City College	Department of Mathematics	
Math 346	Final Exam	Spring 2023

Do 10 complete problems. They are worth 10 points each. You receive credit only for 10 problems.

1. (a) For the matrix

$$A = \left(\begin{array}{rrrr} 1 & 2 & 0\\ 0 & 3 & -2\\ 2 & 1 & 3 \end{array}\right)$$

compute the inverse, A^{-1} .

(b) Suppose you know that, for a matrix B, one has $B^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 1 & 2 & 2 \end{pmatrix}$. What is the solution of the following system of linear equations:

$$B\mathbf{x} = \begin{pmatrix} 2\\ 3\\ -2 \end{pmatrix} ?$$

2. For the matrix

$$A = \begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ -2 & 4 & 1 & 1 & 0 \\ 0 & 0 & -1 & -3 & 1 \\ 1 & -2 & 1 & 4 & 1 \end{pmatrix}$$

compute a basis for (a) the row space, (b) the column space, and (c) the nullspace. For each space, compute also the dimension.

3. For the matrix

$$A = \left(\begin{array}{rrrr} 0 & -2 & -2\\ 2 & 4 & 2\\ -2 & -2 & 0 \end{array}\right)$$

compute the eigenvalues and for each eigenvalue compute a basis for the associated eigenspace.

4. For each of the following subsets of the vector space of 2×2 matrices, determine whether or not it is a subspace. Explain your answer.

(a) The set of matrices of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $a + d \ge 0$.

(b) The set of all invertible 2×2 matrices.

5. Let $\{v_1, v_2, v_3, v_4\}$ be a basis for a vector space V. Answer the following questions and justify your answers.

(a) Is $\{v_1, v_1 + v_2, v_1 + v_3, v_1 + v_4\}$ a basis for V?

(b) Is $\{v_1 + v_2, v_1 + v_3, v_1 + v_4\}$ a basis for V?

(c) Can you find a vector $u \in V$, not equal to v_1 , v_2 , v_3 or v_4 such that $\{u, v_1, v_2, v_3, v_4\}$ is a basis for V?

6. (a) Find the determinant of the matrix
$$B = \begin{pmatrix} 1 & 1 & 0 & 3 \\ -2 & 0 & -1 & -4 \\ 1 & 1 & 2 & 4 \\ -1 & -1 & 1 & -4 \end{pmatrix}$$
.

(b) Solve the system $B\mathbf{x} = \mathbf{0}$, where B is the 4×4 matrix given in part (a).

7. Let $T \colon \mathbb{R}^3 \to \mathbb{R}^2$ be given by T(x, y, z) = (x + y, x - y + z).

(a) Find the matrix of T with respect to the standard bases for \mathbb{R}^3 and \mathbb{R}^2 .

(b) Is T one-to-one? Explain your answer.

(c) Is T onto? Explain your answer.

8. Find the line of best fit y = a + bx for the data points (1,3), (2,4) and (-1,-1).

9. Find the orthogonal projection of the vector (1, 2, 1, 1) onto the subspace of \mathbb{R}^4 spanned by (1, 0, 1, 1), (-1, 1, 1, 0), (0, 1, -1, 1).

10. Let P_k denote the vector space of polynomials of degree at most k. Let $T: P_3 \to P_2$ be the function defined by T(p(x)) = p''(x) - 2p'(x). This is a linear map.

(a) Find the matrix for T with respect to the standard bases for P_3 and P_2 .

(b) Find a basis for ker T.