Please PRINT your name on the cover of the exam booklet. Write clearly and cross-out work not to be graded. Use the standard basis e_i such that $(e_i)_j = 0$ if $i \neq j$ and 1 if i = j, for all vector spaces.

- 1. Define ANY 3 out of 4 of the following:
 - (a) the **partial derivative** of the differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ with respect to the kth component, for $1 \le k \le n$
 - (b) an **affine** function $f: \mathbb{R}^n \to \mathbb{R}$
 - (c) the gradient, or derivative vector, of a differentiable function $f : R^n \to R$ at $x_0 \in R^n$.
 - (d) the **norm** ||A|| of the $n \times m$ matrix $A = (a_{ij})_{1 \le i \le n, 1 \le j \le m}$
- 2. Given the vectors $x_0 = (1,1)$ and v = (2,0) in \mathbf{R}^2 , let $f : \mathbf{R}^2 \to \mathbf{R}^3$ be such that $f(x_1, x_2) = (x_1^2 x_2^2, e^{x_1}, x_1 + x_2)$, and let $g : \mathbf{R}^3 \to \mathbf{R}^2$ be given by $g(x_1, x_2, x_3) = (x_1, 2x_2 + x_3^2)$.
 - (a) Compute the matrix representing $Df(x_0)$. (5 pts.)
 - (b) Find $Df(x_0)(v)$.
 - (c) Compute the matrix representing $D(f \circ g)(x_0)$. (10 pts.)
 - (d) Is g invertible in some neighborhood of x_0 ? Why or why not? (10 pts.)
- 3. Use the method of Lagrange Multipliers to find the extrema of f(x, y) = 3x+2y (10 pts.) subject to the constraint $2x^2 + 3y^2 = 3$.

4. Given the bilinear form
$$H : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$
 whose matrix is (15 pts.)

$$\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

compute H(x, x) where $x = (1, -1, 1) \in \mathbf{R}^3$. Is *H* positive definite? Why or why not?

5. **Prove** ANY TWO OF the following THREE:

Theorem 1 Let $f : B \subset \mathbb{R}^n \to \mathbb{R}$ be continuous, and suppose it is differentiable on the interior, int(B), of $B = \{x \in \mathbb{R}^n : ||x|| \le 1\}$. Further, suppose f(x) = 0 on the boundary of B, bd(B). Then there is a point $x_0 \in int(B)$ for which $Df(x_0) = 0$. (Hint: this can be a two line proof.)

Theorem 2 If $f : \mathbf{R}^n \to \mathbf{R}^m$ is differentiable on the open set $A \subset \mathbf{R}^n$, then f is continuous at $x_0 \in A$.

(20 pts.)

(15 pts.)

(5 pts.)

Theorem 3 Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and suppose there is a constant M such that for $x \in \mathbb{R}^n$, $||f(x)|| \leq M ||x||^2$, then f is differentiable at $x_0 = 0$ and $Df(x_0) = 0$.

6. True or false :

$$(10 \text{ pts.})$$

- (a) The Implicit Function Theorem applies at points where the function is non-zero.
- (b) Every continuous function is differentiable.
- (c) The derivative of an everywhere differentiable function is zero at a point where a local maximum occurs.
- (d) The Inverse Function Theorem applies at points where the function is non-zero.
- (e) If the index of a critical point x_0 , to which the Morse Lemma applies, is equal to zero, then x_0 is the location of a local minimum.
- 7. Extra credit: Is the parabola $y = x^2$ in the xy-plane is a one-manifold? If (+5 pts.) so, what mapping on R^2 could you use to prove your assertion?