Section 4.1 and 4.2

The graph of General Exponential function with base b is defined for all real numbers x by

$$y = (a)b^{(x-H)} + V$$

This graph has a Horizontal Asymptote: y = VThis value is also a Vertical Shift.

a is the stretching factor

H is Horizontal Shift

Domain: $(-\infty,\infty)$

Range: if a > 0, (V, ∞) ; if a < 0, $(-\infty, V)$

This is also true if the base b = e which is a natural base covered in section 4.2 and it will look like:

$$y = (a)e^{(x-H)} + V$$

Section 4.3

The graph of General Logarithmic function with base *b*:

$$y = (a)\log_b(x - H) + V$$

This graph has a Vertical Asymptote: solve x - H = 0 for x.

a is the stretching factor

V is Vertical Shift

Domain: solve x - H > 0 for x.

Range: $(-\infty,\infty)$

This is also true if the base b = e which is a natural base and it will look like: $y = (a)\ln(x-H) + V$

Conversion formula:	Properties of Logarithms:	
b^p M \leftrightarrow n log M	$\log_b 1 = 0 \qquad \qquad \ln 1 = 0$	
$b = N \qquad \Leftrightarrow \qquad p = \log_b N$	$\log_b(b) = 1 \qquad \ln(e) = 1$	
$(10)^r = N \iff p = \log N$	$\log_{b}(b^{x}) = x \qquad \ln(e^{x}) = x$	
$e^{\nu} = N \Leftrightarrow p = \ln N$	$b^{\log_b x} = x \qquad e^{\ln x} = x$	

Section 4.4

Laws of Logarithms

$\log_b(AB) = \log_b A + \log_b B$	$\ln(AB) = \ln A + \ln B$
$\log_b \left(\frac{A}{B}\right) = \log_b A - \log_b B$	$\ln\left(\frac{A}{B}\right) = \ln A - \ln B$
$\log_b(A^p) = p \log_b A$	$\ln(A^p) = p \ln A$

Change of Base Formula

$$\log_b A = \frac{\ln A}{\ln b} = \frac{\log A}{\log b}$$

Section 4.6

Exponential Growth (Doubling Time)

If the initial size of a population is n_0 and the doubling time is a, then the size of the population at time t is

$$n(t) = n_0 2^{t/a}$$

Where a and t are measured in the same time units (minutes, hours, days, years, and so on).

Exponential Growth (Relative Growth Rate)		
A population the	hat experiences exponential growth increases according to the model	
	$n(t) = n_0 e^{rt}$ or $P(t) = P_0 e^{rt}$	
where:	n(t) = P(t) = population at time t	
	$n_0 = P_0$ = initial size of the population	
	r = relative rate of growth (expressed as a proportion of the population)	
	t = time	