Department of Mathematics

Part I. Answer ALL questions. Total 64 points.

1. [13 Points] Solve the initial value problem:

$$
y^{\prime \prime}-4 y^{\prime}+4 y=x^{2}+12 e^{2 x}, \quad y(0)=1, y^{\prime}(0)=0 .
$$

2. [8 Points] Solve

$$
\left(y \cos (x y)+\frac{y}{2 x}\right) d x+\left(x \cos (x y)+\frac{1}{2} \ln (x)+\frac{1}{e^{y}}\right) d y=0 .
$$

3. [9 Points] Find the general solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}
$$

4. [7 Points] Solve $x y^{\prime}-2 y=x y+x e^{x}$.
5. [13 Points] For the equation $2 x y^{\prime \prime}-y^{\prime}+y=0$,
(a) Show $x=0$ is a regular singular point.
(b) Find the indicial equation and the recurrence relation corresponding to the larger root.
(c) Find the first four terms of the series solution valid near $x>0$ correcponding to the larger root.
6. [4 Points] Use separation of variables to replace the partial differential equation:

$$
x t u_{x x}+u_{x t}+t u_{x}=0,
$$

where u is a function of x and t, by two ordinary differential equations.
7. [10 Points] Use the Laplace Transform method to solve:

$$
y^{\prime \prime}+4 y=2, \quad y(0)=1, y^{\prime}(0)=3 .
$$

Note that: $\quad \mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad \mathcal{L}\{\sin a t\}=\frac{a}{s^{2}+a^{2}} \quad \mathcal{L}\{\cos a t\}=\frac{s}{s^{2}+a^{2}}$.

Part II begins on the back.

Part II. Answer any THREE (3) COMPLETE questions. Total: 36 points.

8. [12 Points] Find the Fourier series for

$$
f(x)=\left\{\begin{array}{lll}
x+2 & \text { if } \quad-2<x \leq 0 ; \\
2-x & \text { if } \quad 0<x \leq 2
\end{array}\right.
$$

where $f(x+4)=f(x)$ for all x.
9. [12 Points] Find the terms of the power series solution through x^{5} of

$$
y^{\prime \prime}-y^{\prime}+x y=0, \quad y(0)=1, y^{\prime}(0)=2
$$

10. (a) [4 Points] Solve $2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.
(b) [8 Points] A mass weighing two pounds stretches a spring 6 inches. The mass is pulled down 3 inches and given an upward velocity of $1 \mathrm{ft} / \mathrm{sec}$. Find $u(t)$, the displacement of the mass in feet from its equilibrium position at time t seconds after release. Assume that the acceleration due to gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$ and that air resistance is negligible.
11. A 200 gallon tank is half full of pure water. A salt solution with a concentration $5 \mathrm{lb} / \mathrm{gal}$ is flowing into the tank at the rate of $4 \mathrm{gal} / \mathrm{min}$ while the well-mixed solution is flowing out at the rate of $2 \mathrm{gal} / \mathrm{min}$.
(a) [9 Points] Find $Q(t)$, the amount of salt in lbs in the tank at time t minutes.
(b) [3 Points] Find the concentration of salt in the tank when the tank overflows.
