Math 323 - Quiz 2 - May 11, 2005

Please PRINT your name and ID\# below. Write clearly and cross-out work not to be graded. The questions are to be answered directly on this paper as indicated.

Name: \qquad ID:

1. Define: (where appropriate, you may use sequences or ϵ / δ-types)
(a) $\lim _{x \rightarrow a^{-}} f(x)=L$, where $a, L \in R$:
(b) $\lim _{x \rightarrow a} f(x)=-\infty$, where $a \in R$:
(c) The function $f(x)$ defined on an open interval containing the point $a \in R$ is differentiable at a.
(d) The sequence of functions $f_{n}(x)$ converges uniformly to $f(x)$ on the set $S \subseteq R$:
(e) The sequence of functions $f_{n}(x)$ converges pointwise to $f(x)$ on the set $S \subseteq R$:
2. Let f be defined on R and suppose that $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in R$. (15 pts.) Prove that f is a constant function:
3. Let $f_{n}(x)=\left(1-\frac{1}{n}\right) x$ for $x \geq 0$ and $f_{n}(x)=-1$ for $x<0$.
(a) Find the limit function $f(x)$ such that $f_{n}(x) \rightarrow f(x)$ on R :
(10 pts.)
(b) Extra credit: Does f_{n} converge to f uniformly? Why or why not?
