Please PRINT your name below. SHOW ALL WORK and SIMPLIFY answers. Write clearly and cross-out work not to be graded. The questions are to be answered directly on this paper as indicated. NO electronic devices allowed. Total: 100 pts.

Name:

- 1. For this entire problem, let $f(x, y) = x^2 + y^2$.
 - (a) Find the gradient of f, $\nabla f(x, y)$: (10 pts.)
 - (b) Find $D_{\mathbf{u}}f(1,-1)$, the directional derivative of f at (1,-1) in the direction (20 pts.) $\mathbf{u} = < 1/2, \sqrt{3}/2 >:$

- (c) Find the direction of maximum increase in the function f(x, y) at the (10 pts.) point (1, -1):
- (d) Find the differential dz when z = f(x, y): (10 pts.)

(e) Find the surface area of the portion of the graph $z = f(x, y) = x^2 + y^2$ (25 pts.) that lies *below* the plane z = 4:

2. Use spherical coordinates to compute the volume of the region below (25 pts.) $x^2 + y^2 + z^2 = 4$, above $z = \sqrt{x^2 + y^2}$, between y = x and x = 0 with $y \ge 0$ (your limits of integration must correspond to the indicated region):