Section 4.1 and 4.2

The graph of General Exponential function with base b is defined for all real numbers x by

$$
y=(a) b^{(x-H)}+V
$$

This graph has a Horizontal Asymptote: $y=V$ This value is also a Vertical Shift.
a is the stretching factor
H is Horizontal Shift
Domain: $(-\infty, \infty)$
Range: if $a>0,(V, \infty)$; if $a<0,(-\infty, V)$
This is also true if the base $b=e$ which is a natural base covered in section 4.2 and it will look like:

$$
y=(a) e^{(x-H)}+V
$$

Section 4.3

The graph of General Logarithmic function with base b :

$$
y=(a) \log _{b}(x-H)+V
$$

This graph has a Vertical Asymptote:
solve $x-H=0$ for x.
a is the stretching factor
V is Vertical Shift
Domain: solve $x-H>0$ for x.
Range: $(-\infty, \infty)$

This is also true if the base $b=e$ which is a natural base and it will look like:

$$
y=(a) \ln (x-H)+V
$$

Conversion formula:		
$b^{p}=N$	$\Leftrightarrow \quad p=\log _{b} N$	
$(10)^{p}=N$	\Leftrightarrow	$p=\log N$
$e^{p}=N$	\Leftrightarrow	$p=\ln N$

Properties of Logarithms:	
$\log _{b} 1=0$	$\ln 1=0$
$\log _{b}(b)=1$	$\ln (e)=1$
$\log _{b}\left(b^{x}\right)=x$	$\ln \left(e^{x}\right)=x$
$b^{\log _{b} x}=x$	$e^{\ln x}=x$

Section 4.4

Laws of Logarithms

$\log _{b}(A B)=\log _{b} A+\log _{b} B$	$\ln (A B)=\ln A+\ln B$
$\log _{b}\left(\frac{A}{B}\right)=\log _{b} A-\log _{b} B$	$\ln \left(\frac{A}{B}\right)=\ln A-\ln B$
$\log _{b}\left(A^{p}\right)=p \log _{b} A$	$\ln \left(A^{p}\right)=p \ln A$

Change of Base Formula

$$
\log _{b} A=\frac{\ln A}{\ln b}=\frac{\log A}{\log b}
$$

Section 4.6

Exponential Growth (Doubling Time)

If the initial size of a population is n_{0} and the doubling time is a, then the size of the population at time t is

$$
n(t)=n_{0} 2^{t / a}
$$

Where a and t are measured in the same time units (minutes, hours, days, years, and so on).

Exponential Growth (Relative Growth Rate)

A population that experiences exponential growth increases according to the model

$$
n(t)=n_{0} e^{r t} \quad \text { or } \quad P(t)=P_{0} e^{r t}
$$

where: $\quad n(t)=P(t)=$ population at time t
$n_{0}=P_{0}=$ initial size of the population
$r=$ relative rate of growth (expressed as a proportion of the population)
$t=$ time

