Please PRINT your name below. SHOW ALL WORK and SIMPLIFY answers. Write clearly and cross-out work not to be graded. The questions are to be answered directly on this paper as indicated. NO electronic devices allowed. Total: 100 pts .

Name: \qquad

1. For this entire problem, let $f(x, y)=x^{2}+y^{2}$.
(a) Find the gradient of $f, \nabla f(x, y)$:
(10 pts.)
(b) Find $D_{\mathbf{u}} f(1,-1)$, the directional derivative of f at $(1,-1)$ in the direction
(20 pts.) $\mathbf{u}=<1 / 2, \sqrt{3} / 2>$:
(c) Find the direction of maximum increase in the function $f(x, y)$ at the point $(1,-1)$:
(d) Find the differential $d z$ when $z=f(x, y)$:
(e) Find the surface area of the portion of the graph $z=f(x, y)=x^{2}+y^{2}$ that lies below the plane $z=4$:
2. Use spherical coordinates to compute the volume of the region below
$x^{2}+y^{2}+z^{2}=4$, above $z=\sqrt{x^{2}+y^{2}}$, between $y=x$ and $x=0$ with $y \geq 0$ (your limits of integration must correspond to the indicated region):
