Math 325 - Midterm - April 24, 2002

Please PRINT your name on the cover of the exam booklet. Write clearly and cross-out work not to be graded. Use the standard basis e_{i} such that $\left(e_{i}\right)_{j}=0$ if $i \neq$ j and 1 if $i=j$, for all vector spaces.

1. Define ANY 3 out of 4 of the following:
(15 pts.)
(a) the partial derivative of the differentiable function $f: R^{n} \rightarrow R$ with respect to the kth component, for $1 \leq k \leq n$
(b) an affine function $f: R^{n} \rightarrow R$
(c) the gradient, or derivative vector, of a differentiable function f : $R^{n} \rightarrow R$ at $x_{0} \in R^{n}$.
(d) the norm $\|A\|$ of the $n \times m$ matrix $A=\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}$
2. Given the vectors $x_{0}=(1,1)$ and $v=(2,0)$ in \mathbf{R}^{2}, let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be such that $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2} x_{2}^{2}, e^{x_{1}}, x_{1}+x_{2}\right)$, and let $g: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be given by $g\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 2 x_{2}+x_{3}^{2}\right)$.
(a) Compute the matrix representing $D f\left(x_{0}\right)$.
(b) Find $D f\left(x_{0}\right)(v)$.
(c) Compute the matrix representing $D(f \circ g)\left(x_{0}\right)$.
(d) Is g invertible in some neighborhood of x_{0} ? Why or why not?
3. Use the method of Lagrange Multipliers to find the extrema of $f(x, y)=3 x+2 y \quad$ (10 pts.) subject to the constraint $2 x^{2}+3 y^{2}=3$.
4. Given the bilinear form $H: \mathbf{R}^{3} \times \mathbf{R}^{3} \rightarrow \mathbf{R}$ whose matrix is

$$
\left(\begin{array}{lll}
1 & 2 & 1 \tag{15pts.}\\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

compute $H(x, x)$ where $x=(1,-1,1) \in \mathbf{R}^{3}$. Is H positive definite? Why or why not?
5. Prove ANY TWO OF the following THREE:

Theorem 1 Let $f: B \subset \mathbf{R}^{n} \rightarrow \mathbf{R}$ be continuous, and suppose it is differentiable on the interior, $\operatorname{int}(B)$, of $B=\left\{x \in \mathbf{R}^{n}:\|x\| \leq 1\right\}$. Further, suppose $f(x)=0$ on the boundary of $B, b d(B)$. Then there is a point $x_{0} \in \operatorname{int}(B)$ for which $D f\left(x_{0}\right)=0$. (Hint: this can be a two line proof.)

Theorem 2 If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable on the open set $A \subset \mathbf{R}^{n}$, then f is continuous at $x_{0} \in A$.

Theorem 3 Let $f: R^{n} \rightarrow R^{m}$ and suppose there is a constant M such that for $x \in R^{n},\|f(x)\| \leq M\|x\|^{2}$, then f is differentiable at $x_{0}=0$ and $D f\left(x_{0}\right)=0$.
6. True or false :
(a) The Implicit Function Theorem applies at points where the function is non-zero.
(b) Every continuous function is differentiable.
(c) The derivative of an everywhere differentiable function is zero at a point where a local maximum occurs.
(d) The Inverse Function Theorem applies at points where the function is non-zero.
(e) If the index of a critical point x_{0}, to which the Morse Lemma applies, is equal to zero, then x_{0} is the location of a local minimum.
7. Extra credit: Is the parabola $y=x^{2}$ in the $x y$-plane is a one-manifold? If (+5 pts.) so, what mapping on R^{2} could you use to prove your assertion?

