Series Tests (for convergence)

Test	When to Use	Conclusions
Geometric Series	$\sum_{k=0}^{\infty} ar^k$	Converges to $\frac{a}{1-r}$ if $ r < 1$; diverges if $ r \ge 1$.
kth-Term Test	All series	If $\lim_{k \to \infty} a_k \neq 0$, the series diverges.
Integral Test	$\sum_{k=1}^{\infty} a_k \text{ where } f(k) = a_k,$ f is continuous and decreasing and $f(y) > 0$	$\sum_{k=1}^{\infty} a_k \text{ and } \int_{1}^{\infty} f(x) dx$
p-series	f is continuous and decreasing and $f(x) \ge 0$ $\sum_{k=1}^{\infty} \frac{1}{k^p}$	both converge or both diverge. Converges for $p > 1$; diverges for $p \le 1$.
Comparison Test	$\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k, \text{ where } 0 \le a_k \le b_k$	If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
		If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k, \text{ where}$ $a_k, b_k > 0 \text{ and } \lim_{k \to \infty} \frac{a_k}{b_k} = L > 0$	$\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k$ $both \text{ converge or } both \text{ diverge.}$
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^{k+1} a_k \text{ where } a_k > 0 \text{ for all } k$	If $\lim_{k \to \infty} a_k = 0$ and $a_{k+1} \le a_k$ for all k , then the series converges.
Absolute Convergence	Series with some positive and some negative terms (including alternating series)	If $\sum_{k=1}^{\infty} a_k $ converges, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
Ratio Test	Any series (especially those involving exponentials and/or factorials)	For $\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right = L$, if $L < 1$, $\sum_{k=1}^{\infty} a_k$ converges absolutely if $L > 1$, $\sum_{k=1}^{\infty} a_k$ diverges, if $L = 1$, no conclusion.
Root Test	Any series (especially those involving exponentials)	For $\lim_{k\to\infty} \sqrt[k]{ a_k } = L$, if $L < 1$, $\sum_{k=1}^{\infty} a_k$ converges absolutely if $L > 1$, $\sum_{k=1}^{\infty} a_k$ diverges, if $L = 1$, no conclusion.

There is also a method that works for "telescoping series". We will describe what "telescoping series" are, and how to determine their convergence in class.