Please PRINT your name below. Write clearly and cross-out work not to be graded. The questions are to be answered directly on this paper as indicated. Total: 50 pts. plus extra credit.

Name:_

1. Give **definitions** of each of the following:

(15 pts.)

- (a) The sequence of reals (s_n) converges to $s \in R$.
- (b) $\liminf s_n$ of a sequence (s_n) of reals.
- (c) A series $\sum_{n=1}^{\infty} a_n$ of real numbers a_n satisfies the **Cauchy criterion**. Do NOT presume the definition of partial sum.
- 2. **True or false?** Indicate your answer for each statement by placing **T** or **F** in the (10 pts.) blank at the start. **Extra credit:** give a counterexample at the end of each false statement.
 - _ Every bounded sequence of reals converges.
 - _____ Every monotone sequence of reals has a convergent subsequence.

_____ Every convergent sequence of reals is bounded.

 $_$ lim sup s_n exists for any sequence (s_n) of reals.

If $\lim s_n = 0$, then $\lim(1/s_n) = +\infty$.

Quiz continues on reverse. Please TURN OVER.

3. Define what it means for a sequence (s_n) of reals to have limit (i.e. diverge to) $+\infty$, and then use the negation of the definition to prove that $\lim s_n \neq +\infty$ when (15 pts.) $s_n = \frac{n}{n+1}$:

4. **Define** what it means for a sequence (s_n) of reals to be Cauchy, and then **use the** (10 pts.) **definition to prove** that $s_n = \frac{1}{n}$ is Cauchy.

Extra credit: what theorems might you alternatively use to prove this sequence is Cauchy?