$$
\text { Math } 391 \text { - EXAM \#2 - April 11, } 2005
$$

Please PRINT your name and ID\# on the cover of your exam booklet and indicate if you are handing-in more than one booklet. Write clearly and cross-out work not to be graded.

ALL ANSWERS GO IN THE EXAM BOOK. SHOW ALL WORK.
 NO CALCULATORS OR NOTES ALLOWED.

1. Find the general solution of:
(30 pts.)

$$
y^{\prime \prime}+y=\tan x, 0<x<\pi / 2 .
$$

You might find the following useful:

$$
\int \sin (x) \tan (x) d x=\ln (\sec x+\tan x)-\sin x
$$

2. Using the method of your choosing, find the general solution of:

$$
y^{\prime \prime}-y^{\prime}-2 y=e^{x}+x .
$$

3. Find a second, linearly independent solution $y_{2}(x)$, given that $y_{1}(x)=\frac{1}{x}$ is a solution (30 pts .) to the differential equation:

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0, x>0
$$

4. A mass of 5 kg stretches a spring 10 cm . The mass is acted on by an extrernal force of $10 \sin (t / 2)$ Newtons and moves in a medium that imparts a viscous force of 2 Newtons when the speed of the mass is $4 \mathrm{~cm} / \mathrm{sec}$. If the mass is set in motion from its equilibrium position with an initial velocity of $3 \mathrm{~cm} / \mathrm{sec}$, formulate (but DO NOT solve) the initial value problem describing the motion of the mass.
