Please PRINT your name and ID# below. Write clearly and cross-out work not to be graded. The questions are to be answered directly on this paper as indicated.

Name:_____ ID:_____

- 1. **Define**: (where appropriate, you may use sequences or ϵ/δ -types) (25 pts.)
 - (a) $\lim_{x\to a^-} f(x) = L$, where $a, L \in R$:
 - (b) $\lim_{x\to a} f(x) = -\infty$, where $a \in R$:
 - (c) The function f(x) defined on an open interval containing the point $a \in R$ is differentiable at a.
 - (d) The sequence of functions $f_n(x)$ converges uniformly to f(x) on the set $S \subseteq R$:

(e) The sequence of functions $f_n(x)$ converges pointwise to f(x) on the set $S \subseteq R$:

2. Let f be defined on R and suppose that $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in R$. (15 pts.) Prove that f is a constant function:

3. Let $f_n(x) = (1 - \frac{1}{n})x$ for $x \ge 0$ and $f_n(x) = -1$ for x < 0. (a) Find the limit function f(x) such that $f_n(x) \to f(x)$ on R: (10 pts.)

(b) **Extra credit:** Does f_n converge to f uniformly? Why or why not? (+5 pts.)