Math 324 - Exam \#1 - April 7, 2003

Please PRINT your name and ID\# on the cover of each exam book you use. Write clearly and cross-out work not to be graded. Make your arguments rigorous and brief. Partial credit will be given. Total: 100 pts.

1. Give definitions of ANY FOUR OF the following FIVE (boldface) (20 pts.) words.
(a) The upper Darboux sum of a bounded function $f$ with respect to the partition $P=\left\{t_{i}\right\}, 0 \leq i \leq n$, of $[a, b]$.
(b) A norm $\|\cdot\|$ on a vector space $\mathcal{V}$.
(c) The interior $\operatorname{int}(A)$ of a subset $A$ of the metric space $(M, d)$.
(d) A subset $F$ of the metric space $(M, d)$ is closed.
(e) An accumulation point $x$ of the subset $A$ of the metric space $(M, d)$.
2. Give an example of each of FIVE of the following SIX:
(a) A family of open sets whose intersection is not open.
(b) A function with an infinite number of points of discontinuity that is integrable on $[0,1]$.
(c) A function with an infinite number of points of discontinuity that is NOT integrable on $[0,1]$.
(d) A bounded subset $S$ of a metric space, such that $S$ is not totally bounded.
(e) A metric space that is not complete.
(f) Two sets $A$ and $B$ such that $\operatorname{cl}(A \cap B) \neq \operatorname{cl}(A) \cap \operatorname{cl}(B)$.

Exam continues. Please TURN OVER.
3. For each of the following sets $S$, find its 1. interior $\operatorname{int}(S), \mathbf{2}$. boundary $b d(S)$, 3. closure $c l(S)$, 4. set of accumulation points $\operatorname{acc}(S)$, and 5 . set of limit points, and determine whether it is 6 . open, closed, both or neither:
(a) $\{x\} \subset M$ where $M$ is a space with the discrete metric
(b) $\left\{(0, y) \in \mathcal{R}^{2} \mid 0 \leq y<1\right\} \cup\left\{(x, y) \in \mathcal{R}^{2} \mid x^{2}+(y-2)^{2} \leq 1\right\}$
(c) the rationals: $\mathcal{Q} \subset \mathcal{R}$
(d) the integers: $\mathcal{Z} \subset \mathcal{R}$
(e) the space of integers $\mathcal{I}=\{\ldots,-2,-1,0,1,2, \ldots\}$ alone, with the standard metric $d(i, j)=|i-j|, i, j \in \mathcal{I}$, NOT as a subset of the reals
4. Prove ANY TWO OF the following THREE theorems:

Theorem 1 Every convergent sequence $x_{n}$ in a metric space $(M, d)$ is Cauchy.

Theorem 2 Every continuous function $f$ on $[a, b]$ is integrable.

Theorem 3 If $A$ is dense in $\mathcal{R}^{n}$, then every point of $A$ is an accumulation point of both $A$ and $\mathcal{R}^{n}$.
(Recall: a set $A$ is dense in $\mathcal{R}^{n}$ if and only if $\operatorname{cl}(A)=\mathcal{R}^{n}$.)

