Modern Algebra Final

1. If x_{1} and x_{2} are solutions to $x^{2}+b x+c=0$, find formulas for:
a) $x_{1}^{2}+x_{2}^{2}$ in terms of b and c.
b) $x_{1}^{3} \cdot x_{2}^{3}$ in terms of b and c.
c) $x_{1}^{3}+x_{2}^{3}$ in terms of b and c.
2. Identify the symmetry group of a baseball, taking the stitching into account.
3. Solve the cubic $x^{3}+6 x-4=0$. (Hint: you may want to make the substitution $x=z-\frac{p}{3 z}$ that Dickson used to solve the cubic $x^{3}+p x+q=0$.)
4. a) Find the subgroup H of $G_{4!}^{(4)}$ which leaves the polynomial $\Psi=x_{1} x_{3}+x_{2} x_{4}$ unaltered.
b) Determine if the subgroup H from part a) is self-conjugate.
5. a) List all 3 -cycles in the symmetric group of four letters $G_{4!}^{(4)}$. (Recall: 3cycles are circular substitutions of three letters)
b) Do the three cycles form a subgroup of $G_{4!}^{4}$?
c) Are the three cycles even or odd substitutions?
d) How many three cycles are there in $G_{5!}^{5}$, the substitution group on five letters?
6. a) List the elements in the subgroup H of $G_{5!}^{(5)}$ which leave the polynomial $\Psi=\left(x_{1}+\omega x_{2}+\omega^{2} x_{3}+\omega^{3} x_{4}+\omega^{4} x_{5}\right)^{5}$ unaltered, when ω is a primitive fifth root of unity $\omega^{5}=1$.
b) Is the subgroup H from part a) self-conjugate?
7. a) Find, D_{4}, the symmetry group of the square as a subgroup of $G_{4!}^{4}$.
b) Find the subgroup H of D_{4} that leaves one vertex of the square invariant (it does not matter which vertex you make invariant-or how you labeled the vertices).
c) Is H from part b) self-conjugate as a subgroup of $G_{4!}^{4}$?
d) Is H from part b) self-conjugate as a subgroup of D_{4} ?
8. For each subgroup K of $G_{3!}^{3}$ find a polynomial on three letters $f\left(x_{1}, x_{2}, x_{3}\right)$ so that K is the subgroup belonging to K. (Hint: there are six subgroups of $G_{3!}^{3}$).
9. The order of a subgroup K of $G_{n!}^{n}$ is less than 300 . K itself has subgroups L and M of order 45 and 75 respectively. What is the order of K ?
10. Prove that $(132)(45)$ is conjugate to $(241)(35)$ by finding a substitution g on five letters so that $g^{-1}(123)(45) g=(241)(35)$.
11. a) Prove that if a self-conjugate subgroup H of $G_{5 \text { ! }}^{5}$ contains the circular substitutions (12) and (12345) then $H=G_{5!}$.
b) Prove that if a subgroup H (not necessarily self-conjugate) of $G_{5!}^{5}$ contains the circular substitutions (12) and (12345) then $H=G_{5!}$.
12. Find the subgroup of $G_{4!}^{4}$ corresponding to the symmetries of the cube that leave one of the four diagonals of the cube invariant (it does not matter which diagonal you choose to leave fixed).
