## Homework 3 Due Wednesday 7 March

1. Read pages 6-14 in Dickson's text.
2. In section 6 , suppose that you have found a solution $y_{1}=x_{1} x_{2}+x_{3} x_{4}$ to the resolvent cubic $\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)=0$ where $x_{1}, x_{2}, x_{3}, x_{4}$ are solutions to the given quartic, $x^{4}+a x^{3}+b x^{2}+c x+d$ (remember at this stage you are supposing that you know $y_{1}$ and, obviously, you know the coefficients $a, b, c$, and $d$ of the original equation-you do not necessarily know $\left.x_{1}, x_{2}, x_{3}, x_{4}\right)$. Show that $x_{1} x_{2}$ and $x_{3} x_{4}$ are the two solutions to the quadratic $z^{2}-y_{1} z+d=0$.
3. Following the previous problem. Explain how to use $x_{1} x_{2}$ and $x_{3} x_{4}$ and the coefficients, $a, b, c, d$, to then find $x_{1}+x_{2}$ and $x_{3}+x_{4}$. Finally use what you have found to write two quadratic equations: one having solutions $x_{1}, x_{2}$ and the other having solutions $x_{3}, x_{4}$.
4. Find an integer $n$ so that $s^{n}=I$ for every element of the symmetric group on 3 letters.
5. Write the substitution $s=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)$ as disjoint cycles $=$ circular substitutions affecting different letters.
6. Write the substitution $s=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8\end{array}\right)$ as disjoint cycles.
7. Express the substitution $(13)(132)(13)$ as the product of disjoint cycles.
8. Compute $s^{-1} t s$ when $s=(124)(23)$ and $t=(1452)$.
9. Compute $s^{-1} t s$ when $s=(124)$ and $t=(357)$.
10. Do the Exercises on page 14.
11. Read Chapter 3 "Impossible and Imaginaries" in Pesic's text. Then give short answers to the following two questions.
12. In your own words, give a rough description of Bombelli's wild thought in Box 3.3 on page 55. In particular, show $b=1$.
13. Explain the excerpt from page 54 "Conversely, if the root is an imaginary number, we could reject it on the grounds that such a solution is not allowable because it is not real. However, in the case of cubic equations, even when all the roots are real, the del Ferro-Cardano-Tartaglia formula explicitly involves imaginary numbers."
14. Read Chapter 4 "Spirals and Seashores" in Pesic's text. Then give short answers to the following three questions.
15. Use Girard's identities in Box 4.1 to show that $x=5$ cannot be a solution to the quadratic $x^{2}-9 x+2$.
16. In your own words describe the passage from page 67, "...the Swedish mathematician E. S. Bring showed that we can also get rid of the $x^{2}$ term, leaving the general quintic in the much simplified form $x^{5}+p x+q=0$. The quintic now looked so simple that it became increasingly perplexing why it would not yield...Leibniz wondered if an extension of Tschirnhaus's technique could simplify the quintic into the form $x^{5}$ equals a constant, which would be readily solvable."
17. Describe the relation of the Fundamental Theorem of Algebra to the goal of our course: To solve the general quintic in radicals.
