Do 10 complete problems. They are worth 10 points each. You receive credit only for 10 problems.

1. (a) For the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 3 & -2 \\
2 & 1 & 3
\end{array}\right)
$$

compute the inverse, A^{-1}.
(b) Suppose you know that, for a matrix B, one has $B^{-1}=\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & -1 \\ 1 & 2 & 2\end{array}\right)$. What is the solution of the following system of linear equations:

$$
B \mathbf{x}=\left(\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right)
$$

2. For the matrix

$$
A=\left(\begin{array}{ccccc}
1 & -2 & 0 & 1 & 0 \\
-2 & 4 & 1 & 1 & 0 \\
0 & 0 & -1 & -3 & 1 \\
1 & -2 & 1 & 4 & 1
\end{array}\right)
$$

compute a basis for (a) the row space, (b) the column space, and (c) the nullspace. For each space, compute also the dimension.
3. For the matrix

$$
A=\left(\begin{array}{ccc}
0 & -2 & -2 \\
2 & 4 & 2 \\
-2 & -2 & 0
\end{array}\right)
$$

compute the eigenvalues and for each eigenvalue compute a basis for the associated eigenspace.
4. For each of the following subsets of the vector space of 2×2 matrices, determine whether or not it is a subspace. Explain your answer.
(a) The set of matrices of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a+d \geq 0$.
(b) The set of all invertible 2×2 matrices.
5. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be a basis for a vector space V. Answer the following questions and justify your answers.
(a) Is $\left\{v_{1}, v_{1}+v_{2}, v_{1}+v_{3}, v_{1}+v_{4}\right\}$ a basis for V ?
(b) Is $\left\{v_{1}+v_{2}, v_{1}+v_{3}, v_{1}+v_{4}\right\}$ a basis for V ?
(c) Can you find a vector $u \in V$, not equal to v_{1}, v_{2}, v_{3} or v_{4} such that $\left\{u, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for V ?
6. (a) Find the determinant of the matrix $B=\left(\begin{array}{cccc}1 & 1 & 0 & 3 \\ -2 & 0 & -1 & -4 \\ 1 & 1 & 2 & 4 \\ -1 & -1 & 1 & -4\end{array}\right)$.
(b) Solve the system $B \mathbf{x}=\mathbf{0}$, where B is the 4×4 matrix given in part (a).
7. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y, z)=(x+y, x-y+z)$.
(a) Find the matrix of T with respect to the standard bases for \mathbb{R}^{3} and \mathbb{R}^{2}.
(b) Is T one-to-one? Explain your answer.
(c) Is T onto? Explain your answer.
8. Find the line of best fit $y=a+b x$ for the data points $(1,3),(2,4)$ and $(-1,-1)$.
9. Find the orthogonal projection of the vector $(1,2,1,1)$ onto the subspace of \mathbb{R}^{4} spanned by $(1,0,1,1),(-1,1,1,0),(0,1,-1,1)$.
10. Let P_{k} denote the vector space of polynomials of degree at most k. Let $T: P_{3} \rightarrow P_{2}$ be the function defined by $T(p(x))=p^{\prime \prime}(x)-2 p^{\prime}(x)$. This is a linear map.
(a) Find the matrix for T with respect to the standard bases for P_{3} and P_{2}.
(b) Find a basis for $\operatorname{ker} T$.

