Please PRINT your name on the cover of the exam booklet. Write clearly and cross-out work not to be graded. Use the standard basis for all vector spaces.

1. Define ANY FOUR OF the following FIVE:
(a) the derivative, $D f\left(x_{0}\right)$, of a differentiable function $f: R^{n} \rightarrow R^{m}$ at $x_{0} \in R^{n}$.
(b) the gradient of a function $f: R^{n} \rightarrow R$ at $x_{0} \in R^{n}$
(c) the bounded function $f: R^{n} \rightarrow R$ is integrable on the bounded rectangle $R \subset R^{n}$ (include the definitions of upper and lower sums, etc.).
(d) the unbounded, nonnegative function $f: R^{n} \rightarrow R$ is integrable on the bounded set $A \subset R^{n}$.
(e) the volume of a bounded set in R^{n}.
2. Given $x_{0}=(1,3,2) \in R^{3}$, and $u=(1,-1,1) \in R^{3}$, let $f: R^{3} \rightarrow R^{2}$ be such that $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2} x_{2}, 1+2 x_{3}\right)$, let $g: R^{2} \rightarrow R^{3}$ be given by $g\left(x_{1}, x_{2}\right)=$ $\left(x_{1}^{2}+x_{2}^{2}, x_{2}, x_{1}\right)$, let $h: R^{3} \rightarrow R$ such that $h\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}-3 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, and let $k: R^{2} \rightarrow R$ be given by $k(x, y)=x^{2}-y$.
(a) Find the directional derivative of h at x_{0} in the direction u.
(b) Compute the Hessian of h.
(c) Find the critical points of h.
(d) Identify these critical points as local maxima, minima, or saddle points.
(e) Compute the matrix representing $D(g \circ f)\left(x_{0}\right)$.
(f) Does the Change of Variables Theorem apply to $g \circ f: R^{3} \rightarrow R^{3}$, taking $\left(x_{1}, x_{2}, x_{3}\right)$ to (y_{1}, y_{2}, y_{3}), in some neighborhood of x_{0} ? If so, express $d x_{1} d x_{2} d x_{3}$ in terms of $d y_{1} d y_{2} d y_{3}$.
(g) Find $k^{+}(x, y)$, the positive part of k, as a function of $(x, y) \in R^{2}$.
3. Prove ANY ONE OF the following TWO:

Theorem 1 If $f: R^{n} \rightarrow R^{m}$ is differentiable on the open set $A \subset R^{n}$, then $D f\left(x_{0}\right)$ is uniquely determined by f at $x_{0} \in A$.

Theorem 2 Let $f: R^{n} \rightarrow R$ be differentiable with A convex, and suppose $\|\operatorname{gradf}\| \leq M$ for all $x \in A$. Then $|f(x)-f(y)| \leq M\|x-y\|$ for $x, y \in A$.
4. Let $f:[0,2] \rightarrow R$ be defined by $f(x)=0$ for $0 \leq x \leq 1$, and by $f(x)=1$ for
(10 pts.) $1<x \leq 2$. Compute, using the definition or Riemann's condition, $\int_{0}^{2} f(x) d x$.
5. Determine which of the following sets has measure zero.
(a) $\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1 ; x, y \in Q\right\}$
(b) $x y$-plane in R^{3}
(c) the irrationals in $[0,1] \subset R$
(d) the irrationals in $[0,1] \subset R^{2}$
(e) the integers $Z \subset R$
6. Does the set $\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1 ; x, y \in Q\right\}$ from part (a) have volume? (5 pts.) Explain.

Prove ANY ONE OF the following TWO:
Theorem 3 If $f: R^{n} \rightarrow R$ is continuous at $x_{0} \in R^{n}$, then the oscillation of f at $x_{0}, \operatorname{osc}\left(f, x_{0}\right)=0$.

Prove ANY ONE OF the following TWO:
Theorem 4 Suppose $A \subset R^{n}$ is convex, closed and bounded, and such that $\int_{A} \|_{A}$ exists and $0<\int_{A} \|_{A}<\infty$. Suppose $f: R^{n} \rightarrow R$ is continuous and $\int_{A} f=0$. Then there exists $x_{0} \in A$ such that $f\left(x_{0}\right)=0$. (Hint: this can be a two line proof.)

Theorem 5 Let $f:[a, b] \rightarrow R$ be continuous, then f is integrable on $[a, b]$. (Hint: use Riemann's condition.)

