Please PRINT your name and ID\# on the cover of the exam booklet. Write clearly and cross-out work not to be graded. Total: 50 pts.

1. Give definitions of ANY 4 of the following five:
(20 pts.)
(a) A sequence $\left(s_{n}\right)$ of reals is Cauchy.
(b) $\lim \sup s_{n}$ of a sequence $\left(s_{n}\right)$ of reals.
(c) A nonempty set S of reals is bounded above.
(d) The $\inf S=-\infty$, for a set S of reals.
(e) A series $\sum_{n=1}^{\infty} a_{n}$ of real numbers a_{n} converges.
2. State and then use the definition to prove that $\lim s_{n}=0$ when

$$
s_{n}=\frac{4 n}{7 n^{3}+5}
$$

3. Give an example of each of the following, or state that it is impossible to (5 pts.) do so:
(a) an unbounded sequence with a convergent subsequence
(b) a bounded sequence with NO convergent subsequence
(c) a sequence of irrationals converging to a rational
(d) a sequence $\left(s_{n}\right)$ such that $\limsup s_{n} \leq \liminf s_{n}$
(e) a sequence of positive numbers whose limit is negative
4. True or false:
(a) If $a_{n}<b_{n}, \forall n$, and $\sum b_{n}$ converges, then so does $\sum a_{n}$.
(b) If $s_{n} \rightarrow 0$ is a sequence of positive reals, then $\lim \left(1 / s_{n}\right)=\infty$.
(c) For any nonempty set S of reals, $\inf (S)=\sup (-S)$.
(d) Convergent sequences are bounded.
(e) Monotone sequences converge.
