Please PRINT your name and ID\# on the cover of each exam book you use, indicating if you are handing-in more than one. Write clearly and cross-out work not to be graded. Make your arguments rigorous and brief. In the cases where you have learned a definition that can be stated equivalently using sequences or using " $\epsilon-\delta$," you may give either. Partial credit will be given. Total: 100 pts.

1. Give definitions of ANY FOUR of the following five symbols or (boldface) (20 pts.) words.
(a) The sequence of reals $\left(s_{n}\right)$ is Cauchy.
(b) $\lim \inf s_{n}$ of a sequence of reals $\left(s_{n}\right)$.
(c) $\lim _{x \rightarrow a^{+}} f(x)=+\infty$, when $a \in R$ and $f(x)$ is a real-valued function.
(d) The series $\sum_{n=1}^{\infty} a_{n}$ of reals converges. (You may assume the definition for sequences, but define all terms peculiar to series.)
(e) The lower Darboux sum $L(f, P)$ of a bounded function f on the interval $[a, b]$ with respect to the partition $P=\left\{t_{0}=a<t_{1}<\ldots<t_{n}=b\right\}$.
2. (a) State and use the definition to prove that $f(x)=x^{2}$ is uniformly (5 pts.) continuous on $[-1,1]$.
(b) State and use the negation of the definition to prove that $\lim s_{n} \neq$ (10 pts.) $2 / 3$ when $s_{n}=2 /(3 n)$.
3. Let $f_{n}(x)=x^{n} /\left(n+x^{n}\right)$ for $x \in[0, \infty)$:
(a) Find $f(x)=\lim f_{n}(x)$.
(b) Does $f_{n} \rightarrow f$ uniformly on $[0,1]$? Justify your answer.
(c) Does $f_{n} \rightarrow f$ uniformly on $[1, \infty)$? Justify your answer.
4. Give a counterexample to each of the following false statements:
(a) $\liminf s_{n}=\limsup s_{n}$ of any bounded sequence s_{n}.
(b) If $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)$ and $0 \in \operatorname{dom}(f)$, then $f(x)$ is continuous at $x=0$.
(c) If the sequence of functions $\left(f_{n}(x)\right)$ converges to a discontinuous function $f(x)$ on a set S, then the sequence does not converge uniformly on S.
(d) If a function $f(x)$ is defined on $[-1,1]$ and continuous at $x=0$, then f is continuous on some open interval containing zero.
(e) Every sequence has a convergent subsequence.

PLEASE TURN OVER

5. Prove ANY TWO OF the following THREE theorems:

Theorem 1 If $\left(s_{n}\right)$ is a sequence of reals with $\limsup s_{n}=+\infty$ and $k>0$ is a real number, then $\lim \sup \left(k s_{n}\right)=+\infty$.

Theorem 2 Every convergent sequence of reals is bounded.

Theorem 3 If f is differentiable on R and $\left(s_{n}\right)$ is a Cauchy sequence in a closed interval $[a, b]$, then the sequence $\left(f\left(s_{n}\right)\right)$ converges.

Hint: this can be a two line proof.
6. Prove ANY TWO OF the following THREE theorems:

Theorem 4 If f is a continuous function on a closed and bounded set $S \subseteq R$, then f is uniformly continuous on S.

Hint: assume not and use the Bolzano-Weierstrass Theorem.

Theorem 5 A bounded function f on $[a, b]$ is integrable if and only if for each $\epsilon>0$ there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$, where $U(f, P)$, respectively $L(f, P)$, denotes the upper, respectively lower, Darboux sum of f with respect to P.

Theorem 6 Suppose f is differentiable on R, select $s_{0} \in R$ and define $s_{n}=$ $f\left(s_{n-1}\right)$ for $n \geq 1$ (thus $s_{1}=f\left(s_{0}\right), s_{2}=f\left(s_{1}\right)$, etc.). Furthermore, suppose that $a=\sup \left\{\left|f^{\prime}(x)\right|: x \in R\right\}<1$, then $\left(s_{n}\right)$ is a convergent sequence.

Hint: show that $\left|s_{n+1}-s_{n}\right| \leq a\left|s_{n}-s_{n-1}\right|$ for $n \geq 1$ and think Cauchy.

