) is perpendicular to each ui and so to every vector in
U .



For any vector v ∈ V , the projection PU(v) is best
approximation of v by a vector in U . That is,

w ∈ U , and w 6= PU(v) =⇒ ||v −w|| > ||v − PU(v)||.
(8.9)

Proof: w − PU(v) ∈ U and so is perpendicular to v − PU(v).

Since v −w = (v − PU(v))− (w − PU(v)), the Pythagorean
Theorem implies

||v −w||2 = ||v − PU(v)||2 + ||w − PU(v)||2.

�



Orthogonal Matrices

Theorem 8.06: For an n × n matrix U the following conditions
are equivalent. When they hold we call U an orthogonal
matrix.

(i) U is invertible and U−1 = UT .

(ii) UTU = In.

(iii) The columns of U form an orthonormal list and so provide
an orthonormal basis in Rn.

(iv) The rows of U form an orthonormal list and so provide an
orthonormal basis in Rn.

If U is orthogonal, then UT is orthogonal.



Proof: By Theorem 2.01, it suffices to check cancellation on
one side and so (i) is equivalent to (ii). Multiplying out we see
that (ii) is equivalent to (iii).

If U−1 = UT , then (UT )−1 = (U−1)T = (UT )T and so UT is
orthogonal. Condition (iii) for UT is the same as condition (iv)
for U .

�



Symmetric Matrices

An n×n matrix A is called a symmetric matrix when AT = A.

It will be our final task to show that any symmetric map has
an orthonormal basis of eigenvectors and to apply this result.
In Theorem 7.04 and Corollary 7.05 we saw that a list of
eigenvectors associated with distinct eigenvalues is necessarily
li. For a symmetric matrix we have a stronger result.

Theorem 8.10: If A is a symmetric n × n matrix with
AX1 = λ1X1 and AX2 = λ2X2 λ1 6= λ2, then the dot product
XT
1 X2 equals zero.



Proof: From symmetry we have

λ1X
T
1 X2 = (AX1)TX2 = XT

1 ATX2 = XT
1 AX2 = λ2X

T
1 X2.

Since λ1 6= λ2, it follows that XT
1 X2 = 0.

�



When we look at rotations in the plane we see that it is
possible to have a linear map with no eigenvectors at all. This
occurs when the characteristic polynomial cA(x) = det(xI −A)
of the associated matrix has no real roots.

However, for a symmetric matrix we have

Theorem 8.11: If A is a symmetric matrix, then the roots of
the characteristic polynomial cA(x) are all real numbers. In
particular, any complex eigenvalue is in fact real.

We will omit the proof of this. It is given on page 305 of the
book and requires a digression using matrices with complex
entries.



Theorem 8.12:(Principal Axis Theorem) If A is an n × n
matrix, then the following are equivalent.

(i) A has an orthonormal basis of eigenvectors.

(ii) A is orthogonally diagonalizable. That is there exists an
orthogonal matrix P and a diagonal matrix D such that
A = P−1DP = PTDP .

(iii) A is symmetric.

Proof: (i) ⇔ (ii) and (ii)⇒ (iii) are clear.

For (iii) ⇒ (ii) we sketch the argument from page 420 of the
book.
Because A has a real eigenvalue, it has a unit eigenvector x1
with eigenvalue λ1. We can extend to get a basis {x1, . . . , xn}
which we can take to be orthonormal by using the
Gram-Schmidt process.



With P1 = [x1, . . . , xn] we have

PT
1 AP1 = P−11 AP1 =

(
λ1 B
0 A1

)
. This is symmetric and so

B = 0 and A1 is symmetric.

Using induction on n we may assume that A1 is orthogonally
diagonalizable and so there exists an orthgonal
(n− 1)× (n− 1) matrix Q such that Q−1A1Q is diagonal and

so with P2 =

(
1 0
0 Q

)
we get the orthogonal matrix P = P1P2

so that P−1AP is diagonal.
�



Our procedure to orthogonally diagonalize a symmetric matrix
A is as follows
I Compute the roots of the characteristic polynomial

cA(x) = det(xI − A). These are the eigenvalues of A.

I For each eigenvalue λ compute a basis of the solution
space for the homogeneous system (λI − A)X = 0.
Then use Gram-Schmidt to obtain an orthonormal basis
for each Null(λI − A).

I Put these bases together. We then have a list D of n
vectors and it is the required orthonormal basis of
eigenvectors, and the transition matric P = [I ]SD , with
columns the coordinates of the vectors of D, is the
transition matrix so that P−1AP is diagonal. Because D
is an orthonormal basis, P is an orthogonal matrix and so
P−1 = PT .

Let us look at Exercises 8.2/ 5be, page 425.
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