Math 324 — Exam #2 — May 12, 2003

Reminder, the FINAL EXAM for this class is Monday, May 19, 6:15–8:30 pm, in NAC 6/113.

Please PRINT your name and ID# on the cover of each exam book you use. Write clearly and cross-out work not to be graded. Make your arguments rigorous and brief. Partial credit will be given. Total: 100 pts. plus extra credit.

- 1. Give **definitions** of EACH of the following (boldface) words. (20 pts.)
 - (a) A subset K of a metric space (M, d) is **compact**.
 - (b) A subset C of a metric space (M, d) is **path–connected**. (You must include the definition of a continuous path in M, though you may assume the definition of continuous functions on \mathcal{R} .)
 - (c) A function $f: (M, d) \to (N, \rho)$ between metric spaces is **continuous at** the point x_o in its domain. (You may use $\epsilon \delta$ or limits.)
 - (d) A subset A of the metric space (M, d) is **disconnected**.
- 2. True or false? (For extra credit, give a counterexample for each false (30+ pts.) statement.)
 - (a) Every compact set is closed.
 - (b) Every connected set is compact.
 - (c) The continuous image of every compact set is compact.
 - (d) The continuous image of every compact set is closed.
 - (e) The continuous image of every closed set is closed.
 - (f) Every connected set is path connected.
 - (g) A subset of \mathcal{R} is path connected if and only if it is an interval.
 - (h) If $f : (M, d) \to (N, \rho)$ is continuous on $A \subset M$, then for every convergent sequence $x_k \to x$ in A, $f(x_k) \to f(x)$.
 - (i) If $f: (M, d) \to (N, \rho)$ is continuous and $S \subset M$ is connected, then the inverse image $f^{-1}(S)$ is connected.
 - (j) If $C \subset N$ is compact, and $f : (M, d) \to (N, \rho)$ is continuous, then the inverse image $f^{-1}(C)$ is closed.

Exam continues. Please TURN OVER.

- 3. For each of the following sets, determine whether it is **compact**, and (20 pts.) whether it is **connected**:
 - (a) $\{(x_1, x_2) \in \mathcal{R}^2 \mid |x_1| \le 1\}.$
 - (b) $\{x \in \mathcal{R}^n \mid ||x|| \le 10\}.$
 - (c) $\{x \in \mathcal{R}^n \mid 1 \le ||x|| \le 2\}.$
 - (d) the integers: $\mathcal{Z} \subset \mathcal{R}$
 - (e) a finite set in \mathcal{R} .
 - (f) $\{x \in \mathcal{R} \mid ||x|| = 1\}.$
 - (g) $\{x \in \mathcal{R}^n \mid n \ge 2 \text{ and } \|x\| = 1\}.$
 - (h) the boundary of a bounded set in \mathcal{R} .
 - (i) the rationals in [0, 1].
 - (j) a closed set in [0, 1].

4. **Prove** ANY TWO OF the following THREE theorems: (30 pts.)

Theorem 1 A subset of \mathcal{R} is connected if and only if it is an interval.

Theorem 2 Let A be connected subset of the metric space (M, d) and $f: A \to \mathcal{R}$ be continuous with $f(x) \neq 0$ for all $x \in A$, then f(x) > 0 for all $x \in A$ or else f(x) < 0 for all $x \in A$.

Theorem 3 If a subset A of a metric space (M, d) is connected and contains more than one point, then every point of A is an accumulation point of A.