Please PRINT your name and ID# on the cover of the exam booklet. Write clearly and cross-out work not to be graded. Total: 50 pts.

- 1. Give definitions of $\underline{ANY 4}$ of the following five: (20 pts.)
 - (a) A sequence (s_n) of reals is **Cauchy**.
 - (b) $\limsup s_n$ of a sequence (s_n) of reals.
 - (c) A nonempty set S of reals is **bounded above**.
 - (d) The inf $S = -\infty$, for a set S of reals.
 - (e) A series $\sum_{n=1}^{\infty} a_n$ of real numbers a_n converges.
- 2. State and then use the definition to prove that $\lim s_n = 0$ when (15 pts.)

$$s_n = \frac{4n}{7n^3 + 5}$$

3. Give an **example** of each of the following, or state that it is **impossible** to (5 pts.) do so:

(5 pts.)

- (a) an **unbounded sequence** with a convergent subsequence
- (b) a **bounded sequence** with NO convergent subsequence
- (c) a sequence of irrationals converging to a rational
- (d) a sequence (s_n) such that $\limsup s_n \leq \liminf s_n$
- (e) a sequence of positive numbers whose limit is negative
- 4. True or false:
 - (a) If $a_n < b_n$, $\forall n$, and $\sum b_n$ converges, then so does $\sum a_n$.
 - (b) If $s_n \to 0$ is a sequence of positive reals, then $\lim(1/s_n) = \infty$.
 - (c) For any nonempty set S of reals, $\inf(S) = \sup(-S)$.
 - (d) Convergent sequences are bounded.
 - (e) Monotone sequences converge.