Please PRINT your name on the cover of your exam booklet. Write clearly and cross-out work not to be graded. ALL ANSWERS GO IN THE EXAM BOOK.
NO calculators or other electronic devices, or scrap paper allowed. SHOW ALL WORK. Total: 100 pts.

1. (a) Find the derivative y^{\prime} and simplify:
(15 pts.)
$\begin{array}{ll}\text { (i) } y=\sqrt{x}\left(x^{3}+1\right)^{16} & \text { (ii) } y=\frac{2 x^{2}-1}{3 x+5}\end{array} \quad$ (iii) $y=\sin \left(\cos \left(x^{2}\right)\right)$
(b) Assume y is a differentiable function of x given by $x^{3} y+y^{3} x=30$. Find its (10 pts.) derivative y^{\prime}.
2. Use the definition of derivative, NOT the rules of differentiation, to find the derivative $f^{\prime}(x)$ if

$$
f(x)=\frac{2}{x+1}
$$

3. Use linear approximation (or differentials) to estimate $\sqrt{24.9}$
4. Find the following limits, or state that they do not exist (dne):
(a)

$$
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}
$$

(b)

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{x}}
$$

5. An object thrown directly upward from ground level with an initial velocity of 48 feet (15 pts .) per second is approximately $s(t)=48 t-16 t^{2}$ feet high at the end of t seconds.
(a) Find its velocity $v(t)$ and its acceleration $a(t)$.
(b) What is the maximum height attained?
(c) How fast is it moving, and in which direction, at the end of 1 second?
6. A balloon is rising vertically at a rate of $2 \mathrm{ft} / \mathrm{s}$. An observer is located 300 ft from a (25 pts.) point on the ground directly below the balloon. At what rate is the distance between the balloon and the observer changing when the height of the balloon is 400 ft ?
