Please PRINT your name and ID# on the cover of each exam book you use, indicating if you are handing-in more than one. Write clearly and cross-out work not to be graded. Make your arguments rigorous and brief. In the cases where you have learned a definition that can be stated equivalently using sequences or using " $\epsilon - \delta$," you may give either. Partial credit will be given. Total: 100 pts.

- 1. Give **definitions** of ANY FOUR of the following five symbols or (boldface) (20 pts.) words.
 - (a) The sequence of reals (s_n) is **Cauchy**.
 - (b) $\liminf s_n$ of a sequence of reals (s_n) .
 - (c) $\lim_{x\to a^+} f(x) = +\infty$, when $a \in R$ and f(x) is a real-valued function.
 - (d) The series $\sum_{n=1}^{\infty} a_n$ of reals **converges**. (You may assume the definition for sequences, but define all terms peculiar to series.)
 - (e) The **lower Darboux sum** L(f, P) of a bounded function f on the interval [a, b] with respect to the partition $P = \{t_0 = a < t_1 < \ldots < t_n = b\}$.
- 2. (a) State and use the definition to prove that $f(x) = x^2$ is uniformly (5 pts.) continuous on [-1, 1].
 - (b) State and use the negation of the definition to prove that $\lim s_n \neq (10 \text{ pts.})$ 2/3 when $s_n = 2/(3n)$.

3. Let
$$f_n(x) = x^n / (n + x^n)$$
 for $x \in [0, \infty)$: (10 pts.)

- (a) Find $f(x) = \lim f_n(x)$.
- (b) Does $f_n \to f$ uniformly on [0,1]? Justify your answer.
- (c) Does $f_n \to f$ uniformly on $[1,\infty)$? Justify your answer.
- 4. Give a counterexample to each of the following false statements: (5 pts.)
 - (a) $\liminf s_n = \limsup s_n$ of any bounded sequence s_n .
 - (b) If $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x)$ and $0 \in dom(f)$, then f(x) is continuous at x = 0.
 - (c) If the sequence of functions $(f_n(x))$ converges to a discontinuous function f(x) on a set S, then the sequence does not converge uniformly on S.
 - (d) If a function f(x) is defined on [-1, 1] and continuous at x = 0, then f is continuous on some open interval containing zero.
 - (e) Every sequence has a convergent subsequence.

PLEASE TURN OVER

5. **Prove** ANY TWO OF the following THREE theorems:

Theorem 1 If (s_n) is a sequence of reals with $\limsup s_n = +\infty$ and k > 0 is a real number, then $\limsup (ks_n) = +\infty$.

Theorem 2 Every convergent sequence of reals is bounded.

Theorem 3 If f is differentiable on R and (s_n) is a Cauchy sequence in a closed interval [a, b], then the sequence $(f(s_n))$ converges.

Hint: this can be a two line proof.

6. Prove ANY TWO OF the following THREE theorems:

(30 pts.)

Theorem 4 If f is a continuous function on a closed and bounded set $S \subseteq R$, then f is uniformly continuous on S.

Hint: assume not and use the Bolzano-Weierstrass Theorem.

Theorem 5 A bounded function f on [a, b] is integrable if and only if for each $\epsilon > 0$ there exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \epsilon$, where U(f, P), respectively L(f, P), denotes the upper, respectively lower, Darboux sum of f with respect to P.

Theorem 6 Suppose f is differentiable on R, select $s_0 \in R$ and define $s_n = f(s_{n-1})$ for $n \ge 1$ (thus $s_1 = f(s_0)$, $s_2 = f(s_1)$, etc.). Furthermore, suppose that $a = \sup\{|f'(x)| : x \in R\} < 1$, then (s_n) is a convergent sequence.

Hint: show that $|s_{n+1} - s_n| \le a|s_n - s_{n-1}|$ for $n \ge 1$ and think Cauchy.

(20 pts.)