Please PRINT your name and ID\# on the cover of your exam book. Write clearly and cross-out work not to be graded. Make your arguments rigorous and brief. Partial credit will be given.

1. Give definitions of ANY FOUR of the following five symbols or (boldface)
(20 pts.) words.
(a) The sequence $\left(s_{n}\right)$ of reals is nonincreasing.
(b) The real-valued function f is continuous at $x_{o} \in \operatorname{dom}(f)$. (You may use either sequences or $\epsilon-\delta$.)
(c) The sequence $\left(s_{n}\right)$ of reals converges to $s \in R$.
(d) The sequence $\left(s_{n}\right)$ of reals has limit (i.e. diverges to) $-\infty$.
(e) The series $\sum a_{n}$ satisfies the Cauchy criterion. (Do not presume any definitions associated with sequences.)
2. For each of the following statements, decide whether is true or false. If it is (30 pts .) true, prove it; if false, give a counterexample.
(a) If $\left(s_{n}\right)$ is sequence of reals and $\lim \left(1 / s_{n}\right)=0$, then $\lim s_{n}=+\infty$.
(b) All bounded nondecreasing sequences of reals converge.
(c) All sequences of reals have a convergent subsequence.
(d) If $\left(s_{n}\right)$ is a convergent sequence, then it is Cauchy.
3. Give an example of each of the following:
(a) A single sequence $\left(s_{n}\right)$ of reals such that $\liminf s_{n}=-\infty, \lim \sup s_{n}=$ $+\infty$, and $\left(s_{n}\right)$ has a convergent subsequence.
(b) A function that is continuous, but not uniformly continuous, on $(0,1)$.
(c) A bounded set of reals with a minimum, but no maximum.
(d) A convergent series Σa_{n} such that $\Sigma\left|a_{n}\right|$ diverges, but Σa_{n}^{2} converges.
(e) An unbounded sequence of reals that has no limit.
4. State, but do not prove, the Ratio Test for convergence of series (Theorem (5 pts.) 14.8).
5. Use the negation of the definition to prove that $f(x)=x^{2}$ is not uniformly (10 pts.) continuous on $[0, \infty)$.
6. Prove EITHER Theorem 1, OR Theorems 2 and 3:

Theorem 1 (Generalized Extreme Value Theorem) If f is continuous on a closed and bounded set $S \subset R$, then f is bounded on S. Moreover, f attains its bounds, i.e. there exist $x_{0}, y_{0} \in S$ such that $f\left(x_{0}\right) \leq f(x) \leq f\left(y_{0}\right)$ for all $x \in S$.
(Hint: the proof proceeds in the same way as that for the theorem on a closed interval. By the way, you are actually proving that in the metric space R, a continuous function on a compact set is bounded and attains its bounds. Isn't that exciting?)

Theorem 2 If f is uniformly continuous on a set $S \subset R$ and $\left(s_{n}\right)$ is a Cauchy sequence in S, then $\left(f\left(s_{n}\right)\right)$ is a Cauchy sequence.

Theorem 3 Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences of reals such that $\left(b_{n}\right)$ converges to $b \in R$, and there exist real numbers a and M, and a natural number N, such that

$$
\left|a_{n}-a\right| \leq M\left|b_{n}-b\right| \quad \forall n>N
$$

then the sequence $\left(a_{n}\right)$ converges to a.
(Note: you MAY NOT presume the "Sandwich Theorem." To get credit, your proof must use only basic principles and definitions.)

