Homework 1 Due Wednesday 8 February

This week we will read pages 1-4 of Dickson's text (there is a link to a pdf copy on our website). Reading Dickson can be slow going at first. You may need to reread a page several times to understand it. After you have finished the reading, try the following problems. When you solve a polynomial equation, find the real and complex solutions.

1. Find all solutions of $x+5=0$
2. Find all solutions of $x^{2}+5=0$
3. Find all solutions of $x^{3}+5=0$
4. Instead of memorizing the cubic formula in Dickson's text "Introduction to the Theory of Equations", it is probably best to memorize the two substitutions: $1 . x=y+\frac{1}{3} c_{1}$ into the general cubic $x^{3}-c_{1} x^{2}+c_{2} x-c_{3}=0$ and then $2 . y=z-\frac{p}{3 z}$ into $y^{3}+p y=q=0$, the result from the first substitution. (Of course, if you prefer to memorize the entire formulas you can visit the wikipedia site.)In this problem I want you to use substitutions to solve the cubic $x^{3}-3 x^{2}+4 x-4=0$.
5. Redo the previous problem by recognizing a root is $x_{1}=2$ by trial and error. (This is how the problem would be solved in high school.)
6. Explain why the solutions you found in problems 2 and 3 look different. It is often helpful to review a simple quadratic equation when you get confused with higher degree problems.
7. Solve $x^{2}-x-6=0$ by factoring
8. Solve $x^{2}-x-6=0$ by using the quadratic formula
9. Solve $x^{2}-x-6=0$ by making the substitution $x=t+\frac{-b}{2 a}$.
10. Using $\omega=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$, show that $\omega^{2}=-\frac{1}{2}-\frac{\sqrt{-3}}{2}$ and $\omega^{2}+\omega+1=0$.
11. Use the factor theorem to show that $x^{20}-1=(x-1) p(x)$ when $p(x)$ is some polynomial. Find $p(x)$.
12. Do problems 1-6 in Dickson's text.
